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Abstract. Cognitive approaches have been used for student modeling in intelligent tutoring systems (ITSs). 
Many of those systems have tackled fundamental subjects such as mathematics, physics, and computer 
programming. The change of the student’s cognitive behavior over time, however, has not been considered and 
modeled systematically. Furthermore, the nature of domain knowledge in specific subjects such as orthopedic 
surgery, in which pragmatic knowledge could play an important role, has also not been taken into account 
deliberately. We believe that the temporal dimension in modeling the student’s knowledge state and cognitive 
behavior is critical, especially in such domains. In this paper, we propose an approach for student modeling and 
diagnosis, which is based on a symbiosis between temporal Bayesian networks and fine-grained didactic 
analysis. The latter may help building a powerful domain knowledge model and the former may help modeling 
the learner’s complex cognitive behavior, so as to be able to provide him or her with relevant feedback during a 
problem-solving process. To illustrate the application of the approach, we designed and developed several key 
components of an intelligent learning environment for teaching the concept of sacro-iliac screw fixation in 
orthopedic surgery, for which we videotaped and analyzed six surgical interventions in a French hospital. A 
preliminary gold-standard validation suggests that our diagnosis component is able to produce coherent 
diagnosis with acceptable response time. 
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INTRODUCTION 
 
Knowledge Modeling and Student Modeling  
 
In the past thirty years, research results in cognitive science have been exploited for student modeling 
in problem solving, as evidenced by a significant number of cognitive approaches (Webber, 2004; 
Mayo & Mitrovic, 2001; Murray, 1999). Many studies have been done within the context of teaching 
fundamental subjects, for example, geometry (Anderson, Boyle, & Yost, 1986), (Webber, 2004), alge-
bra (Koedinger, Anderson, Hadley, & Mark, 1997), physics (Albacete & VanLehn, 2000), computer 



 

programming language (Anderson, Farrell, & Sauers, 1984). The nature of domain knowledge and the 
complexity of the learner’s cognitive behavior, especially in a number of specific subjects (e.g., in 
medical education), however, have not been considered carefully. Firstly, the tacit pragmatic knowl-
edge (obtained by experience) plays an important role for both the expert teacher and the novice 
learner during a problem-solving process. This tacit knowledge refers to “work-related, practical 
know-how that typically is acquired informally as a result of on-the-job experience, as opposed to 
formal instruction.” (Wagner, Sujan, Sujan, Rashotte, & Sternberg, 1999, p. 157). While observing a 
number of medical interventions in a French hospital, we realized that sometimes the expert teacher 
and the novice student, when confronting a specific problem, used pragmatic knowledge to elaborate 
an original solution to the problem encountered, which could not have been defined before. Secondly, 
the student’s cognitive behavior we observed in those interventions is complex. A skillful learner, 
even a domain expert, often makes several attempts before arriving at an acceptable solution: he or she 
may make an error and then retry to correct the error several times. Thus, from an observer’s point of 
view, one may need to consider a sequence of actions from the learner to be able to diagnose his or her 
cognitive state and behavior accurately.  

A number of researchers (Kodaganallur, Weitz, & Rosenthal, 2005; Luengo, Mufti-Alchawafa, & 
Vadcard, 2004; Webber, 2004; Mitrovic & Ohlsson, 1999) have argued that it is important to check 
the consistency of the student's solution with domain constraints (i.e., local consistency checks) rather 
than to compare the student's solution with the domain expert's a priori normative solution (Ohlsson, 
1992). This idea is particularly useful for building tutoring systems for the kind of specific domains 
mentioned in the previous paragraph, because in those domains there may have many different solu-
tions to a given problem, some of which being elaborated in action by the domain expert. So, the first 
question we address in this paper is concerned with exploiting and analyzing different kinds of domain 
knowledge, especially tacit pragmatic knowledge, in order to build a robust domain model, which is 
critical for student modeling and diagnosis (Weber & Brusilovsky, 2001). Tacit pragmatic knowledge 
is often not explicitly explained in theoretical courses or reference books (Vadcard & Luengo, 2005). 
To answer the first question, we argue for a fine-grained "didactic" analysis (Pastré, 1997). Didactic 
(an originally francophone term) designates the study of teaching and knowledge acquisition in differ-
ent subject domains. Didactic is thus different from pedagogy by the central role of the subject domain 
contents and by its epistemological dimension (i.e., the nature of knowledge to be taught). To some 
extent, didactic analysis is similar to cognitive task analysis (Clark & Estes, 1996). Both of them seek 
to better understand the subject being taught, so as to better devise instructional situations for students. 
The major difference between them is the analysis protocol: cognitive task analysis is often done by 
observing highly skilled practitioners and describing the precise activities that are required to perform 
a complex task, whereas didactic analysis is often performed in instructional or apprenticeship settings 
in which, for example, a novice learner interacts with an expert teacher to solve problems. Unlike 
cognitive task analysis, which tries to describe the problem-solving process of domain experts as com-
pletely as possible and to seek pedagogical implications from that process, didactic analysis seeks 
different kinds of knowledge needed for successful teaching directly from observing instructional or 
apprenticeship settings. Hence, didactic analysis may reveal special kinds of knowledge such as peda-
gogical content knowledge (Shulman, 1986) that cognitive task analysis might not be able to produce 
because the domain experts might not have those kinds of knowledge in mind or not reveal them ex-
plicitly in the context of cognitive task analysis. Special kinds of knowledge such as pedagogical con-
tent knowledge are useful for the design of a learning environment (Shulman, 1986). 

The second question is concerned with exploiting suitable techniques in artificial intelligence to 



 

model and “diagnose” the student's knowledge or cognitive state at a given time and his or her cogni-
tive behavior over time. The first diagnosis is important and very common in many traditional ITSs 
(Wenger, 1987). We believe that the second diagnosis about cognitive behavior could be also impor-
tant, because it may help generate better feedback for the student. A way to do those kinds of diagno-
sis is to analyze the student’s interactions with the interface of the learning system such as a computer-
based simulation (Luengo, Mufti-Alchawafa, & Vadcard, 2004). Diagnosing the student's knowledge 
and cognitive behavior, however, is not easy because it is difficult to know what happens exactly in 
the mind of an individual when he or she is learning a concept or solving a problem (Sasse, 1991). 
Bayesian networks offer a useful technique for modeling under uncertainty (e.g., about students’ cog-
nitive state), and according to Mayo and Mitrovic (2001) it has been adopted in many applications, 
including ITSs. Considering the complexity of the learner’s cognitive behavior over time (e.g., the 
learner's correction process while he or she is constructing a solution) in specific domains, as men-
tioned previously, temporal (or dynamic) Bayesian networks (Russell & Norvig, 2009; Ghahramani, 
1998) could be an effective means.  
 
Contribution 
 
In this paper, we propose a new temporal-Bayesian-network-based student model in which we empha-
size the importance of explicitly diagnosing the student’s knowledge state and cognitive behavior over 
time by modeling the temporal dimension. It is important because it may help an ITS better “under-
stand” how and why the student makes an error, so as to generate better feedback for him or her. The 
new student model is strengthened by a fine-grained didactic analysis, which permits the construction 
of a powerful domain knowledge model. We applied both models to build a number of key compo-
nents of an intelligent learning environment for the problem area presented next about the sacro-iliac 
screw fixation in orthopedic surgery. The design of the learning environment has been grounded in a 
theory of didactic situations proposed by Brousseau (19971) and based on an analysis of surgical inter-
ventions. 
 
