

Anirban Sahu,^{1,2,6} Udit Singhal,^{1,3,6} and Arul M. Chinnaiyan^{1,2,3,4,5,*}

While our understanding of the molecular mechanisms underlying cancer has significantly improved, most of our knowledge focuses on protein-coding genes that make up a fraction of the genome. Recent studies have uncovered thousands of long noncoding RNAs (IncRNAs) that populate the cancer genome. A subset of these molecules show striking cancer- and lineage-specific expression patterns, suggesting that they may be potential drivers of cancer biology and have utility as clinical biomarkers. We discuss emerging modalities of IncRNA biology and their interplay with cancer-associated concepts, including epigenetic regulation, DNA damage and cell cycle control, microRNA silencing, signal transduction pathways, and hormone-driven disease. In addition, we highlight the translational impact of IncRNAs, tools for their mechanistic investigation, and directions for future IncRNA research.

The Emergence of IncRNAs in Cancer

Cancer is a complex disease consisting of multiple factors that lead to the development of malignant tumors [1]. While much progress has been made in identifying the major contributors to cancer progression, the clinical picture remains bleak. Current research efforts aim to better understand the interplay between cancer cells, tumor microenvironments, and defense mechanisms involved in cancer development, immune evasion, and therapeutic susceptibility [1]. However, the majority of these studies focus on protein-coding genes as the crucial components in disease progression, overlooking the vast landscape of noncoding genes.

Among these noncoding transcripts are IncRNAs. IncRNAs are RNA species greater than 200 bp in length commonly characterized by polyadenylation, splicing of multiple exons, promoter trimethylation of histone H3 at lysine 4 (H3K4me3), and transcription by RNA polymerase II [2,3]. IncRNA-mediated biology has been implicated in a wide variety of cellular processes, including pluripotency in mouse embryonic stem cells [4] and X chromosome inactivation [5]. While some IncRNAs, such as *XIST* (X inactive specific transcript) appear to operate exclusively in the nucleus as regulators of gene expression [5,6], others function predominantly in the cytoplasm to regulate signal transduction and the stability of mRNAs [7–9]. Several distinct mechanisms of IncRNA activity have been described. Most prominently, IncRNAs have been shown to collaborate with protein partners to form **ribonucleoprotein complexes** (RNP, see Glossary) [10]. For example, *XIST* interacts with the **Polycomb repressive complex 2** (PRC2), resulting in PRC2 recruitment and subsequent trimethylation of histone H3 at lysine 27 (H3K27me3) of the inactive X chromosome [11]. *Air* and *Kcnq1ot1* bind to G9a, a histone H3 lysine 9 methylase, to regulate gene expression [12,13]. *ANRIL* associates with PRC1 to regulate the *INK4a* locus [14]. Long intergenic noncoding RNA (linc)RNA-*p21* and *PANDA* are

Thousands of IncRNAs populate the cancer genome and show cancer-specific expression patterns.

CelPress

IncRNAs drive cancer biology and mediate several cancer-associated concepts, including epigenetic regulation, DNA damage and cell cycle control, miRNA silencing, signal transduction pathways, and hormone-driven disease.

New tools are emerging as powerful methods for IncRNA discovery and mechanistic investigation, including RNA-seq, ChIRP, RAP, RNA-FISH, and icSHAPE.

The MiTranscriptome compendium provides a comprehensive annotation of over 8000 previously undiscovered cancer-associated IncRNAs that may be crucial molecules for future study.

Uncovering IncRNA function may reveal new translational opportunities for biomarker development and therapeutic targeting.

¹Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA

²Department of Pathology, University of Michigan, Ann Arbor, MI, USA ³Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA

⁴Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA

⁵Department of Urology, University of Michigan, Ann Arbor, MI, USA ⁶These authors contributed equally

two p53-regulated IncRNAs that interact with hnRNP-K and NF-YA to regulate transcription [15,16]. *IncRNA-LET* is downregulated across several cancers and functions by binding to and degrading nuclear factor 90 (NF90) protein, which enhances hypoxia-induced cancer cell invasion [17]. Given this tendency to engage proteins, IncRNAs are surfacing as decoys, scaffolds, and guides [18].

*Correspondence:

arul@med.umich.edu (A.M. Chinnaiyan).

Table 1. Examples of IncRNAs in Cancer

Name	Cancer type(s)	Tumor suppressor/ oncogene	Mechanistic theme(s) ^a	Refs
ANRIL (antisense noncoding RNA in the INK4 Locus)	Gastric	Oncogene	Cell cycle regulation, epigenetic complex, miRNA regulation	[14,34,85]
BANCR (BRAF activated noncoding RNA)	Melanoma, NSCLC	Oncogene, tumor suppressor	Chemokine signaling, EMT	[99,100]
BCAR4 (breast cancer antiestrogen resistance-4)	Breast, multiple	Oncogene	Hedgehog signaling pathway	[90,104, 105]
CARLo-5 (cancer-associated region IncRNA-5)	Colorectal, gastric, NSCLC, prostate	Oncogene	Apoptosis, cell cycle regulation, EMT	[65–67]
CCAT1 (colon cancer associated transcript 1)	Colorectal	Oncogene	MYC	[119]
CCAT2 (colon cancer associated transcript 2)	Breast, colorectal, esophageal squamous cell, NSCLC	Oncogene	Chromosomal instability, MYC, Wnt signaling pathway	[92–95]
CTBP1-AS (C-terminal binding protein 1-antisense)	Prostate	Oncogene	Hormone-regulated	[113]
DRAIC (downregulated-RNA in androgen-independent cells)	Multiple, prostate	Tumor suppressor	Hormone-regulated	[112]
FAL1 (focally amplified IncRNA on chromosome 1)	Multiple epithelial types, ovarian	Oncogene	Cell cycle regulation, epigenetic complex	[31]
gadd7 (growth-arrested DNA damage-inducible IncRNA)	Non-specific	Tumor suppressor	Cell cycle regulation, DNA damage response	[68]
GAPLINC (gastric adenocarcinoma predictive lincRNA)	Gastric	Oncogene	ceRNA	[84]
GAS5 (growth arrest specific 5)	Non-specific, mesothelioma, prostate	Tumor suppressor	Apoptosis	[71,72,108]
H19	Colorectal, gastric, glioma, osteosarcoma, pancreatic	Oncogene	miRNA interaction, signal transduction	[76–80,91]
HOTAIR (HOX transcript antisense intergenic RNA)	Breast, colorectal, hepatocellular, GIST	Oncogene	Epigenetic complex, miRNA regulation	[19–22]
HOTTIP (HOXA transcript at the distal TIP)	Hepatocellular	Oncogene	Epigenetic complex	[53,54]
HULC (hepatocellular upregulated IncRNA)	Hepatocellular	Oncogene	ceRNA	[82,126, 127]
LED (IncRNA activator of enhanced domains)	Leukemia, non-specific	Tumor suppressor	Cell cycle regulation, epigenetic regulation	[63]
lincRNA-p21	Non-specific	Tumor suppressor	Cell cycle regulation, epigenetic regulation	[15,59]

Trends in Cancer

Table 1. (continued)

