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Abstract

In this paper, a new kind of analytical technique for a non-linear problem called the variational iteration method is
described and used to give approximate solutions for some well-known non-linear problems. In this method, the
problems are initially approximated with possible unknowns. Then a correction functional is constructed by a general
Lagrange multiplier, which can be identified optimally via the variational theory. Being different from the other
non-linear analytical methods, such as perturbation methods, this method does not depend on small parameters, such
that it can find wide application in non-linear problems without linearization or small perturbations. Comparison with
Adomian’s decomposition method reveals that the approximate solutions obtained by the proposed method converge to
its exact solution faster than those of Adomian’s method. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In 1978, Inokuti et al. [1] proposed a general
Lagrange multiplier method to solve non-linear
problems, which was first proposed to solve prob-
lems in quantum mechanics (see Ref. [1] and the
references cited therein). The main feature of the
method is as follows: the solution of a mathematical
problem with linearization assumption is used as
initial approximation or trial-function, then a more
highly precise approximation at some special point
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can be obtained. Considering the following general
non-linear system.

¸u#Nu"g (x ), (1)

where ¸ is a linear operator, and N is a non-linear
operator.

Assuming u
0
(x) is the solution of ¸u"0, accord-

ing to Ref. [1], we can write down an expression to
correct the value of some special point, for example
at x"1

u
#03

(1)"u
0
(1)#P

1

0

j(¸u
0
#Nu

0
!g) dx, (2)

where j is a general Lagrange multiplier [1], which
can be identified optimally via variational theory
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[1—3], the second term on the right is called the
correction.

The author has modified the above method into
an iteration method [4—8] in the following way:

u
n`1

(x
0
)"u

n
(x

0
)#P

x0

0

j(¸u
n
#NuJ

n
!g ) dx (3)

with u
0
(x ) as initial approximation with possible

unknowns, and uJ
n
is considered as a restricted vari-

ation [3], i.e. duJ
n
"0. For arbitrary of x

0
, we can

rewrite Eq. (3) as follows:

u
n`1

(x )"u
n
(x)#P

x

0

jM¸u
n
(m)#NuJ

n
(m)!g (m)N dm

(4)

Eq. (4) is called a correction functional. The modi-
fied method, or variational iteration method has
been shown [4—8] to solve effectively, easily, and
accurately a large class of non-linear problems with
approximations converging rapidly to accurate
solutions. For linear problems, its exact solution
can be obtained by only one iteration step due to
the fact that the Lagrange multiplier can be exactly
identified. Considering the following example:

y@@#u2y"f (t ), with f (t)"A sin ut#B sin t. (5)

Its correction functional can be written down as
follows:

y
n`1

(t )"y
n
(t)#P

t

0

jMy@@
n
(q)#u2y

n
(q)!f (q)N dq.

(6)

Making the above correction functional stationary,
and noticing that dy (0)"0

dy
n`1

(t)"dy
n
(t)#dP

t

0

jMyA
n
(q)#u2y

n
(q)!f (q)Ndq

"dy
n
(t)#j(q)dy@

n
(q) Dq/t

!j@ (q)dy
n
(q) Dq/t

#P
t

0

(jA#u2j)dy
n
Ddq"0

yields the following stationary conditions:

dy
n
:jA(q)#u2j(q)"0,

dy@
n
:j(q) Dq/t

"0,

dy
n
:1!j@(q) Dq/t

"0. (7)

The Lagrange multiplier, therefore, can be readily
identified,

j"
1

u
sin u(q!t ) (8)

as a result, we obtain the following iteration for-
mula

y
n`1

(t )"y
n
(t)#

1

u P
t

0

sin u(q!t )

]MyA
n
(q)#u2y

n
(q)!f (q)N dq. (9)

If we use its complementary solution y
0
"

C
1

cos ut#C
2
sin ut as initial approximation, by

the iteration formula (9), we get

y
1
(t)"y

0
(t)#

1

u P
t

0

sin u(q!t)