Context for the Example 
 
The current research has been done in the context of the TELEOS (Technology Enhanced Learning 
Environment for Orthopedic Surgery) project (Mufti-Alchawafa & Luengo, 2009; Vadcard & Luengo, 
2005; Luengo, Mufti-Alchawafa, & Vadcard, 2004). TELEOS research team includes computer scien-
tists and engineers, psychologists, educators, and surgeons. The aim of the project is to exploit, ana-
lyze, and model different kinds of knowledge in orthopedic surgery, especially pragmatic knowledge, 
to design and build an intelligent simulation-based learning environment for professional learners (i.e., 
resident junior surgeons). The motivation of the project has been that in a traditional approach the 
student interacts with an experienced surgeon to learn operative procedures, learning materials being 
patient cases and cadavers. This approach principally presents a number of problems, as follows: it 
requires one surgeon for one student, it is unsafe for the patient, and cadavers must be available. Sev-
eral authors have claimed that the introduction of computers in medical education could deal with 
those problems (Eraut & du Boulay, 2000), but on the condition that real underlying educational prin-

                                                
1 This reference refers to a translation of a collection of Brousseau’s work originally published in French (1978, 
1982, 1988, etc.). 



 

ciples are integrated (Lillehaug & Lajoie, 1998). In particular, the importance of individual feedback 
has been stressed (Rogers, Regehr, Yeh, & Howdieshell, 1998). We believe that, to provide appropri-
ate feedback to the learner, it is crucial to build a robust student model, which is the main concern of 
this paper. 
 

 
  

Fig. 1. Sacro-iliac screw position (left) and the four used X-rays (right). 

An example for the motivation of the project is percutaneous sacro-iliac screw fixation (Tonetti, 
Carrat, Blendea, Merloz, & Troccaz, 2003), which allows posterior lesions of the pelvic ring of the hip 
bone to be fixed (Fig. 1). It could be summarized as follows. The surgeon first inserts a guide pin in 
the bone through the skin (percutaneously, i.e., without incision). He makes the pin progressing in the 
bone, taking several X-rays (Fig. 1) to validate the pin course at different steps of the progression. The 
four X-rays allow him or her to reconstruct a complete vision of the position of the pin, in relation to 
the pelvis. If he or she recognizes any problems in those views, he or she restarts the operation proc-
ess, taking another pin and correcting its entry point and/or direction. During this phase (i.e., pin inser-
tion), the surgeon can make several attempts. Once the pin’s trajectory gives satisfaction, the screw 
fixation phase will be performed: a screw is inserted along the pin, which will make the right bones’ 
compression or maintaining for the treatment of the fracture. Last, the pin is taken out and one suture 
point is made to close the pin’s entry point. The main danger of the percutaneous technique is a screw 
course outside of the bone with risk of injury of nerves (see (1) and (2) in Fig. 1). 

In France, the training of sacro-iliac screw fixation is usually organized into a theoretical session 
(involving the acquisition of theoretical knowledge such as definitions of concepts) and a practical 
session (involving the informal acquisition of pragmatic knowledge with costly one-to-one assistance 
of an expert, e.g., applications of concepts in a variety of real clinical cases). In earlier work (Vadcard 
& Luengo, 2005), we showed the importance of a bridge between these two sessions: the use of an 
intelligent learning environment as an intermediate phase of learning, which provides the learner with 
an operative dimension of knowledge before the real situation. 
 
Structure of the Paper 
 
Firstly, we introduce the architecture of our learning environment and the theoretical framework be-
hind the design of the learning environment. Secondly, we present the method and results of our didac-
tic analysis, and we show the student model and the diagnosis component. Thirdly, we discuss related 
work and our approach, as well as a preliminary gold-standard validation of our approach. Finally, we 
make conclusions and we show several promising directions for future research. 
 



 

SYSTEM ARCHITECTURE 
 
Fig. 2 shows a simulation-based architecture of our learning environment. We reused an open-source 
Java multi-agent platform (JADE, 2006) to implement the learning environment; this platform allowed 
us to easily integrate different software components developed by different members in our research 
team. Here are the main agents: a tracing agent (see (1) in Fig. 2) dealing with a simulation for sacro-
iliac screw fixation and with actions and traces produced by the individual student while interacting 
with the simulation, a diagnosis agent (see (2) in Fig. 2) for student modeling and diagnosis, a didac-
tic decision agent (see (4) in Fig. 2) to decide which feedback should be presented to the student 
(according to his or her current knowledge state and cognitive behavior), a clinical cases agent (see 
(5) in Fig. 2) to help the student examine real clinical cases, an online course agent (see (6) in Fig. 
2) to direct the learner, when necessary, to suitable part(s) of a theoretical course. The knowledge 
model (see (3) in Fig. 2) is a key component to make the diagnosis agent and the didactic decision 
agent work. We detail this knowledge model in the sections about didactic analysis and about student 
modeling and diagnosis. We developed and subjectively (i.e., without actual students) validated the 
tracing agent, the diagnosis agent, the clinical cases agent, and the online course agent. We have been 
developing the remaining didactic decision agent and we shall integrate it into the multi-agent plat-
form later. Although in the present paper we concentrate on student and knowledge modeling, in the 
following paragraphs we briefly describe all of the main agents to help the reader better understand 
how the diagnosis agent works and why it is important. 

 
Fig. 2. Global architecture of TELEOS. 



 

The development of the TELEOS research project has been based on the results of the VOEU 
(Virtual Orthopedic European University) research project (Vadcard, 2003). The latter has provided 
the clinicians with various tools supporting the learning of clinical skills. Those tools include a web-
based 3D simulation for sacro-iliac screw fixation1, an online theoretical course2, and a clinical cases 
database. A main contribution of TELEOS to VOEU has been the research of domain knowledge 
modeling and student modeling for the design and development of an intelligent learning environment. 
The current web platform is not powerful enough to run all components of such learning environment. 
Hence, we developed a Java-based standalone application, except for the part of the online course. We 
also needed to build a new simulation component because the old version is not able to output the 
learner’s actions and traces and it is impossible for other software agents to change parameters of the 
old simulation system. 

Concerning the teaching and learning of sacro-iliac screw fixation, analysis of surgical interven-
tions allowed us to determine that the most crucial phase is the pin insertion. During this phase most of 
the required knowledge is used: anatomy, reading of X-rays and interpretation of images, mental rep-
resentation of the pelvis, requirements about the pin trajectory, ... Let us assume that a surgeon stu-
dent, familiar with theoretical concepts of sacro-iliac screw fixation, uses the intelligent learning envi-
ronment to develop the ability to solve various sacro-iliac screw fixation situations. He or she is pre-
sented with one of those problems in the new Java-based simulation (Fig. 3). In this simulation, 3D 
representations of pelvis bones and X-rays have been constructed from scanning bones of real patients. 
The 3D pelvis representation (the pelvis object in Fig. 3), like in real situations, is skinned so that the 
student cannot see the internal structure of the pelvis. The landmarks (Fig. 3) are there to help the stu-
dent recognize important parts of the pelvis object. The learner has to position a pin (Fig. 3) and to 
introduce it in the simulated pelvis. His or her actions include positioning the pin, orientating the pin, 
advancing the pin, removing the pin and changing its orientation and/or entry point. At any time the 
learner can ask for an X-ray control; the four available orientations (inlet, outlet, lateral, and face, see 
Fig. 1) correspond to the orientations used by the surgeon in real situations. After the learner validates 
his or her solution (by clicking on a “Confirm” button shown at the bottom right of Fig. 3), the simula-
tion component, similar to many computer-based simulations, provides the learner with some informa-
tion feedback about his or her problem-solving process such as the number of attempts, the number of 
extra-osseous trajectories (i.e., outside of the bone with risk of injury of nerves, see also Fig. 1) vali-
dated, the number of X-rays taken. A “transparency” slider, which can be used to make the skin of the 
3D pelvis representation disappear, is also provided for the learner to visualize his or her final pin 
course. 

                                                
1 See http://www-sante.ujf-grenoble.fr/SANTE/voeu/visang/exerci/intro.htm, developed by using VRML (Vir-
tual Reality Modeling Language). 
2 See http://www-sante.ujf-grenoble.fr/SANTE/voeu/visang/vissage.htm. 