μc/RVA/ATB (nc/RNA-activated by TGF-(β)HepatocallularOncogenece/RNA, EMT, TGF-(β) signaling[83]Mc/RVA/LE/T (low expression in turnor)Hepatocallular, lung squamousOncogeneCel/Cel regulation, epigenetic complex,[33] <i>Inc/RNA-LET</i> (low expression in turnor)Colorectal, hepatocallular, lung squamousTurnor suppressorEpigenetic complex, with signaling pathway[42] <i>MALAT1</i> (metastasis- associated lung adenocarcinoma transcript-1)Endometrial, lung, renal celOncogeneEpigenetic complex, with signaling pathway[96-98, signaling pathway[96,107, hepatocallular, nmm <i>MEG3</i> (maternal) expressorNeuroblastomaTurnor suppressorTurnor suppressor[96,107, hepatocallular, nmm[96,107,107,107,107,107,107,107,107,107,107	Name	Cancer type(s)	Tumor suppressor/ oncogene	Mechanistic theme(s) ^a	Refs
IncRNA-HEIH (IncRNA-high expression In HCC)HepatocellularOncogene supressorCell cycle regulation, epigenetic complex,[33]IncRNA-LET (iow expression in turnor)Colorectal, hepatocellular, lung squamousTurnor 	IncRNA-ATB (IncRNA-activated by TGF- β)	Hepatocellular	Oncogene	ceRNA, EMT, TGF-β signaling	[83]
IncRNA-LET (low expression in tumor)Colorectal, hepatocellular, lung squamousTumor 	<i>IncRNA-HEIH</i> (IncRNA-high expression In HCC)	Hepatocellular	Oncogene	Cell cycle regulation, epigenetic complex	[33]
InCTCF7HepatocellularOncogeneEpigenetic complex, Wnt signaling pathway[42]MALAT1 (metastasis- associated lung adenocarcinoma transcript-1)Endometrioid 	IncRNA-LET (low expression in tumor)	Colorectal, hepatocellular, lung squamous	Tumor suppressor	Hypoxia, metastasis	[17]
MALAT1 (metastasis- associated lung adenocarcinoma transcript-1)Endometrial, lung, renal cellOncogeneEMT, metastasis, Wnt signaling pathway[96-98, 129-132]MEG3 (maternally expressed)3Colorectal, gastric, hepatocellular, meningioma, NSCLCTumor suppressorDNA damage response, miRNA interaction[60,61]MIR31HGMelanomaTumor 	IncTCF7	Hepatocellular	Oncogene	Epigenetic complex, Wnt signaling pathway	[42]
MEG3 (maternally expressed 3)Colorectal, gastric, meningioma, NSCLCTumor suppressorDNA damage response, miRNA interaction[60.61]MIR31HGMelanomaTumor suppressorCell cycle regulation, OIS[64]NBAT-1 (neuroblastoma associated transcript-1)NeuroblastomaTumor suppressorEpigenetic complex[32]NEAT1 (nuclear enriched abundant transcript-1)Breast, multiple solid types, prostateOncogeneEpigenetic regulation, hypoxia[106,107]NKLA (NF-KB Interacting InCRNA)BreastTumor suppressorInflammation in tumor microsen/romoment, regulation of signal transduction[18.40]PANDA (P21-associated neRNA damage activatedNon-specific, leukemia suppressorTumor suppressorCell cycle regulation, DNA damage response, microsen/romoment, regulation of signal transduction[18.40]PANDA (P21-associated neRNA DNA damage activatedNon-specific, leukemia suppressorTumor suppressor[18.40]PCAT-1 (prostate cancer associated transcript 1)ProstateTumor suppressor[11.112]PCGEM1 (prostate cancer associated nanscript 29)ProstateOncogeneHormone-regulated, MYC[114-116]PCKDF1 (prostate cancer associated neRNA 1)ProstateOncogeneMYC[120]FVLT1ColorectalOncogeneMYC[120]FVLT1ColorectalOncogeneEpigenetic complex[41,50-52]FVLT1ColorectalOncogeneDNA demage response, epigenetic complex[23] </td <td>MALAT1 (metastasis- associated lung adenocarcinoma transcript-1)</td> <td>Endometrioid endometrial, lung, renal cell</td> <td>Oncogene</td> <td>EMT, metastasis, Wnt signaling pathway</td> <td>[96–98, 129–132]</td>	MALAT1 (metastasis- associated lung adenocarcinoma transcript-1)	Endometrioid endometrial, lung, renal cell	Oncogene	EMT, metastasis, Wnt signaling pathway	[96–98, 129–132]
MIR31HGMelanomaTumor suppressorCell cycle regulation, OIS[64]NBAT-1 (neuroblastoma associated transcript-1)NeuroblastomaTumor suppressorEpigenetic complex[32]NEAT1 (nuclear enriched abundant transcript-1)Breast, multiple solid types, prostateOncogeneEpigenetic regulation, OIS[106,107] hormone-regulated, hypoxia[106,107]NKLA (NF-xB interacting IncRNA)BreastTumor suppressorInflammation in tumor microenvironment, regulation of signal[122]PANDA (P21-associated ncRNA DNA damage activated)Non-specific, leukemia suppressorTumor suppressorCell cycle regulation, DNA damage response[64,107]PCAT-1 (prostate cancer associated transcript 1)ProstateOncogene suppressorInflammation in tumor megulation of Signal[69,70,86]PCAT29 (prostate cancer 	MEG3 (maternally expressed 3)	Colorectal, gastric, hepatocellular, meningioma, NSCLC	Tumor suppressor	DNA damage response, miRNA interaction	[60,61]
NBAT-1 (neuroblastoma associated transcript-1)NeuroblastomaTumor suppressorEpigenetic complex[32]NEAT1 (nuclear enriched abundant transcript-1)Breast, multiple solid types, prostateOncogeneEpigenetic regulation, homone-regulated, typoxia[106,107] homone-regulated, typoxiaNKILA (NF-xE interacting IncRNA)BreastTumor suppressorInflammation in tumor microenvironment, regulation of signal 	MIR31HG	Melanoma	Tumor suppressor	Cell cycle regulation, OIS	[64]
NEAT1 (nuclear enriched abundant transcript-1)Breast, multiple solid types, prostateOncogeneEpigenetic regulation, hormone-regulated, 	NBAT-1 (neuroblastoma associated transcript-1)	Neuroblastoma	Tumor suppressor	Epigenetic complex	[32]
NKILA (NF-kB interacting InCRNA)BreastTumor suppressorInflammation in tumor microenvironment, 	NEAT1 (nuclear enriched abundant transcript-1)	Breast, multiple solid types, prostate	Oncogene	Epigenetic regulation, hormone-regulated, hypoxia	[106,107]
PANDA (P21-associated ncRNA DNA damage activated)Non-specific, leukemiaTumor suppressorCell cycle regulation, DNA[16,40] damage responsePCAT-1 (prostate cancer associated transcript 1)ProstateOncogenemiRNA-like function, regulation of DNA damage regulation of DNA damage regulation of DNA damage regulation of DNA damage regulation of DNA damage 	NKILA (NF-κB interacting IncRNA)	Breast	Tumor suppressor	Inflammation in tumor microenvironment, regulation of signal transduction	[122]
PCAT-1 (prostate cancer associated transcript 1)ProstateOncogenemiRNA-like function, regulation of DNA damage repair, repression of a tumor suppressor[69,70,86]PCAT29 (prostate cancer associated transcript 29)ProstateTumor suppressorHormone-regulated[111,112]PCGEM1 (prostate-specific transcript 1)ProstateOncogeneHormone-regulated, MYC[114,115]PRNCR1 (prostate cancer associated ncRNA 1)ProstateOncogeneHormone-regulated[114,115]PKNCR1 (prostate cancer associated ncRNA 1)ProstateOncogeneMYC[120]PVT1ColorectalOncogeneMYC[120]SChLAP1 (second chromosome locus associated with prostate 1)ProstateOncogeneEpigenetic complex[41,50-52]TARID (TCF21 antisense RNA inducing demethylation)Non-specificTumor suppressorDNA demethylation, epigenetic regulation[23]TUG1 (taurine upregulated 1)Esophageal squamous cell, NSCLCOncogeneDNA damage response, 	PANDA (P21-associated ncRNA DNA damage activated)	Non-specific, leukemia	Tumor suppressor	Cell cycle regulation, DNA damage response	[16,40]
PCAT29 (prostate cancer associated transcript 29)ProstateTumor suppressorHormone-regulated[11,112]PCGEM1 (prostate-specific transcript 1)ProstateOncogeneHormone-regulated, MYC[114-116, 	PCAT-1 (prostate cancer associated transcript 1)	Prostate	Oncogene	miRNA-like function, regulation of DNA damage repair, repression of a tumor suppressor	[69,70,86]
PCGEM1 (prostate-specific transcript 1)ProstateOncogeneHormone-regulated, MYC[114-116, 118]PRNCR1 (prostate cancer associated ncRNA 1)ProstateOncogeneHormone-regulated, MYC[114,115]PVT1ColorectalOncogeneMYC[120]SChLAP1 (second chromosome locus associated with prostate 1)ProstateOncogeneMYC[14,50-52]TARID (TCF21 antisense RNA inducing demethylation)Non-specificTumor suppressorDNA demethylation, epigenetic regulation[23]TUG1 (taurine upregulated 1)Esophageal squamous cell, NSCLCOncogeneDNA damage response, 	PCAT29 (prostate cancer associated transcript 29)	Prostate	Tumor suppressor	Hormone-regulated	[111,112]
PRNCR1 (prostate cancer associated ncRNA 1)ProstateOncogeneHormone-regulated[114,115]PVT1ColorectalOncogeneMYC[120]SChLAP1 (second chromosome locus associated with prostate 1)ProstateOncogeneMYC[120]TARID (TCF21 antisense RNA 	PCGEM1 (prostate-specific transcript 1)	Prostate	Oncogene	Hormone-regulated, MYC	[114–116, 118]
PVT1ColorectalOncogeneMYC[120]SChLAP1 (second chromosome locus associated with prostate 1)ProstateOncogeneEpigenetic complex[41,50-52]TARID (TCF21 antisense RNA inducing demethylation)Non-specificTumor 	PRNCR1 (prostate cancer associated ncRNA 1)	Prostate	Oncogene	Hormone-regulated	[114,115]
SChLAP1 (second chromosome locus associated with prostate 1)ProstateOncogeneEpigenetic complex[41,50-52]TARID (TCF21 antisense RNA inducing demethylation)Non-specificTumor suppressorDNA demethylation, epigenetic regulation[23]TUG1 (taurine upregulated 1)Esophageal squamous cell, NSCLCOncogeneDNA damage response, epigenetic complex[35]XIST (X inactive specific transcript)Breast, hematologicTumor suppressorEpigenetic complex[11,36]	PVT1	Colorectal	Oncogene	MYC	[120]
TARID (TCF21 antisense RNA inducing demethylation)Non-specificTumor suppressorDNA demethylation, epigenetic regulation[23]TUG1 (taurine upregulated 1)Esophageal squamous cell, NSCLCOncogeneDNA damage response, epigenetic complex[35]XIST (X inactive specific transcript)Breast, hematologicTumor suppressorEpigenetic complex[11,36]	<i>SChLAP1</i> (second chromosome locus associated with prostate 1)	Prostate	Oncogene	Epigenetic complex	[41,50–52]
TUG1 (taurine upregulated 1)Esophageal squamous cell, NSCLCOncogeneDNA damage response, epigenetic complex[35]XIST (X inactive specific transcript)Breast, hematologic suppressorTumor suppressorEpigenetic complex[11,36]	TARID (TCF21 antisense RNA inducing demethylation)	Non-specific	Tumor suppressor	DNA demethylation, epigenetic regulation	[23]
XIST (X inactive specific transcript)Breast, hematologic suppressorTumor suppressorEpigenetic complex[11,36]	TUG1 (taurine upregulated 1)	Esophageal squamous cell, NSCLC	Oncogene	DNA damage response, epigenetic complex	[35]
	XIST (X inactive specific transcript)	Breast, hematologic	Tumor suppressor	Epigenetic complex	[11,36]

^aAbbreviations: ceRNA, competing endogenous-RNA; EMT, epithelial-mesenchymal transition; GIST, gastrointestinal stromal tumor; NSCLC, non-small cell lung cancer; OIS, oncogene induced senescence.