]M!A sin uq!B sin qN dq

"C
1

cos ut#C
2

sin ut!
A

2u
t cos ut

#

B

u2!1
(sin t#sin ut) (10)

which is the general solution Eq. (5).
However, if we apply restricted variations to the

correction function (6), then its exact solution can
be arrived at only by successive iterations. Consid-
ering homogenous Eq. (5), i.e. f (x)"0, we re-write
the correction functional of Eq. (6) as follows:

y
n`1

(t )"y
n
(t)#P

t

0

jMyA
n
(q)#u2yJ

n
(q)N dq, (11)

herein yJ
n
is considered a restricted variation, under

this condition, the stationary conditions of the
above correction functional (11) can be expressed
as follows: (noticing that dyJ

n
"0)

jA(q)"0,

j(q)q/t
"0,

1!j@ (q) Dq/t
"0. (12)

The Lagrange multiplier, therefore, can be easily
identified as follows:

j"q!t, (13)
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leading to the following iteration formula

y
n`1

(t )"y
n
(t)#P

t

0

(q!t)MyA
n
(q)#u2y

n
(q)N dq.

(14)

If, for example, the initial conditions are y(0)"1
and y@ (0)"0, we began with y

0
"y (0)"1, by the

above iteration formula (14) we have the following
approximate solutions:

y
1
(t)"1#u2P

t

0

(q!t ) dq"1!
1

2!
u2t2, (15a)

y
2
(t)"1!

1

2!
u2t2

#P
t

0

(q!t)G!u2#u2!
1

2!
u4q2H dq,

"1!
1

2!
u2t2#

1

4!
u4t4, (15b)

y
n
(t)"1!

1

2!
u2t2#

1

4!
u4ts#2

#(!1)n
1

(2n)!
u2nt2n. (15c)

Thus we have

lim
n?=

y
n
(t)"cos ut (15d)

which is the exact solution.
From the above solution process, we can see

clearly that the approximate solutions converge to
its exact solution relatively slowly due to the ap-
proximate identification of the multiplier. It should
be specially pointed out that the more accurate the
identification of the multiplier, the faster the ap-
proximations converge to its exact solution. The
approximately identified multiplier (13) is actually
the first-order approximation of its exact one (8), to
get a closer approximation than Eq. (13), we ex-
pand Eq. (8) as

j"
1

u
sin u(q!t)+q!t!

1

3!
u2(q!t)3. (16)

Substitution of Eq. (16) in Eq. (11) results in the
following iteration formula:

y
n`1

(t)"y
n
(t)#P

t

0
Gq!t!

1

3!
u2(q!t)3H

]MyA
n
(q)#u2y

n
(q)N dq. (17)

We also begin with y
0
(t)"1, by the same manip-

ulation, we have

y
1
(t)"1#P

t

0
Gq!t!

1

3!
u2 (q!t )3Hu2 dq

"1!
1

2!
u2t2#

1

4!
u4t4, (18a)

y
2
(t)"y

1
(t)#P

t

0

Mq!t!1
3
u2(q!t )3N

]G
1

4!
u6q4H dq

"1!
1

2!
u2t2#

1

4!
u4t4!

1

6!
u6t6

#

1

8!
u8t8. (18b)

So, it can be seen clearly that the approximations
obtained from Eq. (17) converge to its exact solu-
tion faster than those obtained from the iteration
formula (14).

For non-linear problems, in order to determine
the Lagrange multiplier in as simple a manner as
possible, the non-linear terms have to be con-
sidered as restricted variations, so the above dis-
cussed case also applies to the non-linear problems,
details are discussed below.

2. Some examples

Now we apply the proposed technique to solve
some non-linear examples.

2.1. Example 1. Duffing equation

Duffing equation is widely used by many per-
turbation techniques to verify their effectiveness,
herein we will also apply the Duffing equation with
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non-linearity of fifth order to illustrate the general
evaluation process of the proposed method.

d2u

dt2
#u#eu5"0,

u(0)"A, u@ (0)"0, (19)

its correction functional can be written down as
follows:

u
n`1

(t )"u
n
(t)#P

t

0

jG
d2u

n
(q)

dq2
#u

n
(q)#euJ 5

n
(q)Hdq,

(20)

where uJ
n
is considered as a restricted variation.