 

 

Fig. 3. A Java-3D simulation interface for sacro-iliac screw fixation. 

Additionally, when necessary the system will present the student with one or several suggestions 
to enhance the student’s learning. A suggestion can be: (1) another problem to solve, (2) web pages in 
the theoretical course to explore, (3) clinical cases to study. To make the system able to produce rele-
vant suggestions for the student, firstly the tracing agent captures the student’s traces whenever he or 
she does an action. Those traces include the student’s current action (e.g., advancing the pin) and the 
current position of the pin, in relation to a number of critical points, lines, areas in the pelvis bone 
(e.g., see (1) and (2) in Fig. 1), on the four available orientations (e.g., the distance between the pin 
and the anterior cortex of the lateral part of the sacrum on the inlet view). The tracing agent calculates 
those distances by analyzing X-ray images. Then, once the student’s traces are available, the tracing 
agent sends them to the diagnosis agent, which will analyze them, by using a domain knowledge 
model, to update the student model (see (3) in Fig. 2)—the student model, the domain knowledge 
model, and the diagnosis agent are the principal concerns in the present paper, and we detail those 
components in the following sections. Finally, the diagnosis agent sends to the didactic decision agent 
the current state of the student model. The didactic decision agent (see Mufti-Alchawafa & Luengo, 
2009; Luengo, Vadcard, Mufti-Alchawafa, & Chieu, 2007 for more details) will analyze the updated 
student model, by using the domain knowledge model, to make decisions about which kind(s) of feed-
back should be relevant to the individual student as well as about the content for each feedback. More 



 

specifically, the didactic decision agent asks the learner to solve another problem if it detects that he or 
she may need to master some pragmatic knowledge. In this case, the new problem will be presented to 
the learner in the simulation component. Additionally, the learner may be asked to examine one or 
several clinical cases that illustrate the post-consequences of pin trajectories that are similar to his or 
her current pin course. If the agent detects that the student may need to master some theoretical 
knowledge, it asks him or her to study a number of theoretical concepts in the online course. We have 
applied semantic-web techniques to improve the online course in the VOEU project so that our system 
is able to redirect the learner to precise and relevant parts of the online course (see Chieu, Luengo, 
Vadcard, & Mufti-Alchawafa, 2007 and Luengo & Vadcard, 2005 for more details). Although feed-
back is often provided to the student after he or she validates a solution, in some particular cases (e.g., 
if the diagnosis agent detects a serious lack of theoretical knowledge by the student) the didactic deci-
sion agent may decide to encourage him or her to go to the online course immediately and to read one 
or several web pages related to the detected error. 
 
 
THEORETICAL FRAMEWORK 
 
The theoretical framework of our research is grounded mainly in a theory of didactic situations in 
mathematics (Brousseau, 1997). A number of studies in mathematics education have been grounded in 
Brousseau’s theory. For example, Hersant and Perrin-Glorian (2005) have examined didactic situa-
tions the teacher chooses, and how he manages classroom interactions and the students’ work in the 
classroom and at home, so as to characterize a mathematics teaching practice in secondary schools. 
Margolinas and associates (2005) have built a model to study how in-service teachers acquire didactic 
knowledge from observation and reflection upon students’ mathematical activity in the classroom. 
Although the work of Brousseau is concerned with mathematics teaching, we have kept a number of 
ideas and principles, as guidelines, for the design of our learning environment.  
 
Conception, Misconception, Knowing, “Milieu”, and Problem Solving  
 
Brousseau (1997) has contributed the notion of the milieu as an important element for a theory of in-
struction. The milieu refers to the system counterpart to the student in a learning situation. The milieu 
in particular is both the target of the actions of the student and the source of feedback on those actions 
(Vergnaud, 1981). The learning environment described previously enables the student’s interactions 
with the simulation system, which in turn can generate feedback and prompt future actions for the 
student. The point we make here is that the feedback is “calculated” and presented to the student in a 
manner consistent with principles of Brousseau’s theory, as we illustrate below. 

Brousseau’s work has been grounded in the perspective of learning as adaptation, stemming from 
Piagetian epistemology (Piaget, 1985), which states that people learn by adapting their existing cogni-
tive structures to the feedback provided on their actions by the environment with which they are con-
fronting. Specifically, a fundamental hypothesis of the theory is that “[errors] are not only the effect of 
ignorance, of uncertainty, of chance, as espoused by empirist or behaviourist learning theories, but the 
effect of a previous piece of knowledge which was interesting and successful, but which now is re-
vealed as false or simply unadapted.” (Brousseau, 1997, p. 82). In other words, we assume the hy-



 

pothesis (Balacheff & Margolinas, 2005; Brousseau, 1997; Confrey, 1990) that a misconception is of 
interest from a learning point of view if it shares the properties of a knowing2: it has a domain of valid-
ity otherwise it would not exist as such. So, the key difference between a misconception and a know-
ing is that for the former there exists a refutation that is known at least to an observer. For example, in 
the problem of sacro-iliac screw fixation after perceiving that the pin comes too near from one precise 
anatomic part of the pelvis bone on the inlet view, meaning that the pin is “too low” on the inlet view, 
the novice surgeon may decide to remove the pin and to move the entry point upwards, which is incor-
rect, due to the particular orientation of this X-ray. The student’s knowing behind this decision may be 
derived from his or her perfect understanding of classical representations where directions are con-
served, but when that knowing is applied to the previous situation it is no longer valid in the current 
domain and becomes erroneous.   

The thesis of Brousseau (1997) states that some of those knowings likely to be falsified are nec-
essary to learning: the learning trajectory of the student may have to pass by the (provisional) con-
struction of erroneous knowings because the awareness of the reasons why a knowing is erroneous is 
necessary to the construction and understanding of a new knowing—this is a key point about adapta-
tion in learning. In other words, a knowing is first of all the result of an adaptation of the learner to his 
or her “milieu.” As a consequence of this adaptation, any knowing has a provisional character, or 
rather, any knowing could be revised, its domain of validity can be modified as the result of some 
perturbations. The notion of knowing and the notion of belief introduced by Paiva and Self (1995) for 
student modeling share the same critical assumption about that adaptation. The only indicators to state 
whether the learner’s understanding is erroneous or not in a given situation are the learner’s behaviors 
and productions that are consequences of the knowing the learner has constructed. That is why the 
tracing agent in our learning environment is built to capture the learner’s actions (e.g., advancing the 
pin, remove the pin, change the entry point) and productions (i.e., the position of the pin course), 
which allow the diagnosis agent, by using the domain knowledge model, to deduce the learner’s 
knowings. Fine-grained didactic analysis of surgical interventions we describe in the next section 
could be important to understand those knowings and their mobilization in situation as completely as 
possible, and thus to be able to build a robust domain knowledge model.  

The interaction between the subject and the milieu as well as the relationship between the 
learner’s behavior and the learner’s knowing are complex. For example, in our case, the surgeons of-
ten need several to a dozen of attempts (making a wrong pin course, removing the pin, and changing 
the entry point and/or the direction of the pin to correct the pin course) before arriving at a correct 
solution. The point is that sometimes they may make wrong pin trajectories because of the nature of 
the surgical domain (e.g., it is difficult, even for a domain expert, to make a correct pin course at the 
first attempt with only assistance of X-rays), but not because of their misconceptions. Therefore, it 
could be essential to examine those interaction and relationship in a sequence of actions or events, 
instead of one at a time. In other words, considering the temporal dimension in student modeling is a 
key point to build the diagnosis agent mentioned earlier. For instance, in the previous situation about 
sacro-iliac screw fixation, one may understand the learner’s knowings better if his or her behaviors 
and productions at different points in time are systematically analyzed together than if those behaviors 

                                                
2 To account for the French distinction between “connaissance” and “savoir” that Brousseau frequently used in 
his work (in a general context, both of them are often translated as “knowledge”), these terms have been trans-
lated as “knowing” and “knowledge”. The former refers to individual intellectual cognitive constructs. The latter 
refers to socially shared and recognized cognitive constructs, which must be made explicit. 



