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Abstract

This paper presents an algorithm for solving interval linear program-
ming(ILP) problems. Interval inequality constraints and equality con-
straints are discussed separately. The aim of the paper is to show that
(ILP) problems can be decomposed into two general linear program-
ming(LP) by the monotonicity of (LP) problems , and we can gain the
interval objective values. Finally, the proposed method have virtually
the same results with paper [1].
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1 Introduction

In traditional mathematical programming, the coefficients of the problems are
always treated as deterministic values. However, uncertainty always exits in
practical engineering problems[1-3]. In order to deal with the uncertain opti-
mization problems, fuzzy[4] and stochastic[5-6] approaches are frequently used
to describe the imprecise characteristics. In these two approaches,the member-
ship function and probability distribution play important roles. However, it is
sometimes difficult to specify an appropriate membership function or accurate
probability distribution in an uncertain environment[7]. Therefore, interval op-
timization problems may provide an alternative choice for solving uncertainty
optimization problems.
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The solution methods to interval linear programming(ILP) problems were
explored by some scholars [1][7-9]. An interval linear programming is defined
as follows:

min z = CIX
s.t. AIX ≤ bI ,

xj ≥ lj, j = 1, ..., n.
(1)

Where CI ∈ {R±}1×n, bI ∈ {R±}n×1, AI ∈ {R±}m×n, R± denotes a set of
interval numbers, and X = (x1, · · · , xn)T is an n-dimensional design vector.

2 A general model

In this paper, a more general model of interval linear programming (ILP) than
(1) is defined as follows:

min z =
n∑

j=1

cIjxj

s.t.
n∑

j=1

aIijxj ≤ bIi , i = 1, ..., l,

n∑
j=1

aIijxj = bI
i , i = l + 1, ...,m,

xj ≥ lj, j = 1, ..., n.

(2)

where cIj ∈ [cLj , c
U
j ], aIij ∈ [aLij, a

U
ij], b

I
i ∈ [bLi , b

U
i ], 0 < lI

j
∈ [lLj , l

U
j ] are interval

numbers.
Let S = {(cI

j
, aIij, b

I
i , l

I
j )|cIj ∈ [cL

j
, cU

j
], aIij ∈ [aLij, a

U
ij], b

I
i ∈ [bLi , b

U
i ], lIj ∈

[lLj , l
U
j ], i = 1, ...,m, j = 1, ..., n}.

About programming (2), there are some discussions as follows. This pa-
per’s innovation lies in theorem 3.3, by which we can decompose programming
(2) into two deterministic linear programming to gain the optimal objective
interval values of the interval linear programming (2).

3 Results and Discussion

3.1 Equality constraints

Theorem 3.1. In programming (2), denote A = {X|
n∑

j=1

aIijxj = bIi ,∀aIij ∈

[aLij, a
U
ij], xj ≥ lIj , b

I
i ∈ [bLi , b

U
i ], lIj ∈ [lLj , l

U
j ], i = l + 1, ...,m, j = 1, ..., n}, B =

{X|
n∑

j=1

aLijxj ≤ bUi ,
n∑

j=1

aUijxj ≥ bLi , xj ≥ lIj , l
I
j ∈ [lLj , l

U
j ], i = l + 1, ...,m, j =

1, ..., n}, then A = B.
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Proof. Firstly, proofing A ⊆ B. ∀X∗ ∈ A, ∃aIij ∈ [aLij, a
U
ij], b

I
i ∈ [bLi , b

U
i ], lIj ∈

[lLj , l
U
j ], s.t.

n∑
j=1

aIijx
∗
j = bIi , x

∗
j ≥ lIj (≥ 0). Then

n∑
j=1

aLijx
∗
j ≤

n∑
j=1

aIijx
∗
j = bIi ≤ bUi

and
n∑

j=1

aUijx
∗
j ≥

n∑
j=1

aIijx
∗
j = bIi ≥ bLi . Clearly, X∗ ∈ B. A ⊆ B holds.

Secondly proofing B ⊆ A. ∀X∗ ∈ B, assuming the function f(aIi1, a
I
i2, a

I
i3, ..., a

I
in) =

n∑
j=1

aIijx
∗
j(i = l + 1, ...,m) are continuous on [aLi1, a

U
i1]× [aLi2, a

U
i2]× ...× [aLin, a

U
in],

because ∀X∗ ∈ B, we have
n∑

j=1

aLijx
∗
j ≤ bUi and

n∑
j=1

aUijx
∗
j ≥ bLi . And then we give

a aIij ∈ [aLij, a
U
ij] in order to bLi ≤

n∑
j=1

aIijx
∗
j ≤ bUi . Since the intermediate value

theorem, ∃bIi ∈ [bLi , b
U
i ], s.t.

n∑
j=1

aIijx
∗
j = bIi , and so X∗ ∈ A. Therefore, B ⊆ A

holds. From above, we can attain A = B.