Glossary

Chromatin remodeler: a protein complex that physically changes DNA architecture to allow or restrict access of regulatory proteins and transcription machinery to DNA. The function of chromatin remodelers is often carried out by epigenetic modifications using the energy of ATP hydrolysis.

CellPress

Enhancer RNA (eRNA): a class of non-coding RNAs that plays a role in enhancer DNA-mediated transcriptional regulation. eRNAs have been shown to recruit RNA polymerase II to these DNA regions to assist in the initiation of gene transcription.

Epigenetics: the heritable variations in gene expression that result due to differences in how DNA is read rather than in the DNA sequence itself. Epigenetic alterations include DNA methylation and histone modifications.

Epithelial-mesenchymal transition (EMT): the cellular mechanism by which epithelial cells gain migratory and invasive properties to form mesenchymal cells. This phenomenon is often seen when

cancer cells gain the ability to invade and metastasize to distant organs. EMT can also occur in normal biological processes, such as wound healing.

Hedgehog signaling pathway: a cellular signaling pathway that is required for the regulation of embryonic cell development. Aberrations in Hedgehog signaling may result in developmental or growth defects.

Oncogene-induced senescence (OIS): a sustained induction of the Rb and p53 tumor suppressive pathways in response to an activating mutation in an oncogene or loss of tumor-suppressive activity within a cell. The mechanism by which OIS occurs has not been fully elucidated; however, it is known to protect against the progression to cancer in response to oncogenic stress. Polycomb repressive complex 2

(PRC2): a multiprotein complex containing the core components of SUZ12, EED, RbAp48, and EZH2. PRC2 primarily functions as a histone methyltransferase, adding a trimethyl group to histone H3 on lysine 27 (H3K27me3) to produce transcriptionally silent chromatin.

CellPress

Ribonucleoprotein complex (RNP): a cellular complex containing RNAs and proteins. Transforming growth factor-β

(TGF-β) signaling pathway: a cellular signaling pathway involved in numerous physiological processes, including cell differentiation, cell growth, and apoptosis. Ligand binding initiates a cascade of signaling through serine/threonine receptor kinase activity.

Wnt signaling pathway: a cellular signaling pathway initiated by binding of Wnt ligand to a Frizzled family receptor, resulting in transmission of this signal to Dishevelled within the cell. This leads to downstream regulation of genes involved in embryonic development and in cell differentiation, migration, and proliferation.

Figure 1. IncRNAs Play a Crucial Role within Major Areas of Cancer Progression and Metastasis. Long noncoding RNA (IncRNAs) mediate several cancer-associated processes, including epigenetic regulation, DNA damage and cell cycle control, microRNA (miRNA) silencing, signal transduction pathways, and hormone-driven disease.

In cancer, IncRNAs are emerging as a prominent layer of previously underappreciated transcriptional regulation that function as both oncogenes and tumor suppressors [2] (Table 1). For example, overexpression of the *HOTAIR* IncRNA correlates with aggressive breast [19], colorectal [20], hepatocellular [21], and gastrointestinal stromal tumors [22], while IncRNA *TARID* prevents cancer formation through promoter demethylation at tumor suppressors [23]. In this review we discuss emerging themes of IncRNA-mediated function within major areas of cancer progression and metastasis, focusing on advances made over the past several years (Figure 1).

Epigenetic Regulation

Cancer results from an accumulation of modified genes, either by mutation or **epigenetic** alterations such as methylation, acetylation, and phosphorylation [24]. Growing evidence suggests that key cellular genes involved in proliferation, apoptosis, and stem cell differentiation are epigenetically modified in cancer [25]. However, the mechanisms underlying precise epigenetic control are poorly understood.

An evolving model of IncRNA activity centers on their ability to bind to and regulate epigenetic complexes [26]. Specifically, several IncRNAs have been shown to function by interacting with Polycomb group complexes [18]. This is especially relevant in cancer because PRC1 and 2 are known oncogenic drivers in several types of malignancies [27–30]. For example, *FAL1* (focally amplified IncRNA on chromosome 1), a novel oncogenic IncRNA present across several epithelial tumors, associates with BMI1, a core subunit of the PRC1 complex [31]. In ovarian cancer, *FAL1* was shown to mediate cancer progression and was associated with decreased patient survival. *FAL1* interaction with BMI1 stabilizes the PRC1 complex by preventing BMI1

degradation, allowing PRC1 to occupy and repress the promoters of target genes such as p21, resulting in loss of cell cycle regulation and increased tumorigenesis.

Similarly, *NBAT-1*, *IncRNA-HEIH*, *HOTAIR*, *ANRIL*, *TUG1*, and *XIST* have all been shown to interact with the enzymatic subunit of the PRC2 complex, EZH2, to modulate the repressive H3K27me3 histone mark on downstream target genes. This subsequently leads to either oncogenesis or tumor suppression in a multitude of cancer types, including neuroblastoma [32], hepatocellular [33], breast [19], gastric [34], non-small cell lung carcinoma (NSCLC) [35], and hematologic malignancies [36], respectively. In fact, up to 20% of all IncRNAs have been implicated in PRC2 binding [37], suggesting that PRC2 promiscuously binds to IncRNAs [38]. Recent studies have shown both specific and non-specific binding of PRC2 to IncRNAs, and emerging evidence suggests that these activities are not mutually exclusive [39]. However, the *in vivo* binding specificity of PRC2 remains to be elucidated.

One of the most-studied lncRNAs, *HOTAIR* (HOX transcript antisense RNA), recruits the PRC2 complex to a set of genes involved in suppressing breast cancer metastasis [19]. This genomewide retargeting of PRC2 results in repression of genes that prevent cancer progression. In addition, *HOTAIR*-mediated genetic reprogramming results in gene expression signatures that resemble embryonic fibroblast gene signatures, and this promotes cell migration, invasion, and metastasis. IncRNAs can also interact with Polycomb group complexes indirectly. For example, *PANDA* (P21 associated ncRNA DNA damage activated) physically interacts with scaffold-attachment-factor-A (SAFA) to indirectly recruit both the PRC1 and PRC2 complexes to the promoters of genes involved in cellular senescence [40]. This suggests that IncRNAs can facilitate epigenetic changes through interaction with protein intermediates.

In addition to Polycomb group complexes, several IncRNAs have been linked to the SWI/SNF nucleosome-remodeling complex in cancer and other diseases [41-44]. SWI/SNF is a multisubunit complex that uses the energy of ATP hydrolysis to redistribute and rearrange nucleosomes to influence gene expression [45,46]. In cancer, SWI/SNF is widely considered to be a tumor suppressor because deleterious mutations are present in approximately 20% of all cancers [45,47-49]. Indeed, SChLAP1 (second chromosome locus associated with prostate-1), a prostate cancer-specific IncRNA that is highly expressed in 15-30% of localized and metastatic tumors [41], is significantly associated with poor clinical outcomes and lethal disease. Moreover, SChLAP1 expression enhances tumor invasion and metastasis, in part, by interacting with and abrogating genome-wide binding of the SWI/SNF complex. Subsequent studies have defined SChLAP1 as one of the best prognostic genes in prostate cancer and have also shown the clinical utility of SChLAP1 as both a tissue- and urine-based biomarker [50-52]. Comparably, IncTCF7 is highly expressed in hepatocellular carcinoma (HCC) and is required for the maintenance of self-renewal capacity in liver cancer stem cells (CSC) [42]. Functionally, IncTCF7 triggers the Wnt signaling pathway by binding to and recruiting the SWI/SNF complex to the TCF7 promoter to activate gene expression. This preserves the self-renewal capabilities of liver CSCs and promotes tumor initiation in HCC. IncRNA-mediated SWI/SNF regulation has also been described in other cellular and disease processes. For example, polymerase Vtranscribed IncRNAs indirectly interact with the SWI/SNF complex to mediate transcriptional silencing [43]. In addition, the cardio-protective IncRNA Mhrt directly interacts with BRG1, the catalytic subunit of SWI/SNF, to prevent cardiac hypertrophy [44]. Taken together, these studies suggest that IncRNAs play an important role in SWI/SNF regulation, and systematic efforts to characterize similar IncRNA mediators of SWI/SNF in other cancers are warranted.

In addition, *HOTTIP* (HOXA transcript at the distal tip) is another IncRNA upregulated in HCC [53]. *HOTTIP* expression is associated with clinical progression of HCC and is also an independent predictor of overall survival. Mechanistically, *HOTTIP* regulates the HOXA locus by

interacting with the WDR5/MLL epigenetic complex to drive H3K4me3 [54]. Previous studies have identified an RNA binding pocket on WDR5 [55], suggesting that direct binding of IncRNAs to WDR5/MLL may similarly promote other cancers.

Epigenetic control by IncRNAs is not only exercised via interactions with **chromatin remod**elers. For example, *TARID* (TCF21 antisense RNA inducing demethylation) directs promoter demethylation of the tumor-suppressive transcription factor TCF21 [23]. *TARID* is normally expressed in benign lung, oral, and ovarian epithelium but suppressed in cancer owing to hypermethylation of its promoter. *TARID* acts as a scaffold to recruit GADD45A, a DNA demethylator, to the *TCF21* promoter, resulting in demethylation of the *TCF21* promoter through the base-excision repair pathway. The physical interaction between the *TCF21* promoter, *TARID*, and GADD45A is crucial for TCF21 expression and tumor suppression.

Insight into the biology and mechanism of IncRNAs provides a basis for the understanding of the global epigenetic modifications that occur in cancer.

DNA Damage and Cell Cycle Regulation

Proper responses to DNA damage and appropriate regulation of cell cycle checkpoints are essential for maintenance of cell integrity [56]. With alterations in more than 50% of all cancers, the p53 tumor suppressor mediates responses to DNA damage to prevent tumor-associated changes in cell metabolism, cell cycle checkpoint regulation, and cell motility during cancer development [57]. While our current knowledge of these pathways is guiding targeted drug development in cancer [58], a thorough understanding of the mechanisms governing p53-related function in early tumorigenesis remains elusive.