 

and productions are analyzed separately. More examples and details are showed in the section about 
student modeling and diagnosis to better clarify the importance of that temporal dimension. 

In summary, according to Brousseau’s theory, the milieu for the apprenticeship must be orga-
nized to foster active learning by producing relevant feedback to the learner’s actions and productions. 
We assume that the system can produce relevant feedback for the apprenticeship if it reacts regarding 
an internal validation of the learner’s solution process, that is, local consistency checks of the learner’s 
actions and productions (Ohlsson, 1992). By relevant feedback, we mean not only a variety of oppor-
tunities (i.e., an online theoretical course, a clinical cases database, a set of problems) for the student to 
learn, but also the adequacy of the feedback content provided to the student, for example, which prob-
lem or which part of the online course would be relevant to help the student perform an optimal adap-
tation to his or her milieu (i.e., the simulation system), according to his or her current knowing state 
and cognitive behavior. Thus, student modeling and diagnosis and domain knowledge modeling are 
among the most important concerns in the design and development of our intelligent learning envi-
ronment. 
 
Framework for Domain Knowledge Modeling  
 
For didactic analysis and domain knowledge representation, we adopted the cK¢ (conception, knowl-
edge, and concept) model that provides a computational framework for didactic research (Balacheff & 
Gaudin, 2010). This model facilitates the analysis of the domain knowledge to be formalized and im-
plemented in our learning system (see (3) in Fig. 2). 

The aspect of the cK¢ model that concerns our work is the formalization of a conception, which is 
the instantiation of the knowing ascribed by a subject to a situation. The cK¢ model formalizes a con-
ception by the following quadruplet: a set of problems (P); a set of operators (R) involved in the solu-
tions of the problems from P; a representation system (L) allowing the representation of P and R; and a 
control structure (Σ). The first three components are the key features identified by Vergnaud (1991, p. 
145) to characterize a concept. The fourth was introduced by Balacheff and Margolinas (2005): the 
elements of Σ allow the subject to decide whether an action is relevant or not, or to decide that a prob-
lem or sub-problem is solved. The crucial role of control elements in problem solving has already been 
pointed out (e.g., Schoenfeld, 1985).  

The formalization of a conception by the previous quadruplet allows a characterization of the sub-
ject-milieu system: the representation system allows the formulation and the use of the operators by 
the active sender (the subject) as well as the reactive receiver (the milieu). The control structure en-
ables the expression of the means the subject uses to justify the adequacy and validity of an action, as 
well as the criteria of the milieu for selecting feedback (Balacheff & Margolinas, 2005). 
 
 
DIDACTICAL ANALYSIS 
 
According to the cK¢ model presented previously, the aim of the didactic analysis is to identify the 
quadruplet (P, R, L, Σ) and relationships among its components at an operational level, so as to build a 
robust domain knowledge model. An expert in didactic science and an expert surgeon, both in the 
TELEOS team, were working collaboratively to do and validate this didactic analysis. 

As previously explained, surgical education is constituted of two main periods: the initial learning 



 

period, during which theoretical knowledge is acquired, and the professional learning period, during 
which experience of real situations is progressively acquired, and knowledge becomes progressively 
operational. The expertise, that is the efficient treatment of various situations, is transmitted in a partly 
implicit mode to the novice. To build a robust domain knowledge model, it is important to make a 
number of these elements of expertise explicit. It is not easy, however, for the expert surgeon to de-
scribe the correct process of sacro-iliac screw fixation completely. For example, to validate a solution 
in a particular case (e.g., a patient with a very hard bone), the expert surgeon sometimes uses prag-
matic knowledge, which has not been described in any research articles or theoretical courses. Here is 
an explication of an expert teacher to a novice learner about one of the X-rays, taken at the mid-course 
of a problem-solving process: 

[The pin] is a bit too much behind... you see, it is a bit too much behind, it should 
have been much more by here, but the entry point is ok, we won’t modify it, but 
do not pass over the midline, furthermore he [the patient] has got a very hard 
bone, so you don’t need to have a very well anchored threading. (bold-font text 
emphasized by the didactic analyst) 

The bold-font text in the previous dialog extract shows a part of the surgeon’s professional exper-
tise, which allows him to validate the position of the pin which should have been considered as invalid 
by the prescription “a bit too much behind”. One of the objectives of our learning system is to help the 
student master that kind of pragmatic knowledge. Situating this objective in the constructivist ap-
proach of learning described earlier, it is important to integrate into our domain model these elements 
of knowledge and their related validity domain, so as to be able to analyze the student’s actions in 
terms of possible used knowledge, and to produce related feedback. 

The previous kind of dialogs is common in novice-learner and expert-teacher apprenticeship con-
texts, but not in the context of cognitive task analysis. That is why didactic analysis is particularly 
important in modeling knowledge of specific domains such as the sacro-iliac screw fixation. In the 
following sub-sections, we detail our approach for the didactic analysis; then, we present the results of 
the analysis process.  
 
Approach 
 
The approach is essentially based on an approach proposed by Pastré (1997) for didactic analysis in 
professional education. According to Pastré’s approach, the didactic analysis process is composed of 
two main consecutive phases: the preparation phase and the observation and interview phase. The aim 
of the preparation phase is to help the didactic analyst master background knowledge of the subject 
domain in order to prepare as best as possible for the observation and interview phase, which in turn 
helps him or her collect subject domain knowledge as optimally as possible. Both phases are per-
formed in the context of instructional situations in order to better understand how subject domain 
knowledge is acquired and taught. 

In the preparation phase, the TELEOS didactic analyst first studied a theoretical course provided 
by an expert surgeon-teacher and a certain number of external resources describing the subject do-
main. This study helped her master the basic of declarative and procedural domain knowledge: the 
different anatomic parts of the pelvis and their relations, the different possible pelvis diseases and their 
treatments, the main steps of the required surgical interventions. Then, she observed and videotaped a 
number of real surgical interventions. Every operation was performed by both an expert and a resident 
junior surgeon. Thus, the observation of interventions provided elements of both the expertise and its 



 

transmission. This study allowed the didactic analyst to look further into theoretical concepts, to ob-
serve the course of surgical operations (some of which may not be mentioned in theoretical courses), 
and to witness the difficulty and the importance of certain tasks. For example, she identified the proc-
ess of translating the information given by an X-ray into actions to perform on the patient as being a 
crucial task. It requires a complex cognitive process: coupling different views to reconstruct a mental 
3D representation of the bone, identifying the correspondence between the X-rays directions and the 
pelvis position (see Fig. 4), considering the correspondence between the real distances and the ones 
displayed on X-rays. 

In the observation and interview phase, the didactic analyst performed a cognitive analysis of the 
novice-learner and expert-teacher apprenticeship during real interventions of sacro-iliac screw fixa-
tion. In the observation process, to collect data as maximally as possible, an assisted observation pro-
tocol (Leplat, 2000) was used: a camera to take videos, a microphone to take audios, and a monitor of 
the operating theatre to collect taken X-rays. After collecting and studying the set of data, according to 
a consecutive verbalization technique (Leplat, 2000), she interviewed both the surgeon-learner and the 
surgeon-teacher. The interview questions were mainly concerned with the clarification of how and 
why to do and validate actions during the problem-solving process. This kind of interview questions 
helped collecting a variety of tacit pragmatic knowledge used by the learner and the teacher. Here are 
several examples of those questions: Why did you do this action? How did you do to accomplish this 
operation? What did you examine on this X-ray? What are the clues that allowed you to validate (not 
validate) this X-ray? The didactic analyst videotaped and analyzed six surgical interventions of sacro-
iliac screw fixation, and she used two of them for consecutive verbalization in order to deepen the 
analysis. Each element of knowledge brought into our domain knowledge model, thanks to those ver-
balization processes, was carefully associated with its domain of validity (in which cases this knowl-
edge is applicable and in which cases it is not, and why). 