From theorem 3.1, we know that
n∑

j=1

aIijxj = bIi is equivalent to
n∑

j=1

aLijxj ≤

bUi and
n∑

j=1

aUijxj ≥ bLi . So the minimum optimal solution of interval program-

ming (2) must satisfy both
n∑

j=1

aLijxj ≤ bUi and
n∑

j=1

aUijxj ≥ bLi .

Lemma 3.2 (see[1]). The maximum optimal solution of interval program-

ming (2) must satisfy one of
n∑

j=1

aLijxj = bUi and
n∑

j=1

aUijxj = bLi .

3.2 The monotonicity of programming (3.1)

Assuming cj, aij, bi, lj(i = 1, · · · , j) are real numbers of [cLj , c
U
j ], [aLij, a

U
ij], [bLi , b

U
i ],

[lLj , l
U
j ] respectively, programming (2) will be a general linear programming(LP)

problems:

min z =
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi, i = 1, ..., l,

xj ≥ lj, j = 1, ..., n.

(3)

where has no equation constraints.
Suppose that S ′ is the feasible region of programming (2), X∗S′ is the optimal

solution of programming (3), and G = min
X∈S′

z(X) = z(X∗S′).

Clearly, if cj, aij, bi, lj(i = 1, · · · , l, j = 1, · · · , n) are deterministic val-
ues of [cLj , c

U
j ], [aLij, a

U
ij], [bLi , b

U
i ], [lLj , l

U
j ] respectively, G = G(cj, aij, bi, lj) is
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the function of cj, aij, bi, lj. Now, we will explain the relation between G =
G(cj, aij, bi, lj) and cj, aij, bi, lj, which is an important characteristic of pro-
gramming (3).

Theorem 3.3. G is an increasing function of cj, aij, lj and decreasing func-
tion of bi, namely, ∂G

∂cj
≥ 0, ∂G

∂aij
≥ 0,∂G

∂lj
≥ 0, ∂G

∂bi
≤ 0.

Proof. For cj, giving an increasing variable ∆cj > 0, cj + ∆cj > 0, then

we can get 0 ≤
n∑

i=1

cjxj ≤
n∑

i=1

(cj + ∆cj)xj, namely, G(cj, aij, bi, lj) ≤ G(cj +

∆cj, aij, bi, lj), therefore ∂G
∂cj
≥ 0.

For aij, giving an increasing variable ∆aij > 0, aij + ∆aij > 0, let S1 =

{X|
n∑

j=1

aijxj ≤ bi, i = 1, ..., l} , S2 = {X|
n∑

i=1

(aij + ∆aij)xj ≤ bi, i = 1, ..., l}. If

X ∈ S2,
n∑

i=1

(aij + ∆aij)xj ≤ bi, i = 1, ..., l. However,
n∑

j=1

aijxj ≤
n∑

j=1

(aij + ∆aij)xj

≤ bi, i = 1, ..., l, therefore, X ∈ S1. And then S2 ⊆ S1, let S1 = S2 ∪ T ,
S2 ∩ T = ϕ, so G|X∈S1=min{G|X∈S2 , G|X∈T} ≤ G|X∈S2 , namely, ∂G

∂aij
≥ 0.

Similarly, we can have ∂G
∂lj
≥ 0, ∂G

∂bi
≤ 0.

We only discuss inequality constraints (i = 1, · · · , l, j = 1, · · · , n) in pro-

gramming (3), for equality constraints
n∑

j=1

aIijxj = bIi equivalent to
n∑

j=1

aLijxj ≤

bUi and
n∑

j=1

aUijxj ≥ bLi or one of
n∑

j=1

aLijxj = bUi and
n∑

j=1

aUijxj = bLi , which are

all deterministic inequality constraints, and won’t affect programming (2)’s
monotonicity .

3.3 The lower and upper bound of programming (2)

As in [1], in order to compute the interval numbers of objective function ,
we need to find the lower and upper bound of the objective function value of
programming (2).

To calculate the bounds of programming (2) by theorem (3.1), lemma(3.2)
and theorem(3.3), programming (2) can be translated into the following two
programming problems (4) and (5).
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zL = min
(cI

j
,aIij ,b

I
i ,l

I
j )∈S

min
X

z =
n∑

j=1

cIjxj

s.t.
n∑

j=1

aIijxj ≤ bIi , i = 1, ..., l,

n∑
j=1

aLijxj ≤ bU
i , i = l + 1, ...,m,

n∑
j=1

aUijxj ≥ bL
i , i = l + 1, ...,m,

xj ≥ lj, j = 1, ..., n.