Its stationary conditions can be obtained as fol-
lows:

jA(q)#j (q)"0,

j(q) Dq/t
"0,

1!j@ (q) Dq/t
"0. (21)

The multiplier, therefore, can be identified as
j"sin(q!t ), and the following variational iter-
ation formula can be obtained:

u
n`1

(t )"u
n
(t)#P

t

0

sin(q!t )

]G
d2u

n
(q)

dq2
#u

n
(q)#eu5

n
(q)H dq. (22)

Assuming that its approximate solution has the
form

u
0
(t)"A cos at, (23)

where a (e) is a non-zero unknown function of e with
a(0)"1.

The substitution of Eq. (23) in Eq. (19) results in
the following residual

R
0
(t)"(!a2#1#5

8
eA4)A cos at

# 1
16

eA5 (cos 5at#5 cos 3at). (24)

By the variational iteration formula (22), we have

u
1
(t)"A cos at#P

t

0

sin(q!t)R
0
(q) dq

"A cos at#(!a2#1#5
8

eA4)

]
A

a2!1
(cos at!cos t )

#

eA5

16(25a2!1)
(cos 5at!cos t)

#

5eA5

16(9a2!1)
(cos 3at!cos t). (25)

In order to ensure that no secular terms appear in
the next iteration, resonance must be avoided. To
do so, we equate the coefficient of cos t equal to
zero

!

eA5

16(25a2!1)
!

5eA5

16(9a2!1)

!(!a2#1#5
8
eA4)

A

a2!1
"0. (26)

Thus we have its first-order approximation

u
1
(t)"

eA5

16(25a2!1)
cos 5at

#

5eA5

16(9a2!1)
cos 3at#

5eA5

8(a2!1)
cos at,

(27)

with a determined from Eq. (26), which can be
approximately expressed as

a"J1#5
8
eA4#O(e2A8). (28)

The function a can also be identified by various
methods such as method of weighted residuals
(least square method, method of collocation,
Galerkin method). Here we will also give a very
simple but heuristic technique to determine the
unknown function a. Generally speaking, the resid-
ual Eq. (24) is not equal to zero, the right-hand side
of Eq. (24) would have to vanish if u

0
(t) were to be

a solution of Eq. (19). We may, however, at least
assure the vanishing of the factor of cos at by
setting

a"J1#5eA4/8, (29)

702 J.-H. He / International Journal of Non-Linear Mechanics 34 (1999) 699–708



then by the iteration formula (22), we obtain

uN
1
(t)"A cos at#P

t

0

sin(q!t)

]C
eA5

16
cos 5aq#

5eA5

16
cos 3aqD dq

"A cos at#
eA5

16(25a2!1)
(cos 5at!cos t )

#

5eA5

16(9a2!1)
(cos 3at!cos t) (30)

with a defined as in Eq. (29).
Its period can be calculated as follows:

¹"

2n

J1#5eA4/8
, (31)

while the period obtained by perturbation method
[9] reads

¹"2n(1!5eA4/16) (32)

and the exact one can be readily obtained as follows:

¹
%9
"

4

J1#1
3
eA4 P

n@2

0

dx

J1#k cos2x#k cos4x

(33)

with k"1
3

eA4/(1#1
3
eA4).

It should be specially pointed out that the per-
turbation formula (32) is valid only for small para-
meter e, whereas Eq. (31) is valid not only for small
parameter, but also for very large parameter, even
in the case eA4PR, we have

lim
eA4?=

¹
%9
¹

"

2J15
8

n P
n@2

0

dx

J1#cos2x#cos4x

"

2J15
8

n
]1.14811"1.0008.

Therefore, for any value of e, it can be easily proved
that 0)D(¹

%9
!¹ ) D/¹

%9
)0.08% so the approxim-

ate solution obtained by the proposed method is
uniformly valid for any value of e!