 
Fig. 4. Representations of a pin (two black lines and one black dot) and X-ray direction (black arrow). 

 
Main Results 
 
We present hereafter the results of the didactic analysis: the quadruplet (problems, operators, controls, 
representation system) defined earlier.  
 
Problems (P) 
 
In the didactic analysis process, we recognized that the teacher or learner's validation of a solution 
depends on the characteristics of the sacro-iliac screw situation he or she is solving, for instance, the 
type of the patient’s pelvis fracture, the quality of the patient’s bone, the nature of the problem-solving 
situation. Those characteristics are named as "didactic variables" (Brousseau, 1997).  



 

Table 1 
A subset of problems presented to the student 

Fracture type Bone quality Declaration Problem 
ID Sacrum frac-

ture 
Pure disjunc-

tion 
High 

density 
Normal 
density 

Low 
density 

Define trajec-
tory 

Validate trajec-
tory 

PA  X  X  X  
PB X   X  X  
PC X   X   X 
PD  X  X   X 
PE X    X X  
PF  X   X X  

Table 2 
Operators used in a problem-solving sacro-iliac screw fixation 

Action 
ID 

Operator Traces of the pin course 

1 OP1: Introduce an entry 
point for the pin course 

No information available 

2 OP2: Orientate the pin No information available 
3 OP3: Advance the pin No information available 
4 OP5: Take an inlet view The pin comes too near from the anterior cortex of the lateral part of 

the sacrum on the inlet view, meaning that the pin is too low on the 
inlet view (the position of the pin is incorrect) 

5 OP6: Take an outlet view The position of the pin is correct on the outlet view 
6 OP4: Restore the pin No information available 
7 OP1: Introduce an entry 

point for the pin course 
No information available 

8 OP2: Orientate the pin No information available 
9 OP3: Advance the pin No information available 

10 OP5: Take an inlet view The pin comes a little far from the anterior cortex of the lateral part of 
the sacrum on the inlet view (the position of the pin is still incorrect) 

11 OP6: Take an outlet view Take an outlet view: the position of the pin is correct on the outlet 
view 

12 OP9: Validate the pin 
course 

The same traces from the previous actions 

 
The didactic variables were used to create a variety of problems (Table 1). This set of problems 

could be used to create cognitive conflict by the learner (i.e., to destabilize the learner’s conceptions) 
to make learning happened effectively. For example, a problem with high-density bone may be pre-
sented to the learner to help him or her better understand exceptional cases (see the problem shown in 
the dialog extract above) if the system detects that he or she does not have any understanding about the 
importance of the quality of the patient’s bone. Sometimes, the problems could be used to refine the 
diagnosis result about the learner’s conceptions. For example, the learner could be asked to validate a 
particular solution so that the diagnosis component can get more evidence about how he or she under-



 

stands the importance of the quality of the patient’s bone. That refinement may help the system gener-
ate more relevant feedback for the student. 
 
Operators (R) 
 
The didactic analysis allowed a detailed description of the process of sacro-iliac screw fixation de-
scribed previously as well as a set of operators. Table 2 shows a number of operators used in a prob-
lem-solving sacro-iliac screw scenario. We use this scenario to explain how the diagnosis component 
works in the next section. 
 
Controls (Σ) 
 
As mentioned previously, during the problem-solving process the surgeon’s checking of whether an 
action is relevant or whether a problem or sub-problem is solved or not is associated with a set of con-
trols. In the domain of sacro-iliac screw fixation, the didactic analyst distinguished two kinds of con-
trols, according to their epistemological dimension: (1) theoretical (mastered in the theoretical course), 
and (2) pragmatic (mastered by experience). All of them are declarative knowledge (procedural 
knowledge, i.e., the steps to make a pin course described previously, is quite easy for any surgeon 
student to master, so it is not mentioned here). The didactic analyst also classified controls into four 
groups, according to the nature of the subject domain: (1) anatomy controls that describe the anatomi-
cal characteristics of the pelvis, (2) trajectory controls that describe the characteristics of the pin 
course, (3) radiography controls that describe the characteristics of the X-rays taken during the surgi-
cal operation, and (4) correspondence controls that describe relationships between the X-rays and the 
body. Those classifications are necessary because the modeling of the diagnosis process and the mod-
eling of the didactic decision depend on the nature of controls (see more details in the following sec-
tion). Table 3 shows a subset of about 100 controls the didactic analyst collected. 

The controls, which are associated with the surgeon’s decision-making, are the key elements of 
the difference between the expert surgeon teacher and the novice surgeon learner. Indeed, the surgeon 
teacher knows how and when to “use” these controls to take decisions, whereas the learner may “use” 
some of these controls out of their validity domain. When we say that surgeons “use” the controls we 
mean their understanding is associated with the controls we have identified (the formulation of their 
controls may be different from that of our controls, though the meaning of their controls and that of 
our controls are similar). For instance, after perceiving that the pin comes too near from one precise 
anatomic part of the pelvis bone (e.g., its anterior cortex) on the inlet view, meaning that the pin is 
“too low” on the X-ray representation, the expert uses Σ14 (see Table 3) to decide to correct the entry 
point downwards, in relation to the body lying position (see Fig. 4). The novice may not have that 
control in mind (and thus does not correct the pin course) or may have a correct understanding of that 
control (and acts as does the expert) or may have an incorrect understanding of that control in the men-
tioned context (and therefore corrects the entry point upwards, which is invalid). 

To decide which control(s) to be used in a given problem-solving situation, the surgeon (learner 
or teacher) needs to examine the situation, principally by taking X-rays, to determine its characteristics 
regarding the domain constraints. We use the term "situation variables" (SVs) to describe the charac-
teristics of a given problem-solving situation. Table 4 shows a couple of examples of SVs. The value 
of a SV can be evaluated by the surgeon only when he or she does a relevant operation, for example, 
"take an inlet view" to identify the value of SV1 and SV10. 



 

 

Table 3 
Examples of controls in sacro-iliac screw fixation 

Control 
ID 

Type Content 

Anatomy 
Σ8bis Theoretical IF the pin is down the anterior cortical bone of the iliac wing on the inlet view, THEN 

it can hurt the lumbo-sacral trunk  
Σ9bis Theoretical IF the pin is up the sacral canal on the inlet view, THEN it can hurt the S1 roots and the 

cauda equine 
Σ38 Theoretical IF the pin is in front of the dense lines on the lateral view, THEN it can hurt the sacral 

canal 
Trajectory 

Σ7 Theoretical IF the pin is well positioned, THEN it is behind the dense lines on the lateral view 
Σ8 Theoretical IF the pin is well positioned, THEN it is up the anterior cortical bone of the iliac wing 

on the inlet view  
Σ30 Pragmatic IF the pin would become extra osseous by being pushed in S1, 1cm after the median 

line, THEN it can be stopped at the median line 
Σ65 Pragmatic IF the screw is well anchored, THEN its extremity lies in S1, 1cm after the median line 
Σ67 Pragmatic In case of a disjunction: IF the pin would become extra osseous, THEN it can be 

stopped just 1cm after having reached S1 
Radiography 

Σ6 Theoretical IF the X-ray is a good outlet THEN the sacral plate must be visible 
Σ92 Pragmatic IF the pin is correctly positioned on the inlet view, THEN the pin trajectory can be 

valid, but not sure (i.e., one should not validate the pin course in this case, but should 
look for more evidence to do so)  

Correspondence 
Σ14 Pragmatic IF the pin touches the anterior cortex of the lateral part of the sacrum on the inlet view 

THEN it is too ventral on the body of the patient 
Σ15 Pragmatic IF the pin touches the posterior cortex of the lateral part of the sacrum on the inlet view 

THEN it is too dorsal on the body of the patient 
Σ20 Pragmatic IF the pin touches the first anterior sacral foramen on the outlet view THEN it is too 

caudal on the body of the patient 

Table 4 
Examples of situation variables 

Situation Variable ID Description 
SV1 The pin touches the anterior cortex of the lateral part of the sacrum on the inlet view. 