IncRNAs have surfaced as important regulators of p53 action and cell cycle regulation in cancer. For example, *lincRNA-p21* is regulated by p53 and serves as a repressor in p53-dependent transcriptional responses by physically associating with and guiding hnRNP-K to precise genomic targets [15]. Functionally, *lincRNA-p21* is crucial for p53-mediated apoptosis in response to DNA damage. *lincRNA-p21* recruits hnRNP-K in *cis* to promote p53-dependent transcription of p21, which is a well-known checkpoint regulator in the p53 pathway [59]. The absence of *lincRNA-p21* compromises the G1/S checkpoint and results in increased proliferation.

Several IncRNAs are related to p53 regulation in response to cell stress, including *MEG3*, *TUG1*, *PANDA*, and *LED*. The imprinted IncRNA *MEG3* (maternally expressed gene 3) regulates cell proliferation and apoptosis by activating p53 in meningioma [60] and NSCLC [61]. *TUG1* [35] and *PANDA* [16] are directly regulated by p53 binding to their promoters following DNA damage, and *TUG1* and *PANDA* expression are reduced in primary lung and breast tumors, respectively, compared to normal tissue. Mechanistically, *TUG1* recruits PRC2 to the promoter of *HOXB7*, reducing HOX-mediated cell proliferation; *PANDA* binds to and abrogates chromatin binding of NF-YA, leading to repression of apoptotic gene expression programs.

Upon cellular stress, p53 also directly regulates **enhancer RNAs** (eRNAs), which function by altering the expression of neighboring genes [62]. While many p53-induced eRNAs have p53-binding sites, some do not, suggesting that another mediator is involved in regulating this subset of p53-responsive eRNAs. Recently, *LED* (IncRNA activator of enhancer domains) was identified as a p53-induced lncRNA that associates with and activates several of these remaining enhancers [63]. *LED* prominently associates with the p21 enhancer, and *LED* knockdown significantly influences G1 checkpoint arrest and increases cell proliferation. Mechanistically, *LED* impacts eRNA production by epigenetically increasing the deposition of the active enhancer histone mark, H3K9ac, at specific loci. Interestingly, *LED* expression is downregulated by

hypermethylation in 44% of cancer cell lines, suggesting that *LED* is a p53-responsive lncRNA that regulates the p53 transcriptional response and has tumor-suppressive function.

Other IncRNAs play a vital role in mediating senescence and cell cycle arrest. The IncRNA MIR31HG is upregulated during **oncogene-induced senescence** (OIS) and antagonizes the tumor-suppressive function of P16^{INK4A}, resulting in decreased cell progression to S phase of the cell cycle [64]. MIR31HG functions by mediating Polycomb group protein-mediated repression of the INK4A locus. CARLo-5 (cancer-associated region long non-coding RNA), a IncRNA implicated in colorectal cancer [65], prostate cancer [65], gastric cancer [66], and NSCLC [67], functions by blocking cell cycle arrest at the G1 phase, resulting in uninhibited cell proliferation. IncRNA gadd7 (growth-arrested DNA damage-inducible gene 7) inhibits the G1/S cell cycle transition, and its expression is induced in response to DNA-damaging agents, including UV irradiation, cisplatin, and growth arrest [68]. Prostate cancer-specific IncRNA PCAT-1 (prostate cancer-associated transcript 1) is involved in the transcriptional repression of many genes related to mitosis and the cell cycle [69]. PCAT-1 expression is inversely correlated with BRCA2 levels, and cells overexpressing PCAT-1 accumulate double-strand breaks (DSB) after treatment with DNA-damaging agents, suggesting its involvement in homologous recombination and DSB repair [70]. Downregulation of the tumor-suppressive IncRNA GAS5 (growth arrest-specific 5) promotes cell proliferation, in part, by regulating cell cycle factors such as CDK6, E2F1, and p21 [71,72].

Taken together, these mechanisms suggest that a subclass of IncRNAs are crucial gatekeepers of DNA damage repair, cell cycle progression, and apoptosis, and that IncRNA dysregulation in this context contributes, in part, to cancer cell immortality.

miRNA Silencing

miRNAs are small transcripts that have emerged as a prominent class of regulatory genes in numerous diseases, including cancer [73]. miRNAs bind to complementary sequences on target RNAs, leading to repressed gene expression and blocked protein synthesis. Several IncRNAs mediate cancer progression by altering miRNA function. In the competing endogenous RNA (ceRNA) model, IncRNAs that harbor miRNA response elements can bind to and sequester miRNAs, preventing target transcript degradation [9,74]. While some experimental evidence has questioned the validity of the ceRNA hypothesis [75], many IncRNAs function via miRNA pathways, both directly and indirectly.

The *H19* IncRNA has been studied for decades as an important genetic factor in development and cancer [76]. Two miRNA-based mechanisms have been described regarding its function. First, *H19* encodes for and produces miR-675 to promote gastric cancer [77], colorectal cancer [78], and glioma [79]. Next, *H19* modulates the let-7 family of miRNAs [80], which have vital roles in development, cancer, and metabolism [81]. Specifically, *H19* was found to harbor both canonical and non-canonical binding sites for let-7 and acts as a miRNA sponge to sequester and regulate the let-7 family of miRNAs.

In HCC, *HULC* (highly upregulated in liver cancer) and *lncRNA-ATB* (activated by TGF-β) have been shown to function by miRNA-facilitated modalities. *HULC*, one of the most highly expressed lncRNAs in HCC, is a CREB (cAMP response element binding protein)-regulated transcript that acts as a miRNA sponge to downregulate several miRNAs, including miR-372, leading to decreased translational repression of *PRKACB* and induced activation of CREB [82]. This results in an auto-regulatory loop in which *HULC* promotes its own expression. *lncRNA-ATB* enhances **epithelial-mesenchymal transition** (EMT), leading to cancer progression and tumor metastasis [83]. High *lncRNA-ATB* expression is correlated with decreased recurrence-free survival and overall survival in HCC patients. *lncRNA-ATB*

CellPress

interacts with several miR-200s which have been previously shown to play a role in EMT suppression. Increased *IncRNA-ATB* expression results in decreased miR-200 levels, suggesting that *IncRNA-ATB* functions as a microRNA sponge. Remarkably, *in vivo* xenograft studies showed that mutating miR-200 target sites on *IncRNA-ATB* decreased the abundance of circulating tumor cells in mice [83].

In gastric cancer, *GAPLINC* (gastric adenocarcinoma predictive lincRNA) was identified as the most upregulated lncRNA in cancer compared to normal tissue and correlates with poor patient outcomes [84]. Mechanistically, *GAPLINC* regulates cell migration pathways by acting as a decoy for miR211-3p, a miRNA implicated in CD44 oncogene degradation.

Moreover, IncRNAs can alter miRNA biology indirectly. The IncRNA *ANRIL* (antisense noncoding RNA in the *INK4* locus), which is known to function in tumor development and progression [85], is highly overexpressed in gastric cancer and correlates with worse disease prognosis [34]. *ANRIL* binds to PRC2 and is required for PRC2-mediated silencing of miR-99a and miR-449a. Downregulation of these miRNAs releases inhibition of E2F1 and CDK6, allowing cell cycle progression and cell proliferation. Subsequently, E2F1 reactivates ANRIL, forming a positive auto-regulatory loop.

In addition, *PCAT-1*, one of the most differentially expressed InCRNAs in prostate cancer compared to benign tissues [69], promotes cell proliferation, in part, by interfering with the regulation of *MYC* by miR-34a [86]. Studies showed that *PCAT-1* binds to the *MYC* 3' untranslated region (3'-UTR), preventing miR-34a from engaging its target sequence. When *PCAT-1* was knocked down or a *PCAT-1*-specific miRNA was introduced into cells, MYC stabilization was compromised, suggesting that *PCAT-1* plays a crucial post-transcriptional role in MYC regulation.

These studies suggest that IncRNAs significantly influence miRNA biology by acting as a precursor for miRNAs, directly binding to and sequestering miRNAs, or indirectly interfering with miRNA expression and regulation. While the ceRNA hypothesis remains controversial, it is clear that miRNAs are one of several avenues by which IncRNAs mediate cancer progression and metastasis.

Signaling Pathways

The aberrant activation and propagation of cellular signals is a well-documented phenomenon in cancer. IncRNAs that function in these signaling pathways are becoming a major component of cancer mechanisms. As a key target of drug development, further investigation in this area will potentially reveal therapeutic vulnerabilities that can be targeted with novel compounds.

Cellular Signaling

Several studies have highlighted the role of **transforming growth factor**- β (TGF- β) [87], **Hedgehog** [88], and **Wnt** [89] **signaling pathways** in tumor development. For example, TGF- β signaling promotes cancer cell metastasis in HCC via *lncRNA-ATB*. In addition to regulating miRNAs, *lncRNA-ATB* is induced by TGF- β and stabilizes IL-11 mRNA [83]. This allows increased IL-11 secretion and downstream IL-11/STAT3 signaling in an autocrine fashion, leading to enhanced cell colonization at distant metastatic sites.

In breast cancer, *BCAR4* (breast cancer antiestrogen resistance 4) was recently identified as the most upregulated lncRNA expressed in stage III breast cancer versus normal tissue, and increased expression was seen in later stage and metastatic samples, correlating with shorter survival time in breast cancer patients [90]. *In vitro* and *in vivo* experiments showed that *BCAR4* increases breast cancer cell migration and invasion through interactions with two transcription

factors, leading to the activation of a non-canonical Hedgehog signaling pathway. In addition, overexpression of IncRNA *H19* as a result of aberrant Hedgehog signaling promotes osteosarcoma development in mice [91].