2.2. Example 2. Mathematical pendulum [10, 11]

Many of the mathematical methods employed in
non-linear oscillators may be successfully tested on

one of the simplest mathematical systems: the
mathematical pendulum. When friction is neglect-
ed, the differential equation governing the free os-
cillation of the mathematical pendulum is given by

uA#u2 sin u"0, (34)

with initial conditions u(0)"A and u@(0)"0.
In order to apply the variational iteration

method to solve the above problem, the approxi-
mation sin u+u!1

6
u3# 1

120
u5 is used, as a result,

we obtain the following correction functional

u
n`1

(t )"u
n
(t)#P

t

0

jG
d2u

n
(q)

dq2

#[u
n
(q)!1

6
uJ 3
n
# 1

120
uJ 5
n
]H dq, (35)

where uJ
n
is a restricted variation.

The multiplier can be identified as j"
sinu(q!t )/u, leading to the following iteration
formula

u
n`1

(t )"u
n
(t)#

1

u P
t

0

sin u(q!t )G
d2u

n
(q)

dq2

#u2[u
n
(q)!1

6
u3
n
# 1

120
u5
n
]Hdq. (36)

We begin with the initial approximation
u
0
(t)"A cos aut, where a is an unknown constant.

Substituting the initial approximation into Eq. (34)
results in the following residual

R
0
(t)+uA

0
#u2[u

0
!1

6
u3
0
# 1

120
u5
0
]

"A(!a2#1)u2 cos aut

!1
6
u2A3 cos3 aut# 1

120
u2A5 cos5 aut

"A(!a2#1!1
8
A2# 1

192
A4)u2 cos aut

!( 1
24
! 1

384
A2)u2A3 cos 3aut

# 1
1920

u2A5 cos 5aut.

In order to solve its first-order approximation in
as simple a manner as possible, we equate the
coefficient of cos aut equal to zero by setting

a"J1!1
8
A2# 1

192
A4 . (37)
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Therefore, the iteration formula (36) yields the fol-
lowing result:

u
1
(t)"A cos aut!

( 1
24
! 1

384
A2) A3

(9a2!1)u2

](cos 3aut!cos ut )

#

A5

1920(25a2!1)u2

](cos 5aut!cosut ), (38)

with a defined as Eq. (37)
Its period can be expressed as follows:

¹"

2n

u J1!1
8
A2# 1

192
A4

. (39)

The approximate period (39) is of high accuracy, for
example, when A"n/2, the value obtained from
Eq. (39) is ¹"1.17¹

0
, while the exact one is

¹
%9
"1.16¹

0
, where ¹

0
"2n/u.

2.3. Example 3. Vibrations of the eardrum [10]

As a third example, we consider the equation of
the motion of the human eardrum [10]

uA!u2u#eu2"0,

u(0)"A, u@ (0)"0. (40)

Its correction functional can be written down as
follows:

u
n`1

(t )"u
n
(t)#P

t

0

j G
d2u

n
(q)

dq2
#u2u

n
#euJ 2

n H dq,

(41)

where uJ
n
is a restricted variation.

The Lagrange multiplier can be readily identified
as j"sin u(q!t )/u, and the following iteration
formula can be obtained

u
n`1

(t )"u
n
(t)#

1

u P
t

0

sin u(q!t )

]G
d2u

n
(q)

dq2
#u2u

n
#eu2

n H dq (42)

Assuming that the trial-function has the form
u
0
(t)"A cos aut, where a(e) is a non-zero constant

with a (0)"1. In view of Eq. (42), we have

u
1
(t)"A cos aut#

1

u P
t

0

sin u(q!t )

]C(1!a2)Au2 cos auq

#

eA2

2
(1#cos 2auq )D dq

"A cos aut!A(cos aut!cos ut )

!

eA2

2u2
(1!cos ut)#

eA2

2u2(4a2!1)

](cos 2aut!cos ut)

"a cos ut!b#c cos 2aut, (43)

with the definition

a"A#

eA2

2u2
!

eA2

2u2(4a2!1)
,

b"
eA2

2u2
, c"

eA2

2u2(4a2!1)
. (44)

For small e, the unknown constant a can be ap-
proximately chosen as follows:

a"1#O(e). (45)

From Eq. (43) we have

u
1
"A cos ut

#

eA2

6u2
(!3#2 cos ut#cos 2ut)#O(e2)

(46)

which as the same as that obtained by perturbation
method [10], and is of a relatively poor approxima-
tion. To obtain an approximation with more high
accuracy, we should identify the unknown a such
that in the next iteration secular terms will not
occur, so the coefficient of cos ut in Eq. (43) must
vanish, i.e.