SV10 The pin touches the posterior cortex of the lateral part of the sacrum on the inlet view. 
 



 

Representation System (L) 
 
Although we used a simple but systematic representation system to represent, for example, operators 
in the simulation component and to name various variables in the diagnosis component (see the next 
section), the representation system is not a main concern in our current research. In the future, how-
ever, it could be useful (e.g., for didactic engineering) to add to the knowledge model a representation 
as an attribute to each control used in the model: gestural, mental 3D representation, 2D imagery, kin-
esthetic sensation, sound, etc. 
 
Conclusion 
 
In the model presented previously, the solving process of a problem P can be described as a succession 
of operators (i.e., actions in our case) whose consequences on the problem are validated by controls, 
which are used in a certain system of representation. The model may be used to describe the solving 
process of more complex problem-solving situations we envision for future research. For example, the 
progression of the pin may be sometimes controlled by the surgeon by hearing the sound of the surgi-
cal motor he or she uses to insert the pin: a shriller sound is interpreted as a progression in a dense part 
of the bone. Then, the surgeon’s knowledge of the pelvis anatomy allows him or her to know the exact 
location of the pin extremity. Most of the time, he or she will confirm this information by taking an X-
ray. This action provides him or her with a validation of this step of the problem-solving process in 
another system of representation (2D image). 
 
 
STUDENT MODELING AND DIAGNOSIS 
 
The control structure previously presented is the most important element for validation, a key aspect of 
problem solving (Schoenfeld, 1985). Therefore, the objective of our diagnosis component is to diag-
nose the student's understanding about the controls after each of the actions he or she performs during 
his or her interaction with the simulation component of our learning system. The diagnosis result will 
be used to make didactic decision about relevant feedback to be provided to the student (see the previ-
ous section that describes the architecture of our learning environment). 

Diagnosing the learner's understanding about a certain control is difficult. For example, in the 
scenario shown in Table 2, after the learner does Action 4, it is difficult to diagnose his or her under-
standing about the related controls (e.g., see Σ14 in Table 3): the learner may not have these controls 
in mind and makes such a pin course randomly, or he or she may have correct understanding of these 
controls but makes an incorrect pin course for another reason (even an expert may need several at-
tempts to arrive at a correct pin course), or he or she may have incorrect understanding of these con-
trols and therefore makes such an incorrect pin course. In other words, it is uncertain to diagnose the 
learner’s knowing state in that kind of situations. Bayesian networks provide an effective mean for 
modeling under uncertainty (Henze & Nejdl, 2001; Mayo & Mitrovic, 2001). 

In addition, considering the temporal dimension in student modeling and diagnosis is important 
because it may help model the student’s knowing state and cognitive behavior more completely. For 
instance, in the previous scenario, the student makes an incorrect solution in the first course of actions 
(Action1 - Action 5). Then, he or she makes a good correction behavior in the second course of actions 
(Action 6 – Action 11). The student, however, validates an incorrect pin course (Action 12). If not 



 

considering the temporal dimension, the system may focus only on the error the student makes in Ac-
tion 12, diagnose that he or she has an incorrect understanding about Σ14 with high probability, and 
generate feedback regarding that error. But if taking into account the temporal dimension, the system 
should concentrate on both the student’s correction behavior in the second course of actions and his or 
her error in Action 12, diagnosing that he or she has an incorrect understanding about Σ14 with aver-
age probability, and produce feedback with respect to both that cognitive behavior and that error. We 
believe that the feedback in the latter case could be better because it may help the learner focus on his 
or her good correction behavior and hence arrive at a correct solution by an optimal path. 

Temporal Bayesian networks (Russell & Norvig, 2009; Ghahramani, 1998) could be exploited to 
model such a temporal dimension. In the following sub-sections, we first introduce necessary back-
ground on temporal Bayesian networks, then we present the student model in our learning system, and 
finally we show a meta-model as well as details of the temporal Bayesian network used in the student 
diagnosis component of our learning system.  
 
Temporal Bayesian Networks 
 
A Bayesian network is a graphical model that researchers use to encode probabilistic relationships 
among variables of interest. More specifically, a Bayesian network is a directed, acyclic graph whose 
nodes represent random variables and whose arcs encode conditional dependencies. If there is an arc 
from node X to another node Y, X is called a parent of Y and Y is called a child of X. A node without 
parents is called a root node or an unconditional node. A node with parents is called a conditional 
node, which is attached with a conditional probability table (CPT) that quantifies the effect of its par-
ents on the conditional node. The probabilistic computation in Bayesian networks is grounded in the 
rules of probability (Pearl, 2000, Chapter 1), which in turn are based on Bayes’s theorem or law. This 
law relates the conditional and marginal probability of events X and Y, where Y has a non-vanishing 
probability, as follows: 

€ 

P(X |Y ) =
P(Y | X)P(X)

P(Y )
 

Where: 
• P(X) is the marginal probability of X. It is also called the prior probability in the sense that it does 

not consider any information about Y. 
• P(X|Y) is the conditional probability of X, given Y. It is also called the posterior probability be-

cause it is derived from the specified value of Y. 
• P(Y|X) is the conditional probability of Y, given X. 
• P(Y) is the marginal probability of Y, and it acts as a normalizing constant. 

Intuitively, Bayes' law in the previous form describes the way in which one's beliefs about ob-
serving X are updated by having observed Y. That is why researchers in the field also name Bayesian 
networks as belief networks (Reye, 2004). 



 

  
Fig. 5. A simple Bayesian network (left) and a simple temporal Bayesian network (right). 

Fig. 5 shows our example of a simple Bayesian network: "Cloudy" is an independent random 
variable (a root or unconditional node), which has two possible values (True and False). "Rain" is a 
dependent random variable (a conditional node), which also has two possible values (True and False). 
“Cloudy” node is called a parent of “Rain” node and “Rain” node is called a child of “Cloudy” node. 
“Rain” node is labeled with a CPT (see Fig. 5), which means that if it is cloudy then it probably (80%) 
rains and that if it is not cloudy then it probably (80%) does not rain. On the basis of this Bayesian 
network, one can calculate the probability of the fact "it rains" from the probability of the fact "it is 
cloudy", for instance, if the probability of "it is cloudy tomorrow" is 70% then the probability of "it 
rains tomorrow" is 62%. 

A temporal Bayesian network is a Bayesian network in which stochastic processes are modeled, 
that is, temporal dimension is taken into account (Russell & Norvig, 2009; Ghahramani, 1998). In the 
previous example, if one wants to consider the fact "if it rains today, it will probably rain tomorrow", 
he or she may build the following model (Fig. 5): "Cloudy_0" and "Rain_0" represent variables in the 
previous day and "Cloudy_1" and "Rain_1" represent variables in the following day. The CPT at-
tached to variable "Rain_1" is redefined by considering its two parents: "Cloudy_1" and "Rain_0". If 
one knows, for instance, that the probability of the fact "it is cloudy tomorrow" is 70% and the prob-
ability of the fact "it is cloudy the day after tomorrow" is 50%, the present model allows him or her to 
calculate the probability of the fact "it rains the day after tomorrow" to be 56%. 
 