The IncRNAs *CCAT2* (colon cancer-associated transcript 2) and *MALAT1* (metastasis-associated lung adenocarcinoma transcript 1) drive tumor progression and metastasis in breast [92], NSCLC [93], esophageal [94], colorectal [95], renal cell [96], endometrial [97], and lung cancers [98] through general activation of the Wnt signaling pathway. Moreover, *IncTCF7* (described above) recruits the SWI/SNF complex to promote Wnt signaling in HCC [42].

In addition, some IncRNAs are involved in chemokine signaling. For example, *BANCR* (BRAFregulated IncRNA 1) is upregulated in cancer tissues with the active BRAF^{V600E} mutant and increases cell migration in melanoma through increased CXCL11 chemokine signaling [99]. *BANCR* also increases cell migration and invasion in NSCLC by regulating E-cadherin, Ncadherin, and Vimentin, which play key roles in EMT [100]. These studies suggest that IncRNAs may promote tumorigenesis through varying mechanisms of signal transduction.

Hormonal Regulation

Several cancers are driven by hormone regulation [101]. In particular, estrogen and androgen steroid hormones stimulate breast and prostate cancers [102,103]. Given the pivotal role of these hormone receptor pathways in propelling cancer progression, it comes as no surprise that IncRNAs are also involved in their function.

Before being described as a mediator of non-canonical Hedgehog signaling (described above), *BCAR4* was identified in a functional screen for genes involved in tamoxifen resistance [104]. Subsequent studies found that *BCAR4* expression is associated with shorter metastasis-free survival and overall survival in breast cancer patients, and *BCAR4* mediates estrogen-independent tumor growth [105]. In prostate cancer, *NEAT1* (nuclear enriched abundant transcript 1), a IncRNA necessary for nuclear paraspeckle formation [106], was identified as an estrogen receptor \propto (ER- \propto)-regulated IncRNA, with increased expression in prostate cancers compared to normal tissues [107]. *NEAT1* coordinates prostate cancer oncogenesis by interacting at promoters of prostate-cancer associated genes. Importantly, prostate cancers expressing high levels of *NEAT1* are unresponsive to androgen antagonists, suggesting that *NEAT1* may play a role in metastatic castrate-resistant prostate cancers (mCRPC). In addition, IncRNA GAS5 mediates apoptosis in hormone-driven prostate and breast cancers through binding to steroid receptors [108].

The androgen receptor (AR) plays a central role in establishing an oncogenic cascade that drives prostate cancer progression [109]. In fact, the mainstay of treatment for prostate cancer involves androgen deprivation therapy (ADT) [110]. *PCAT29* (prostate cancer-associated transcript 29) [111] and *DRAIC* (downregulated RNA in cancer) [112] are two androgen-suppressed lncRNAs located within 20 kb of each other on chromosome 15q23. Upon androgen stimulation, AR binds to the promoters of both lncRNAs to repress their transcription. Lower *PCAT29* and *DRAIC* expression correlates with poor prognostic outcomes in prostate cancer patients. Tumors treated with ADT showed higher levels of *PCAT29*, and tumors that progressed after ADT had lower expression of *DRAIC*, suggesting that these lncRNAs may play a role in mediating mCRPC.

CTBP1-AS is another androgen-regulated IncRNA that mediates AR activity by directly inhibiting the expression of the AR co-repressor CTBP1 [113]. *CTBP1-AS* functions by recruiting histone deacetylases via the RNA-binding PTB-associated splicing factor (PSF) to target gene promoters. *CTBP1-AS* knockdown suppresses androgen-dependent cell proliferation *in vitro* and

reduces xenograft tumor growth *in vivo*. Furthermore, upregulation of *CTBP1-AS* and downregulation of *CTBP1* is detected in primary and metastatic prostate cancer samples, but not benign tissues, suggesting that this lncRNA directly contributes to prostate cancer progression.

Other IncRNAs have also been shown to directly mediate AR activity in prostate cancer. *PRNCR1* and *PCGEM1* are two IncRNAs that bind successively to AR to strongly enhance both ligand-dependent and ligand-independent AR-mediated gene activation and proliferation in prostate cancer cells [114]. However, the crucial role of these IncRNAs in mCRPC remains questionable because subsequent studies found extremely low levels of *PRNCR1* expression in metastatic prostate tumors and lack of IncRNA binding to AR in prostate cells [115]. Nevertheless, *PCGEM1* may play a role in mediating disease progression during the early stages of prostate cancer [116], and further experimentation is necessary to delineate the precise role of these IncRNAs in mediating AR function.

Downstream Mediators

The *MYC* proto-oncogene is a downstream effector of many signal transduction pathways and alterations in *MYC* are known to be oncogenic [117]. The human chromosomal 8q24 region includes a gene desert that contains enhancer elements that regulate MYC activity through long range chromatin looping. IncRNAs are also implicated in these processes. In prostate cancer, *PCAT-1* mediates *MYC* regulation [86] and *PCGEM1* (prostate cancer gene expression marker 1) co-activates AR and *MYC* to regulate tumor metabolism [118]. The colorectal cancer-specific IncRNA *CCAT1-L* mediates chromatin looping to allow the *MYC* promoter to interact with its enhancer elements [119]. IncRNA *PVT1* is transcribed from the gene desert associated with *MYC*, and *PVT1* expression is required for the oncogenic potential of *MYC*-driven human cancers [120]. Specifically, in 98% of *MYC*-amplified human tumors, *PVT1* expression is also upregulated, and *PVT1* knockdown abolishes the tumorigenicity of cancers with *MYC* amplification. However, *PVT1* itself is not sufficient to cause tumor development without concurrent

Trends in Cancer

Figure 2. Translational Implications of InCRNAs. Long noncoding RNAs (InCRNAs) are emerging as both diagnostic and prognostic biomarkers that can be detected in tissue, serum, and urine. Antisense oligonucleotides (ASOs) can be used to directly target InCRNAs and are a promising therapeutic strategy in cancer.

MYC upregulation, suggesting that a synergistic effect exists between *PVT1* and *MYC* in cancer development.

The transcription factor NF- κ B is also highly upregulated in a variety of cancers and plays a role in tumor microenvironment inflammation, resulting in cancer development, metastasis, and invasion [121]. *NKILA* (NF- κ B Interacting IncRNA) is upregulated by NF- κ B and binds to NF- κ B/I κ B to form a stable complex, preventing degradation of I κ B and subsequent NF- κ B activation [122]. Low *NKILA* expression is correlated with cancer metastasis, advanced stage, higher grade, increased tumor size, and decreased patient survival, suggesting a clinically important function of *NKILA* in mediating inflammation-stimulated breast cancer.

Translational Implications of IncRNAs

IncRNAs are beginning to show translational utility as both biomarkers and therapeutic targets (Figure 2 and Table 2). Dozens of IncRNAs show promise as diagnostic and prognostic markers across several types of cancers [123]. In general, IncRNAs show higher tissue- and disease-specific expression compared to protein-coding genes [124]. In cancer, IncRNAs show striking cancer- and lineage-specificity, suggesting that these molecules may be powerful biomarkers in the clinical setting [125]. In addition, IncRNAs can be measured in blood, urine, and tissue,

Name	Cancer type(s) ^a	Diagnostic/prognostic	Blood/tissue/urine	Refs
ANRIL	Gastric	Prognostic	Tissue	[34]
BANCR	NSCLC	Prognostic	Tissue	[100]
BCAR4	Breast	Prognostic	Tissue	[90]
CARLo-5	NSCLC	Prognostic	Tissue	[67]
CCAT2	Breast	Prognostic	Tissue	[92]
DRAIC	Multiple, prostate	Prognostic	Tissue	[112]
FAL1	Ovarian	Prognostic	Tissue	[31]
GAPLINC	Gastric	Diagnostic, prognostic	Tissue	[84]
GAS5	Gastric	Prognostic	Tissue	[72]
HOTAIR	Breast, colorectal, GIST, hepatocellular	Prognostic	Tissue	[19–22]
HOTTIP	Hepatocellular	Prognostic	Tissue	[53]
HULC	Hepatocellular, pancreatic	Diagnostic, prognostic	Blood, tissue	[126,127]
IncRNA-ATB	Hepatocellular	Prognostic	Tissue	[83]
IncRNA-HEIH	Hepatocellular	Prognostic	Tissue	[33]
MALAT1	Colorectal, glioma, prostate, renal cell	Diagnostic, prognostic	Blood, tissue	[96,129–132]
MEG3	NSCLC	Prognostic	Tissue	[61]
NBAT-1	Neuroblastoma	Prognostic	Tissue	[32]
NEAT1	Prostate	Prognostic	Tissue	[107]
NKILA	Breast	Prognostic	Tissue	[122]
PCA3	Prostate	Diagnostic	Urine	[128]
PCAT29	Prostate	Prognostic	Tissue	[111]
SChLAP1	Prostate	Prognostic	Tissue, urine	[41,50–52]
TUG1	NSCLC	Prognostic	Tissue	[35]

Table 2. Biomarker Potential of IncRNAs in Cancer

^aGIST, gastrointestinal stromal tumor; NSCLC, non-small cell lung cancer.

CelPress

justifying the development of non-invasive tests [2]. For example, *HULC* is not only associated with poor prognosis in pancreatic cancer [126] but it is also highly detectable in the plasma of patients with HCC compared to healthy controls [127]. In prostate cancer, *PCA3* has proven to be a powerful diagnostic urine marker [128]. Similarly, initial data show *SChLAP1* can be detected in both tissue and urine of patients with more-aggressive prostate cancer [50–52]. In addition to its prognostic value in colorectal carcinoma [129], renal cell carcinoma [130], and glioma [131], *MALAT1* can be detected in patient serum and may serve as a diagnostic marker in prostate cancer [132]. Furthermore, *AA174084* [133] and a set of oral IncRNAs [134] are found in gastric juices and saliva, and may serve as potential non-invasive biomarkers in gastric and oral squamous cell cancers, respectively.