a"0 or a"1
2

JeA/(eA#2u2)#1. (47)
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We, therefore, obtain its first-order approximation

u
1
(t)"!

eA2

2u2
#

eA2

2u2(4a2!1)
cos 2aut (48)

with a defined as Eq. (47).
By the same manipulation and by Eq. (42) we

obtain its second approximation

u
2
(t)"u

1
(t)!A!bu2#eb2#

ec2
2 B

]
1

u2
(1!cos ut)

#(!4a2u2c#u2c!2ebc)

]
1

u2(4a2!1)
(cos 2aut!cos ut)

#

ec2
2

1

u2 (16a2!1)
(cos 4aut!cos ut ),

(49)

with b and c defined as Eq. (44), a defined as Eq.
(47).

2.3. Example 4. Partial differential equation

The new technique can be readily extended to
partial differential equations. Considering the fol-
lowing example

+2u#A
Lu

LyB
2
"2y#x4, (50)

u(0, y )"0, u (1, y )"y#a,

u(x, 0)"ax, u (x, 1)"x (x#a). (50)

Its correction variational functional in x and y-
directions can be expressed, respectively, as follows:

u
n`1

(x, y)"u
n
(x, y)

#P
x

0

j
1C

L2u
n
(m, y )

Lm2
#

L2uJ
n
(m, y )

Ly2

#A
LuJ

n
(m, y )

Ly B
2
!2y!m4D dm (51)

u
n`1

(x, y)"u
n
(x, y)

#P
y

0

j
2C

L2uJ
n
(x, 1 )

Lx2
#

L2u
n
(x, 1 )

L12

#A
LuJ

n
(x, 1 )

L1 B
2
!21!x4D d1 , (52)

where uJ
n
is a restricted variation.

The Lagrange multipliers can be easily identified:

j
1
"m!x, j

2
"1!y. (53)

The iteration formulae in x- and y-directions can
be, therefore, expressed, respectively, as follows:

u
n`1

(x, y)"u
n
(x, y)

#P
x

0

(m!x)C
L2u

n
(m, y )

Lm2
#

L2u
n
(m, y )

Ly2

#A
Lu

n
(m, y )

Ly B
2
!2y!m4D dm (54)

u
n`1

(x, y)"u
n
(x, y)

#P
y

0

(1!y )C
L2u

n
(x, 1 )

Lx2
#

L2u
n
(x, 1 )

L12

#A
Lu

n
(x, 1 )

L1 B
2
!21!x4D d1 . (55)

To ensure the approximations satisfy the boundary
conditions at x"1 and y"1 we modify the varia-
tional iteration formulae in x- and y-directions as
follows:

u
n`1

(x, y)"u
n
(x, y)

#P
x

1

(m!x)C
L2u

n
(m, y )

Lm2
#

L2u
n
(m, y )

Ly2

#A
Lu

n
(m, y )

Ly B
2
!2y!m4D dm (56)

u
n`1

(x, y)"u
n
(x, y)

#P
y

1

(1!y )C
L2u

n
(x, 1 )

Lx2
#

L2u
n
(x, 1 )

L12

#A
Lu

n
(x, 1 )

L1 B
2
!21!x4D d1 . (57)
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Now we begin with an arbitrary initial approxima-
tion: u

0
"A#Bx, where A and B are constants to

be determined, by the variational iteration formula
in x-direction (54), we have

u
1
(x, y)"A#Bx

#P
x

0

(m!x )[0#0!2y!m4] dm

"A#Bx#x2y#
1

30
x6. (58)

By imposing the boundary conditions at x"0 and
x"1 yields A"0 and B"a! 1

30
, thus we have

u
1
(x, y)"x (xy#a)# 1

30
x (x5!1). (59)

By Eq. (56), we have

u
2
(x, y)"x(xy#a)#

1

30
x (x5!1)#P

x

1

(m!x)

][2y#m4#0#m4!2y!m4] dm

"x (xy#a ), (60)

which is an exact solution.
The approximation can also be obtained by y-

direction or by alternate use of x- and y-directions
iteration formulae.