(4)

zU = max
(cI

j
,aIij ,b

I
i ,l

I
j )∈S

min
X

z =
n∑

j=1

cIjxj

s.t.
n∑

j=1

aIijxj ≤ bIi , i = 1, ..., l,

n∑
j=1

aLijxj = bU
i , i = l + 1, ...,m,

(or
n∑

j=1

aUijxj = bL
i , i = l + 1, ...,m, )

xj ≥ lj, j = 1, ..., n.

(5)

In programming (4) and (5), programming (2)’s equality constrains have
been translated into corresponding inequality constraints.

For the objective function in (4) , zL can be written as zL = min
(cj ,aij ,bi,lj)∈S

min
X∈S′

z =

n∑
j=1

cIjxj, according to theorem 3.3 , G is an increasing function of cj , so

zL = min
(cj ,aij ,bi,lj)∈S

G(cj, aij, bi, lj) = min
X

z =
n∑

j=1

cLj xj , which is as same as

the result of [1].

For the inequality constraints in (4)
n∑

j=1

aIijxj ≤ bIi , i = 1, ..., l, and xj ≥

lIj , j = 1, ..., n, according to theorem 3.3, G is the increasing function of aij, lj
and is the decreasing function of bi, so that in order to calculate the lower

bound,
n∑

j=1

aIijxj ≤ bIi , i = 1, ..., l, xj ≥ lIj , j = 1, ..., n can be written as

n∑
j=1

aLijxj ≤ bUi , i = 1, ..., l and xj ≥ lLj , j = 1, ..., n.

Similarly, we write zU of (5) as zU = max
(cj ,aij ,bi,lj)∈S

G(cj, aij, bi, lj)= min
X

z =
n∑

j=1

cUj xj ,

and inequality constraints
n∑

j=1

aIijxj ≤ bIi , i = 1, ..., l, and xj ≥ lIj , j = 1, ..., n

can be written as
n∑

j=1

aUijxj ≤ bLi , i = 1, ..., l and xj ≥ lUj , j = 1, ..., n.
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As a consequence, the smallest and largest objective value for z can be
determined by mathematical programming problems

zL = min
X

n∑
j=1

cLj xj

s.t.
n∑

j=1

aLijxj ≤ bUi , i = 1, ..., l

n∑
j=1

aLijxj ≤ bU
i , i = l + 1, ...,m

n∑
j=1

aUijxj ≥ bL
i , i = l + 1, ...,m

xj ≥ lj, j = 1, ..., n

(6)

and

zU = min
X

n∑
j=1

cUj xj

s.t.
n∑

j=1

aUijxj ≤ bLi , i = 1, ..., l

n∑
j=1

aUijxj = bL
i , i = l + 1, ...,m

(or
n∑

j=1

aLijxj = bU
i , i = l + 1, ...,m)

xj ≥ lj, j = 1, ..., n

(7)

Both programming (6) and (7) are traditional linear programming, and
we can easily obtain the global optimum solution and the associated objective
values zL, zU , the lower and upper bound of the objective values of the interval
linear programming (2). We can find programming (6) and (7) is the same as
[1]’s models. So the result is coincident. We will illustrate this fact further by
an example in the next section.

3.4 Example

Example (see[1])

min z = [−1, 2]x1 + x2

s.t. -x1 + [1, 2]x2 ≥ [−2,−1],
[2, 3] x1 + x2 = [3, 4]
x2 ≤ 3
x1 , x2 ≥ 0.
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According to analysis above, we can obtain

zL = min z = −x1 + x2

s.t. x1 -2x2 ≤ 2
2 x1 + x2 ≤ 4
3x1 + x2 ≥ 3
x2 ≤ 3
x1 , x2 ≥ 0.

and

zU = min z = 2x1 + x2

s.t. x1 -x2 ≤ 1,
2x1 + x2 = 4(
or 3x1 + x2 = 3

)
x2 ≤ 3
x1 , x2 ≥ 0.

we can obtain the programming of zL, zU . By using the function “linprog” in
Matlab 7.0, we can calculate zL,zUof two examples, whose results are listed in
Table 1.

Example 1
This Paper’s result zL = −2, x1 = 2, x2 = 0, zU = 4, x1 = 1.2377, x2 = 1.5246

[1]’s result zL = −2, x1 = 2, x2 = 0, zU = 4, x1 = 5/3, x2 = 2/3

Table 1: numerical examples’ results

In Table 1, this paper’s result (lower bond zL, and upper bound zU ),
[zL, zU ] = [−2, 2], is the same as the [1], which can illustrate our method well.

4 Conclusion

In order to find optimal objective interval values [zL, zU ] , Guo[1] discussed
(ILP)’s objective function, inequality constraints and equality constraints sep-
arately. However, in this paper we needn’t discuss these with hard work but
equality constraints, and for monotonicity of function G ,we can easily gain
the same result.

The method deserves to be considered widely while solving other interval
programming problems, such as interval nonlinear programming.
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