Direct targeting of IncRNAs may be a viable therapeutic strategy in cancer. Antisense technology has gained considerable traction over the past few years as several antisense oligonucleotides (ASOs) have been introduced into clinical trials and some have been FDA-approved for clinical use [135–138]. ASOs function by basepairing to target RNAs, resulting in transcript-specific RNase H-mediated catalytic degradation [139]. ASOs are a particularly attractive therapeutic modality for several reasons, including predictable human pharmacokinetics, prolonged tissue elimination half-lives, enhanced specificity compared to small-molecule inhibitors, and lack of cytochrome P450 enzyme metabolism [91,139–141]. These characteristics are thought to make ASOs safer for patients and also more suitable for combination therapies with other drugs. Given the important role of IncRNAs across several cancer pathways, ASO-mediated therapies are likely to surface as a promising class of new cancer drugs over the next few years.

Box 1. Tools for IncRNA Investigation

Several techniques and tools have been developed to discover and study IncRNAs (see Figure 3 in main text). RNA-seq has emerged as the most powerful method of IncRNA discovery. Recently, a large-scale IncRNA annotation effort identified nearly 60 000 IncRNAs across the cancer genome, suggesting that a large portion of the human transcriptome remains unexplored [125]. The MITranscriptome portal (www.mitranscriptome.org) was developed using RNA-seq data from over 6500 samples comprising benign and malignant tissues as well as cell lines, making it the most comprehensive IncRNA annotation to date. Furthermore, a sample set enrichment analysis (SSEA) revealed approximately 8000 previously unknown IncRNAs showing tissue- and/or cancer-specificity, providing the scientific community with a vast database of potentially crucial molecules for future study. While this new resource will provide a foundation for IncRNA genomics and cancer disease mechanisms, it is limited to polyadenylated IncRNAs.

Novel methods to isolate RNA *in vivo* have led to the discovery of chromatin, RNA, and protein interacting partners of IncRNA transcripts. RNA pulldown methods such as chromatin isolation by RNA purification (ChIRP) [154] and RNA antisense purification (RAP) [155] have aided in the discovery of IncRNA function. These methods utilize antisense complementary oligonucleotides to isolate a target RNA and its associated molecules. Downstream sequencing and mass-spectrometry analysis can then be used to identify novel interactors in an unbiased manner.

Another useful tool to delineate IncRNA function is direct visualization. Single-molecule RNA-FISH (fluorescence *in situ* hybridization) is a powerful method to localize and visualize IncRNA expression patterns in cells and tissues [156,157]. Multiplexing RNA-FISH with protein immunofluorescence can also be used to identify and confirm RNA-protein interactions.

One of the greatest biological challenges has been the structural analysis of RNA molecules *in vivo*. A new approach, termed icSHAPE (*in vivo* click selective 2'-hydroxyl acylation and profiling experiment) enables RNA structure analysis *in vivo* at nucleotide resolution for all four bases and can identify RNA strandedness [158]. Perhaps the most relevant aspect of this technique to IncRNAs is the ability to differentiate structural changes in RNA at protein-binding sites.

Traditionally, computational methods are used to determine whether RNA is coding or noncoding. A variety of tools analyze sequence features such as open reading frame (ORF) length and the presence of a protein domain within a transcript. A subset of lncRNAs have been classified as TUCPs (transcript of unknown coding potential) [125,143]. This is especially relevant because several examples of novel small peptides produced from putative lncRNAs have been described [159]. Improved bioinformatics tools and experimental methods, such as ribosomal profiling [160], should be employed to thoroughly assess the protein-coding capacity of a transcript.

CellPress

Concluding Remarks

Although we have attempted to classify IncRNAs by their predominant mechanistic modality, most transcripts could fit into multiple categories, suggesting that IncRNAs may form important regulatory networks that can coordinate numerous aspects of cancer progression simultaneously. Although our understanding of IncRNA-mediated cancer biology has increased significantly in the last several years, we believe this is only the tip of the iceberg (see Outstanding Questions). A continued understanding of the role of IncRNAs in cancer will be enhanced by new tools that uncover novel IncRNAs, better annotate known IncRNAs, as well as assess IncRNA localization, structure, and function (Box 1 and Figure 3).

While new biological and computational techniques have greatly accelerated our ability to investigate RNAs in cancer research, most lncRNA discovery and annotation efforts in cancer have been severely limited, with poor overlap between different catalogs [142], avoidance of monoexonic transcripts and complex regions of the genome [143], poor bioinformatics tools for *ab initio* assembly of novel transcripts [144], and small cohorts from which to reconstruct the cancer transcriptome [69]. Moreover, several studies continue to rely on microarray-based platforms for the identification of disease-associated lncRNAs [90,145]; however, their use in discovering new lncRNAs is limited because gene expression probes are designed against

Outstanding Questions

How do IncRNA variants contribute to cancer progression? Differential expression patterns in cancer have guided IncRNA discovery and investigation thus far. IncRNA transcript variants such as mutations, amplifications, deletions, and fusions remain unexplored.

How do IncRNAs coordinate various molecular networks to drive cancer? The majority of IncRNA studies to date have focused on a single mechanism of action. However, several transcripts have numerous functions, suggesting that IncRNAs may form important regulatory networks that can coordinate many aspects of cancer progression simultaneously.

Do a subset of IncRNAs have proteincoding potential? Some IncRNAs have been identified as TUCPs (transcripts of unknown coding potential). Previously undiscovered small peptides produced from these IncRNAs may have significant roles in cancer biology.

How can IncRNAs be used to guide precision medicine approaches in cancer? An emerging area of cancer therapeutics utilizes genomic signatures to guide treatment choices for patients. Current efforts employ aberrations in protein-coding genes; incorporating IncRNAs into these analyses may improve therapeutic response and patient outcomes.

How can IncRNAs be utilized in the clinical setting? IncRNAs have been identified as powerful diagnostic and prognostic biomarkers. Targeting IncRNAs directly with antisense oligonucleotides may also be a promising therapeutic strategy.

Trends in Cancer

Figure 3. Tools for IncRNA Investigation. Emerging areas for investigation in the long noncoding RNA (IncRNA) field include improved discovery methods, unbiased interactome analysis, transcript visualization and localization, RNA structure determination, discovery of small peptides produced from short open reading frames (sORFs), and the identification and comprehension of IncRNA variants. Abbreviations: ChIRP, chromatin isolation by RNA purification; FISH, fluorescence in situ hybridization; icSHAPE, *in vivo* click selective 2'-hydroxyl acylation and profiling experiment; RAP, RNA antisense purification; RBP, RNA-binding protein.

previously annotated transcripts. Therefore, RNA-seq remains the most powerful tool to discover new IncRNAs in an unbiased fashion [146,147].

In addition, almost all IncRNA studies to date have focused on the aberrant expression patterns of novel transcripts in cancer. While this is an essential first step to identify important IncRNAs in cancer, future analyses will need to include transcript variants that populate and drive cancer. Protein alterations such as point mutations, deletions and amplifications, and gene fusions have emerged as key regulators in cancer [148,149]. As our understanding of cancer-associated IncRNAs expands, similar variants will also need to be explored in noncoding transcripts. Furthermore, studying isoform-specific functions may provide new insights into IncRNA gene function [10,125]. Uncovering the precise function of IncRNAs in cell and animal models also cannot be overlooked. While methods to knockdown (ASOs and locked nucleic acids, LNAs [150]) and knockout (CRISPR) [151,152] IncRNA genes are improving, caution should be taken when employing these tools to explore IncRNA function [153].

Less than a decade ago, IncRNAs were mostly ignored, often considered to be 'junk', and were attributed to leaky transcription. Now, functional, mechanistic, and translational insights have revealed the crucial role of IncRNAs in cell biology and disease pathogenesis. Importantly, IncRNAs are emerging as crucial players in cancer progression and metastasis. Given the tissueand disease-specific nature of these transcripts, their abundance throughout the genome, and the relatively recent discovery of the majority of these transcripts, it is likely that IncRNAs hold answers to questions in cancer that have eluded us for years.

Acknowledgments

We thank Robin Kunkel for assistance with figure preparation and Karen Giles for critically reading the manuscript and for the submission of documents. This work was supported in part by US National Institutes of Health Prostate Specialized Program of Research Excellence grant P50 CA69568, Early Detection Research Network grant UO1 CA111275, US National Institutes of Health grant R01 CA132874 (A.M.C.), and US Department of Defense grant PC100171 (A.M.C.). A.M. C. is supported by the Prostate Cancer Foundation and the Howard Hughes Medical Institute. A.M.C. is an American Cancer Society Research Professor and a Taubman Scholar of the University of Michigan. A.S. is supported by a Prostate Cancer Foundation Young Investigator Award and by a National Institutes of Health Ruth L. Kirschstein National Research Service Award F30 CA180376. A.S. is a Fellow of the University of Michigan Medical Scientist Training Program. U.S. is supported by the Howard Hughes Medical Institute Medical Research Fellows Program. A.M.C. serves on the scientific advisory board of Paradigm. He is a coinventor on patents filed by the University of Michigan covering the diagnostic and therapeutic field of use for T2-ERG in prostate cancer which has been licensed to Hologic, and the diagnostic and therapeutic field of use for SChLAP1 which has been co-licensed to Genome Dx. Paradigm, Hologic, and Genome Dx did not play roles in the design and conduct of this study, in the collection, analysis, or interpretation of the data, or in the preparation, review, or approval of the article.