Student Model 
 
The diagnosis component in our learning system aims at diagnosing the student's use of controls dur-
ing his or her problem-solving process. As mentioned in an example presented previously about con-
trol Σ14, for each control we consider three states about the student's use of that control: 
• BPV: This state stands for "brought into play validly". It means that the student uses the control 

and his or her understanding about the control is correct, so he or she may know when and how to 
use it correctly, as expected by the surgeon teacher. 

• BPI: This state stands for "brought into play invalidly". It means that the student has a misunder-
standing about the control in a specific situation or context. More specifically, he or she may have 
correct understanding about the control in another context, but he or she wrongly applies the con-
trol in the given situation. 

• NBP: This state stands for "not brought into play". It means that the student does not use the con-
trol, probably because he or she does not have it in his or her mind. 
To model the student's knowing state, we use a control vector (ΣV), based on a model proposed 

by Henze and Nejdl (2001). Each component of the vector is a conditional probability, describing the 



 

diagnosis system's estimation that a student S has understanding about a control Σ, on the basis of all 
observations (evidences) E the system has about S: 

ΣV(S) = (P(Σ1|E), P(Σ2|E), . . . , P(Σn|E)) 
Table 5 shows a part of the student model, initialized for every learner at the beginning of the 

problem-solving process. Because there is no evidence about the student's use of controls at the begin-
ning, for each control the probability is equally distributed for the three states BPV, BPI, and NBP (the 
value for NBP is set to be 0.34 in order to satisfy the rule that the sum of the three values must be 
equal to 1). 

Table 5 
A part of the initialized student model 

Probability Control ID 
BPV BPI NBP 

Σ14 0.33 0.33 0.34 
Σ15 0.33 0.33 0.34 

 
Student Diagnosis 
 
The main task for building the diagnosis component in our learning system is to create a temporal 
Bayesian network. In this section, we show both an approach we applied to build the temporal Baye-
sian network and a meta-model of this network. Showing those elements in detail could help the 
reader understand why and how they may be reused for student diagnosis in other subjects than sacro-
iliac screw fixation and in other instructional contexts than simulation-based learning systems. 
 
Meta-model 

 
Fig. 6. A meta-model of the temporal Bayesian network for student diagnosis. 

Fig. 6 shows the meta-model of our temporal Bayesian network in which we emphasize the temporal 
dimension. This meta-model has the following sub-models: 
• The operators sub-model contains nodes representing the operators identified in the previous 

didactic analysis (see Table 2). 
• The evolution_variables sub-model contains nodes representing the "evolution" variables. 

Briefly, this sub-model is mainly used to monitor the evolution of the characteristics of the stu-
dent’s pin course throughout his or her construction of a solution. 



 

• The correction_variables sub-model contains nodes representing the "correction" variables. 
This sub-model is principally used to monitor the student’s correction process (i.e., correction be-
havior) throughout his or her construction of a solution (e.g., see Action 6 – Action 11 in Table 
2). 

• The controls sub-model contains nodes representing the controls identified in the previous 
didactic analysis, for example, Σ14 (see also Table 3). 
The student diagnosis in our learning system is "control-oriented" (i.e., it diagnoses the student's 

knowledge about controls), thus the approach used to build the temporal Bayesian network is also 
“control-oriented.” In other words, for each of the controls (e.g., Σ14), we applied the same process to 
build the diagnosis model for that control. Fig. 7 illustrates the diagnosis model for Σ14: 
take_inlet and validate_pin_course are operator nodes in the operators sub-model, 
evolution_distance_0, evolution_distance_1 are evolution nodes in the evolu-
tion_variables sub-model, correction_distance is an correction node in the correc-
tion_variables sub-model (for this specific example, “distance” is used to indicate the distance 
between the pin and the anterior cortex of the lateral part of the sacrum on the inlet view and to replace 
“distance_pin_anterior_cortext_on_inlet” in long variable names in Fig. 7), and sigma14_0 and 
sigma14_1 are control nodes in the controls sub-model. By convention, the variables ending with 
“_1” are used to represent the current state of the student’s pin course, whereas the variables ending 
with “_0” are used to represent the previous state of the student’s pin course (we give more details 
about this in the next sub-sections). To compute the value of the evolution variables, a set of IF-THEN 
rules, which represents domain constraints identified in the phase of didactic analysis, is used. We 
present the four sub-models and those rules in detail in the following sub-sections. 

 
 

Fig. 7. A part of the temporal Bayesian network for modeling the diagnosis of Σ14 (sigma14). 

Evolution Variables 
 
In the phase of didactic analysis, the didactic analyst identified relationships among controls, opera-
tors, and situations variables (see also Table 4), for instance, the situation variable related to Σ14 is 
SV1: "the pin touches the anterior cortex of the lateral part of the sacrum on the inlet view." We use, 
however, a variable such as "distance between the pin and the anterior cortex of the lateral part of the 
sacrum on the inlet view" to model the evolution and the correction of the student’s pin course. 

The scenario presented in Table 2 suggests that it is important to take into account the values of 
the same situation variable at different points in time in order to model the temporal dimension. Thus, 



 

for each of the situation variables related to a control, we define two intermediate variables to model 
the evolution of the situation variable, for example, Fig. 7 shows two intermediate variables created 
for Σ14: evolution_distance_0 and evolution_distance_1 (we explain more about why 
those two variables are useful in the sub-section about correction variables). In the temporal Bayesian 
network, those variables are represented by deterministic nodes (a particular kind of nodes in Bayesian 
networks, see GENIE, 2006), which take one of the following five values, for example, for variable 
evolution_distance_1: 
• correct: When the distance between the learner's pin at present and the anterior cortex of the 

lateral part of the sacrum on the inlet view is correct, according to the domain constraints (but not 
to an ideal solution by the expert surgeon). 

• incorrect: When the distance between the learner's pin at present and the anterior cortex on the 
inlet view is incorrect and the system has no information about that distance at a previous time 
(e.g., see Action 4 of the scenario shown in Table 2). By previous time, we mean the most recent 
moment the system updates the student model (updating is performed after every operation by the 
student with the simulation component). 

• incorrect_good_way: When the system has information about that distance both at a previous 
time and at present, and the distance at present is incorrect, but there is evidence that the learner's 
behavior toward the error is in a good way (e.g., see Action 10 in Table 2). 

• incorrect_bad_way: Similar to incorrect_good_way, but the learner's behavior toward the 
error is in a bad way. 

• no_information: This is a value by default. This value is useful, for instance, for initializing 
the Bayesian network at the beginning of the problem-solving process. 

 
IF-THEN Rules 
 
To compute the value of the previous evolution variables ending with “_1” at present, the diagnosis 
component uses a set of IF-THEN rules, which was formulated on the basis of the domain constraints 
collected in the phase of didactic analysis. Table 6 shows several rules related to variable evolu-
tion_distance_1. The set of IF-THEN rules was created by considering the temporal dimension 
explained in the previous sub-section (see the situation variables ending with “_0” in the IF clause in 
Table 6). 

Table 6 
A part of the IF-THEN diagnosis rules 

(distance is in millimeter, suffix "_1" means "at present" and suffix "_0" means "at a previous time") 

IF Clause THEN Clause 
(distance_pin_and_anterior_cortex_on_inlet_1 > 4) evolution_distance_1 = correct 
(distance_pin_and_anterior_cortex_on_inlet_1 <= 4) evolution_distance_1 = incorrect 
((distance_pin_and_anterior_cortex_on_inlet_1 <= 4) AND  
(distance_pin_and_anterior_cortex_on_inlet_0 <  
distance_pin_and_anterior_cortex_on_inlet_1)) 

evolution_distance_1 =  
incorrect_good_way 

((distance_pin_and_anterior_cortex_on_inlet_1 <= 4) AND  
(distance_pin_and_anterior_cortex_on_inlet_0 >  
distance_pin_and_anterior_cortex_on_inlet_1)) 

evolution_distance_1=  
incorrect_bad_way 



 

Correction Variables 
 
Although the temporal dimension has been partly taken into account in the set of IF-THEN rules, the 
evolution variables could not allow the system to model the learner's correction behavior completely, 
for example, to model the following situation: At a previous time, the learner made a pin course in 
which the distance between the pin and the anterior cortex is 3mm (i.e., incorrect). At present, to cor-
rect a certain error, which may not be the error related to that distance, the learner makes another pin 
course in which the distance between the pin and the anterior cortex is unchanged (i.e., 3mm). In this 
situation, the system should diagnose that the learner has not made any correction regarding that dis-
tance yet. Evolution variables ending with “_0” (e.g., evolution_distance_0 for Σ14) are thus 
created to detect that kind of specific situations. The value of evolution_distance_0 is copied 
from that of evolution_distance_1 computed at the previous time. 