3. Comparison with Adomian’s decomposition
method [12, 13]

In the Adomian’s method [12, 13], the linear
term (¸ ) in Eq. (1) is always decomposed into
H#R, where H is the highest-ordered differen-
tial, R is the remainder of the linear operator,
as a result, Eq. (1) can be expressed in Adomian’s
form

Hu#Ru#Nu"g. (61)

Because H is easily invertible, solving Eq. (61) yields

u"
=
+
i/0

uN
i
"u

0
!H~1Ru!H~1Nu#H~1g, (62)

with definition

uN
1
"!H~1Ru

0
!H~1A

0
,

uN
2
"!H~1RuN

1
!H~1A

1
,

uN
n`1

"!H~1RuN
n
!H~1A

n
,

in which H~1 is an inverse operator of H, A
n

are
called Adomian polynomials, defined as

A
0
"N(u

0
),

A
1
"uN

1

d

du
0

N(u
0
),

A
2
"uN

2

d

du
0

N(u
0
)#

uN 2
1

2!

d2

du2
0

N (u
0
).

To compare with the variational iteration method,
we construct a correction functional as follows:

u
n`1

"u
n
#H~1jMHu

n
#RuJ

n
#N (uJ

n
)N, (63)

where uJ
n
is considered as a restricted variation.

If H is the first-order derivative, then the multi-
plier can be easily determined as j"!1, resulting
in

u
n`1

"u
n
!H~1MHu

n
#Ru

n
#Nu

n
N (64)

which corresponds to Adomian’s formula (62), so
the results are the same as Adomian’s.

To demonstrate clearly, we begin with u
0
(x)"

u(0), by Eq. (64), we have

u
1
"u

0
!H~1MHu

0
#Ru

0
#N (u

0
)N"u

0
#uJ

1
,

where

u
0
"u (0, x ), Hu

0
"Hu(0, x)"0,

uN
1
"!H~1(Hu

0
#Ru

0
)!H~1(Nu

0
)

"!H~1Ru
0
!H~1A

0
.

By the same manipulation, we have the following
second-order approximation

u
2
"u

0
#uN

1
!H~1M¸(u

0
#uN

1
)#R(u

0
#uN

1
)

#f (u
0
#uN

1
)N"u

0
#uN

1
#uN

2
,
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where

uN
2
"!H~1MH(u

0
#uN

1
)#R(u

0
#uN

1
)

#N (u
0
#uN

1
)N.

The non-linear term N can be expressed by Taylor
series

N(u
0
#uN

1
)"N(u

0
)#uN

1

d

du
0

N (u
0
)#2 .

Therefore we have
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0
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and the nth approximation can be obtained as
follows:

u
n
"

n
+
i/0

uN
i
,

which is the same as Adomian’s
So it can be seen clearly that when we begin with

initial conditions as initial approximation, and ap-
ply restricted variations to all variables except the
highest-ordered differential in the correction func-
tional, the above iteration process corresponds to
those of Adomian’s. However, in the variational
iteration method, the multiplier, or the weighted
function, can be optimally determined via varia-
tional theory [1] instead of simply setting j"!1,
leading to poor approximation. Furthermore, the
restricted variations are applied only to non-linear
terms; as pointed out above, the lesser the applica-
tion of restricted variations the faster the approxi-
mations converging to its exact solution.

4. Conclusions

In this paper we have studied few problems with
the variational iteration method, which does not
require small parameter in an equation as the per-
turbation techniques do. The results show that

(1) A correction functional can be easily con-
structed by a general Lagrange multiplier, and the
multiplier can be optimally identified by varia-
tional theory. The application of restricted vari-
ations in correction functional makes it much easier
to determine the multiplier.

(2) The initial approximation can be freely se-
lected with unknown constants, which can be deter-
mined via various methods.

(3) The approximations obtained by this method
are valid not only for small parameter, but also for
very large parameter, furthermore their first-order
approximations are of extreme accuracy.

(4) Comparison with Adomian’s method reveals
that the approximations obtained by the proposed
method converge to its exact solution faster than
those of Adomian’s.
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