References

- next generation. Cell 144, 646-674
- 2. Prensner, J.R. and Chinnaiyan, A.M. (2011) The emergence of IncRNAs in cancer biology. Cancer Discov. 1, 391-407
- 3. Guttman, M. et al. (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. 10. Rinn, J.L. and Chang, H.Y. (2012) Genome regulation by long Nature 458, 223-227
- pluripotency and differentiation. Nature 447, 295-300
- ncRNA as guides and tethers to the epigenome. Genes Dev. 23, 1831-1842
- chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311-1323
- STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements, Nature 470, 284-288

- 1. Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of cancer: the 8. Poliseno, L. et al. (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033-1038
 - 9. Salmena, L. et al. (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146, 353-358
 - noncoding RNAs. Annu. Rev. Biochem. 81, 145-166
- 4. Guttman, M. et al. (2011) lincRNAs act in the circuitry controlling 11. Zhao, J. et al. (2008) Polycomb proteins targeted by a short repeat BNA to the mouse X chromosome. Science 322, 750-756
- 5. Lee, J.T. (2009) Lessons from X-chromosome inactivation: long 12. Nagano, T. et al. (2008) The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322 1717-1720
- 6. Rinn, J.L. et al. (2007) Functional demarcation of active and silent 13. Pandey, R.R. et al. (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232-246
- 7. Gong, C. and Maquat, L.E. (2011) IncRNAs transactivate 14. Yap, K.L. et al. (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 38, 662-674

- Huarte, M. *et al.* (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. *Cell* 142, 409–419
- Hung, T. *et al.* (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. *Nat. Genet.* 43, 621–629
- Yang, F. *et al.* (2013) Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. *Mol. Cell* 49, 1083–1096
- 18. Wang, K.C. and Chang, H.Y. (2011) Molecular mechanisms of long noncoding RNAs. *Mol. Cell* 43, 904–914
- Gupta, R.A. *et al.* (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. *Nature* 464, 1071–1076
- Kogo, R. et al. (2011) Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. *Cancer Res.* 71, 6320–6326
- Yang, Z. et al. (2011) Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann. Surg. Oncol. 18, 1243–1250
- Niinuma, T. et al. (2012) Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. *Cancer Res.* 72, 1126–1136
- Arab, K. et al. (2014) Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol. Cell 55, 604–614
- Sharma, S. et al. (2010) Epigenetics in cancer. Carcinogenesis 31, 27–36
- Esteller, M. (2008) Epigenetics in cancer. N. Engl. J. Med. 358, 1148–1159
- Lee, J.T. (2012) Epigenetic regulation by long noncoding RNAs. Science 338, 1435–1439
- Kleer, C.G. et al. (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 100, 11606–11611
- Varambally, S. et al. (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629
- Schwartz, Y.B. and Pirrotta, V. (2013) A new world of Polycombs: unexpected partnerships and emerging functions. *Nat. Rev. Genet.* 14, 853–864
- 30. Margueron, R. and Reinberg, D. (2011) The Polycomb complex PRC2 and its mark in life. *Nature* 469, 343–349
- Hu, X. et al. (2014) A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell 26, 344–357
- Pandey, G.K. et al. (2014) The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. *Cancer Cell* 26, 722–737
- Yang, F. et al. (2011) Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. *Hepatology* 54, 1679–1689
- Zhang, E.B. et al. (2014) Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget 5, 2276–2292
- Zhang, E.B. *et al.* (2014) P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. *Cell Death Dis.* 5, e1243
- Yildirim, E. et al. (2013) Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 152, 727–742
- Khalil, A.M. *et al.* (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. *Proc. Natl. Acad. Sci. U.S.A.* 106, 11667–11672
- Davidovich, C. *et al.* (2013) Promiscuous RNA binding by Polycomb repressive complex 2. *Nat. Struct. Mol. Biol.* 20, 1250–1257

- Davidovich, C. et al. (2015) Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol. Cell 57, 552–558
- Puvvula, P.K. et al. (2014) Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit. Nat. Commun. 5, 5323
- Prensner, J.R. et al. (2013) The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/ SNF complex. Nat. Genet. 45, 1392–1398
- Wang, Y. et al. (2015) The long noncoding RNA IncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. *Cell Stem Cell* 16, 413–425
- Zhu, Y. et al. (2013) A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing. Mol. Cell 49, 298–309
- Han, P. et al. (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514, 102–106
- Wilson, B.G. and Roberts, C.W. (2011) SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer 11, 481–492
- Lu, P. and Roberts, C.W. (2013) The SWI/SNF tumor suppressor complex: regulation of promoter nucleosomes and beyond. *Nucleus* 4, 374–378
- Reisman, D. et al. (2009) The SWI/SNF complex and cancer. Oncogene 28, 1653–1668
- Shain, A.H. and Pollack, J.R. (2013) The spectrum of SWI/SNF mutations, ubiquitous in human cancers. *PLoS ONE* 8, e55119
- Kadoch, C. et al. (2013) Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. *Nat. Genet.* 45, 592–601
- Prensner, J.R. et al. (2014) RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SChLAP1. Lancet Oncol. 15, 1469–1480
- Mehra, R. et al. (2014) A novel RNA in situ hybridization assay for the long noncoding RNA SChLAP1 predicts poor clinical outcome after radical prostatectomy in clinically localized prostate cancer. Neoplasia 16, 1121–1127
- Bottcher, R. et al. (2015) Novel long non-coding RNAs are specific diagnostic and prognostic markers for prostate cancer. Oncotarget 6, 4036–4050
- Quagliata, L. et al. (2014) Long noncoding RNA HOTTIP/ HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. *Hep*atology 59, 911–923
- Wang, K.C. *et al.* (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. *Nature* 472, 120–124
- Yang, Y.W. *et al.* (2014) Essential role of IncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. *Elife* 3, e02046
- Zhou, B.B. and Elledge, S.J. (2000) The DNA damage response: putting checkpoints in perspective. *Nature* 408, 433–439
- Muller, P.A. and Vousden, K.H. (2013) p53 mutations in cancer. Nat. Cell Biol. 15, 2–8
- Vazquez, A. et al. (2008) The genetics of the p53 pathway, apoptosis and cancer therapy. Nat. Rev. Drug Discov. 7, 979–987
- Dimitrova, N. et al. (2014) lincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol. Cell 54, 777–790
- Zhang, X. et al. (2010) Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. *Cancer Res.* 70, 2350–2358
- Lu, K.H. et al. (2013) Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. *BMC Cancer* 13, 461
- Younger, S.T. et al. (2015) Integrative genomic analysis reveals widespread enhancer regulation by p53 in response to DNA damage. Nucleic Acids Res. 43, 4447–4462
- Leveille, N. et al. (2015) Genome-wide profiling of p53-regulated enhancer RNAs uncovers a subset of enhancers controlled by a IncRNA. Nat. Commun. 6, 6520

CelPress

Trends in Cancer

- (INK4A) expression to modulate senescence. Nat. Commun. 6 6967
- 65. Kim, T. et al. (2014) Long-range interaction and correlation between MYC enhancer and oncogenic long noncoding RNA CABL 0-5, Proc. Natl. Acad. Sci. U.S.A. 111, 4173-4178
- 66. Zhang, Y. et al. (2014) Enhanced expression of long noncoding RNA CARLo-5 is associated with the development of gastric cancer. Int. J. Clin. Exp. Pathol. 7, 8471-8479
- 67. Luo, J. et al. (2014) Long non-coding RNA CARLo-5 is a negative prognostic factor and exhibits tumor pro-oncogenic activity in non-small cell lung cancer. Tumour Biol. 35, 11541-11549
- 68. Liu, X. et al. (2012) Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J. 31, 4415-4427
- 69. Prensner, J.R. et al. (2011) Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat. Biotechnol. 29.742-749
- 70. Prensner, J.R. et al. (2014) PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res. 74, 1651-1660
- 71. Liu, Z. et al. (2013) Downregulation of GAS5 promotes bladder cancer cell proliferation, partly by regulating CDK6. PLoS ONE 8, e73991
- 72. Sun, M. et al. (2014) Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer 14, 319
- 73. Iorio, M.V. and Croce, C.M. (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 4, 143-159
- 74. Tay, Y. et al. (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505, 344-352
- 75. Denzler, R. et al. (2014) Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54, 766-776
- 76. Cui, H. et al. (2002) Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res. 62, 6442-6446
- 77. Zhuang, M. et al. (2014) The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1. Biochem. Biophys. Res. Commun. 448, 315-322
- 78. Tsang, W.P. et al. (2010) Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinoaenesis 31, 350-358
- 79. Shi, Y. et al. (2014) Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS ONE 9, e86295
- 80. Kallen, A.N. et al. (2013) The imprinted H19 IncRNA antagonizes let-7 microRNAs. Mol. Cell 52, 101–112
- 81. Roush, S. and Slack, F.J. (2008) The let-7 family of microRNAs. Trends Cell Biol. 18, 505-516
- 82. Wang, J. et al. (2010) CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 38, 5366-5383
- 83. Yuan, J.H. et al. (2014) A long noncoding RNA activated by TGFbeta promotes the invasion-metastasis cascade in hepatocellular carcinoma, Cancer Cell 25, 666-681
- 84. Hu, Y. et al. (2014) Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Cancer Res. 74, 6890-6902
- 85. Pasmant, E. et al. (2007) Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res. 67, 3963-3969
- 86. Prensner, J.R. et al. (2014) The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc. Neoplasia 16, 900-908
- 87. Massague, J. (2008) TGFbeta in Cancer. Cell 134, 215-230
- 88. Taipale, J. and Beachy, P.A. (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349-354

- 64. Montes, M. et al. (2015) The IncRNA MIR31HG regulates p16 89. Clevers, H. (2006) Wnt/beta-catenin signaling in development and disease. Cell 127, 469-480
 - Xing, Z. et al. (2014) IncRNA directs cooperative epigenetic regu-90. lation downstream of chemokine signals. Cell 159, 1110-1125
 - 91. Chan, L.H. et al. (2014) Hedgehog signaling induces osteosarcoma development through Yap1 and H19 overexpression. Oncoaene 33, 4857-4866
 - 92. Redis, R.S. et al. (2013) CCAT2, a novel long non-coding RNA in breast cancer: expression study and clinical correlations. Oncotarget 4, 1748-1762
 - 93. Qiu, M. et al. (2014) CCAT2 is a lung adenocarcinoma-specific long non-coding RNA and promotes invasion of non-small cell lung cancer. Tumour Biol. 35, 5375-5380
 - Wang, J. et al. (2015) Long noncoding RNA CCAT2 correlates 94. with smoking in esophageal squamous cell carcinoma. Tumour Biol. 36, 5523-5528
 - Ling, H. et al. (2013) CCAT2, a novel noncoding RNA mapping to 95. 8q24, underlies metastatic progression and chromosomal instability in colon cancer, Genome Res. 23, 1446-1461
 - Hirata, H. et al. (2015) Long noncoding RNA MALAT1 promotes 96. aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Cancer Res. 75, 1322-1331
 - 97. Zhao, Y. et al. (2014) A novel wnt regulatory axis in endometrioid endometrial cancer. Cancer Res. 74, 5103-5117
 - 98. Gutschner, T. et al. (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 73, 1180-1189
 - 99. Flockhart, R.J. et al. (2012) BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res. 22, 1006-1014
 - 100. Sun, M. et al. (2014) Downregulation of BRAF activated noncoding RNA is associated with poor prognosis for non-small cell lung cancer and promotes metastasis by affecting epithelialmesenchymal transition. Mol. Cancer 13, 68
 - 101. Heinlein, C.A. and Chang, C. (2004) Androgen receptor in prostate cancer. Endocr. Rev. 25, 276-308
 - 102. Clemons, M. and Goss, P. (2001) Estrogen and the risk of breast cancer. N. Engl. J. Med. 344, 276-285
 - 103. Scher, H.I. and Sawyers, C.L. (2005) Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis, J. Clin. Oncol. 23, 8253-8261
 - 104. Meijer, D. et al. (2006) Functional screen for genes responsible for tamoxifen resistance in human breast cancer cells. Mol. Cancer Res. 4, 379–386
 - 105, Godinho, M. et al. (2011) Characterization of BCAR4, a novel oncogene causing endocrine resistance in human breast cancer cells. J. Cell. Physiol. 226, 1741-1749
 - 106. Clemson, C.M. et al. (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell 33, 717-726
 - 107. Chakravarty, D. et al. (2014) The oestrogen receptor alpharegulated IncRNA NEAT1 is a critical modulator of prostate cancer. Nat. Commun. 5, 5383
 - 108. Hudson, W.H. et al. (2014) Conserved sequence-specific lincRNA-steroid receptor interactions drive transcriptional repression and direct cell fate. Nat. Commun. 5, 5395
 - 109. Visakorpi, T. et al. (1995) In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat. Genet, 9, 401-406
 - 110. Sharifi, N. et al. (2005) Androgen deprivation therapy for prostate cancer. JAMA 294, 238-244
 - 111. Malik, R. et al. (2014) The IncRNA PCAT29 inhibits oncogenic phenotypes in prostate cancer. Mol. Cancer Res. 12, 1081-1087
 - 112. Sakurai, K. et al. (2015) The IncRNA DRAIC/PCAT29 locus constitutes a tumor-suppressive nexus. Mol. Cancer Res. 13, 828–838
 - 113. Takayama, K. et al. (2013) Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. EMBO J. 32, 1665-1680
 - 114. Yang, L. et al. (2013) IncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 500, 598-602

Trends in Cancer

- 115. Prensner, J.R. et al. (2014) The IncRNAs PCGEM1 and PRNCR1 are not implicated in castration resistant prostate cancer. Oncotarget 5, 1434–1438
- 116. Parolia, A. et al. (2015) The long non-coding RNA PCGEM1 is regulated by androgen receptor activity in vivo. *Mol. Cancer* 14, 46
- 117. Dang, C.V. (2012) MYC on the path to cancer. Cell 149, 22-35
- 118. Hung, C.L. *et al.* (2014) A long noncoding RNA connects c-Myc to tumor metabolism. *Proc. Natl. Acad. Sci. U.S.A.* 111, 18697–18702
- 119. Xiang, J.F. et al. (2014) Human colorectal cancer-specific CCAT1-L IncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res. 24, 513–531
- 120. Tseng, Y.Y. *et al.* (2014) PVT1 dependence in cancer with MYC copy-number increase. *Nature* 512, 82–86
- Dolcet, X. et al. (2005) NF-kB in development and progression of human cancer. Virchows Arch. 446, 475–482
- 122. Liu, B. et al. (2015) A cytoplasmic NF-kappaB interacting long noncoding RNA blocks lkappaB phosphorylation and suppresses breast cancer metastasis. *Cancer Cell* 27, 370–381
- 123. Qi, P. and Du, X. (2013) The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. *Mod. Pathol.* 26, 155–165
- 124. Esteller, M. (2011) Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874
- 125. lyer, M.K. *et al.* (2015) The landscape of long noncoding RNAs in the human transcriptome. *Nat. Genet.* 47, 199–208
- 126. Peng, W. et al. (2014) Long noncoding RNA HULC is a novel biomarker of poor prognosis in patients with pancreatic cancer. *Med. Oncol.* 31, 346
- 127. Xie, H. et al. (2013) Plasma HULC as a promising novel biomarker for the detection of hepatocellular carcinoma. *Biomed. Res. Int.* 2013, 136106
- Hessels, D. et al. (2003) DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur. Urol. 44, 8–15
- 129. Zheng, H.T. et al. (2014) High expression of IncRNA MALAT1 suggests a biomarker of poor prognosis in colorectal cancer. Int. J. Clin. Exp. Pathol. 7, 3174–3181
- 130. Zhang, H.M. et al. (2015) Upregulation of long non-coding RNA MALAT1 correlates with tumor progression and poor prognosis in clear cell renal cell carcinoma. *Tumour Biol.* 36, 2947–2955
- 131. Ma, K.X. *et al.* (2015) Long noncoding RNA MALAT1 associates with the malignant status and poor prognosis in glioma. *Turnour Biol.* 36, 3355–3359
- 132. Ren, S. et al. (2013) Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. *Eur. J. Cancer* 49, 2949–2959
- 133. Shao, Y. et al. (2014) Gastric juice long noncoding RNA used as a tumor marker for screening gastric cancer. Cancer 120, 3320–3328
- 134. Tang, H. *et al.* (2013) Salivary IncRNA as a potential marker for oral squamous cell carcinoma diagnosis. *Mol. Med. Rep.* 7, 761–766
- 135. Meng, L. *et al.* (2015) Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. *Nature* 518, 409–412
- Buller, H.R. et al. (2015) Factor XI antisense oligonucleotide for prevention of venous thrombosis. N. Engl. J. Med. 372, 232–240
- 137. Noveck, R. et al. (2014) Effects of an antisense oligonucleotide inhibitor of C-reactive protein synthesis on the endotoxin challenge response in healthy human male volunteers. J. Am. Heart Assoc. 3, e001084

- 138. Gaudet, D. et al. (2014) Targeting APOC3 in the familial chylomicronemia syndrome. N. Engl. J. Med. 371, 2200–2206
- 139. Bennett, C.F. and Swayze, E.E. (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. *Annu. Rev. Pharmacol. Toxicol.* 50, 259–293
- 140. Fey, R.A. et al. (2014) Local and systemic tolerability of a 2'Omethoxyethyl antisense oligonucleotide targeting interleukin-4 receptor-alpha delivery by inhalation in mouse and monkey. *Inhal. Toxicol.* 26, 452–463
- 141. Geary, R.S. *et al.* (2015) Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. *Adv. Drug Deliv. Rev.* 87, 46–51
- 142. Harrow, J. et al. (2012) GENCODE: the reference human genome annotation for the ENCODE project. Genome Res. 22, 1760–1774
- 143. Cabili, M.N. et al. (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915–1927
- 144. Steijger, T. et al. (2013) Assessment of transcript reconstruction methods for RNA-seq. Nat. Methods 10, 1177–1184
- 145. Du, Z. et al. (2013) Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat. Struct. Mol. Biol. 20, 908–913
- 146. Djebali, S. *et al.* (2012) Landscape of transcription in human cells. *Nature* 489, 101–108
- 147. Trapnell, C. et al. (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53
- 148. Leary, R.J. et al. (2008) Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers. *Proc. Natl. Acad. Sci. U.S.A.* 105, 16224–16229
- 149. Grasso, C.S. et al. (2012) The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243
- Wahlestedt, C. *et al.* (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. *Proc. Natl. Acad. Sci. U.S.A.* 97, 5633–5638
- 151. Gaj, T. et al. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405
- 152. Hsu, P.D. et al. (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278
- 153. Bassett, A.R. *et al.* (2014) Considerations when investigating IncRNA function in vivo. *Elife* 3, e03058
- 154. Chu, C. et al. (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA–chromatin interactions. *Mol. Cell* 44, 667–678
- 155. Engreitz, J.M. et al. (2014) RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites. *Cell* 159, 188–199
- 156. Batish, M. et al. (2011) Single molecule imaging of RNA in situ. Methods Mol. Biol. 714, 3–13
- 157. Femino, A.M. et al. (1998) Visualization of single RNA transcripts in situ. Science 280, 585–590
- Spitale, R.C. *et al.* (2015) Structural imprints in vivo decode RNA regulatory mechanisms. *Nature* 519, 486–490
- Andrews, S.J. and Rothnagel, J.A. (2014) Emerging evidence for functional peptides encoded by short open reading frames. *Nat. Rev. Genet.* 15, 193–204
- 160. Ingolia, N.T. *et al.* (2014) Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. *Cell Rep.* 8, 1365–1379

CelPress