Therefore, to model the student's correction behavior toward a certain error as completely as pos-
sible, deterministic nodes (e.g., correction_distance, see Fig. 7) are created. Furthermore, the 
learner, while interacting with the simulation component, needs to do certain operations in order to 
examine the evolution of the pin course. For instance, to see the change of the distance between the 
pin and the anterior cortex on the inlet at the previous time and at present, the learner needs to take an 
inlet view (see Actions 4 and 10 in Table 2). Thus, node correction_distance has three parents: 
two evolution nodes described earlier and one deterministic binary node representing whether the re-
spective operation is done or not by the student (see take_inlet in Fig. 7). This correction node can 
take one of the following five values: 
• correct: Similar to the value correct of the "evolution" variables. 
• no_correction: For example, the distance between the pin and the anterior cortex on the inlet 

view is unchanged (see the example described in the previous paragraph). 
• good_way: Similar to the value incorrect_good_way of the "evolution" variables. 
• bad_way: Similar to the value incorrect_bad_way of the "evolution" variables. 
• no_information: Similar to the value no_information of the "evolution" variables. 

Table 7 shows a part of the definition of this node. The point we make here is that this definition 
is the same for every correction node. 
 
Control Nodes 
 
After creating the "correction" variable related to Σ14, two chance nodes (e.g., sigma14_0 and 
sigma14_1, see Fig. 7) are created. The former represents the cumulative diagnosis result of the re-
spective control until the previous time and the latter represents that at present. As described in the 
previous sub-section about student model, control nodes have three outcomes: BPV (brought into play 
validly), BPI (brought into play invalidly), and NBP (not brought into play). Node sigma14_0 has no 
parents, and at the beginning of the problem-solving process, the outcomes of this node are equally 
distributed (see Table 5). Node sigma14_1 has three parents: sigma14_0, correction_distance, 
and a deterministic binary node validate_pin_course that represents whether the learner’s current 
operation is the validation of the pin course or not. We take into account operator vali-
date_pin_course because we consider that validating an incorrect solution is different from making 
an incorrect pin course and doing an operation other than validating the pin course, for instance, re-
starting to correct errors (in the latter case the learner's knowing state and cognitive behavior should be 



 

diagnosed with more positive result than those in the former case, see more details in the following 
sub-section about evaluation). Table 8 presents a part of the CPT of node sigma14_1 we subjectively 
filled out. This same CPT is used for every control node in the same group (see four groups in Table 3: 
anatomy, trajectory, radiography, and correspondence). 

Table 7 
A part of the definition of correction nodes 

take_inlet yes 
evolution_distance_ 0 incorrect 
evolution_distance_ 1 correct incorrect incorrect_good_way incorrect_bad_way no_information 
good_way   X   
bad_way    X  
correct X     
no_correction  X    
no_information     X 
take_inlet yes 
evolution_distance_ 0 correct 
evolution_distance_ 1 correct incorrect incorrect_good_way incorrect_bad_way no_information 
good_way      
bad_way  X X X  
correct X     
no_correction      
no_information     X 

Table 8 
A part of the definition of "control" nodes in the correspondence group 

correction_distance good_way 
validate_pin_course yes no 
sigma14_0 BPV BPI NBP BPV BPI NBP 
BPV 0.4 0.1 0.1 0.6 0.4 0.4 
BPI 0.5 0.8 0.5 0.2 0.4 0.2 
NBP 0.1 0.1 0.4 0.2 0.2 0.4 

 
Diagnosis Process 
 
At the beginning of the learner's problem-solving process, every node in the Bayesian network is set to 
a value by default (e.g., no_information for “evolution” nodes). The functionality of the diagnosis 
agent can be summarized in the following four steps: 
1. After receiving the student's action and traces provided by the tracing agent, the diagnosis agent 

uses the set of IF-THEN rules to calculate the values of the "evolution" variables. The diagnosis 
agent always keeps two values for each trace: one for the current time and the other for the previ-
ous time. 



 

2. For the Bayesian network, the diagnosis agent sets "True" for the value of the operator corre-
sponding to the student's action and uses the results computed in Step 1 to set the values for the 
"evolution" nodes. 

3. The diagnosis agent updates the Bayesian network and sends the diagnosis result (e.g., the prob-
abilities about the three states of the controls) to the didactic decision agent, which in turn will 
generate feedback for the student. 

4. To make the Bayesian network function correctly for the student's next action (i.e., to consider 
the temporal dimension), after updating the Bayesian network the diagnosis agent copies the val-
ues of the nodes ending with "_1" (e.g., evolution_distance_1, sigma14_1) to the values of 
the nodes ending with "_0" (e.g., evolution_distance_0, sigma14_0). 

Table 9 
A part of the diagnosis result of the scenario shown in Table 2 

(BPV = brought into play validly, BPI = brought into play invalidly, NBP = not brought into play) 
 

Operator Pin traces "Evolution" variables Part of diagnosis result 
Σ  BP

V 
BPI NB

P  
OP1: Introduce an 
entry point  None all variables: no_information Σ14 0.33 0.33 0.34  

OP2: Orientate the pin None all variables: no_information Σ14 0.33 0.33 0.34  
OP3: Advance the pin None all variables: no_information Σ14 0.33 0.33 0.34  
OP5: Take an inlet 
view 

distance_pin_and_ 
anterior_cortex_ 
on_inlet=1 

evolution_distance_pin_ 
and_antrior_cortex_ 
on_inlet_1=incorrect 

Σ14 0.20 0.20 0.60  

OP6: Take an outlet 
view 

distance_pin_and_ 
sacral_foramen_ 
on_outlet=6 

evolution_distance_pin_ 
and_sacral_foramen_on_ 
outlet_1=correct 

Σ14 0.20 0.20 0.60  

OP4: Restore the pin None all variables: no_information Σ14 0.20 0.20 0.60  
OP1: Introduce an 
entry point None all variables: no_information Σ14 0.20 0.20 0.60  

OP2: Orientate the pin None all variables: no_information Σ14 0.20 0.20 0.60  
OP3: Advance the pin None all variables: no_information Σ14 0.20 0.20 0.60  
OP5: Take an inlet 
view 

distance_pin_and_ 
anterior_cortex_ 
on_inlet=3 

evolution_distance_pin_ 
and_anterior_cortex_on_ 
inlet_1=incorrect_good_way 

Σ14 0.44 0.24 0.32  

OP6: Take an outlet 
view 

distance_pin_and_ 
sacral_foramen_ 
on_outlet=5 

evolution_distance_pin_ 
and_sacral_foramen_ 
on_outlet_1=correct 

Σ14 0.44 0.24 0.32  

OP9: Validate the pin 
course 

distance_pin_and_ 
anterior_cortex_ 
on_inlet=3 
distance_pin_and_ 
sacral_foramen_ 
on_outlet=5 

evolution_distance_pin_ 
and_anterior_cortex_on_ 
inlet_1=incorrect 
evolution_distance_pin_ 
and_sacral_foramen_on_ 
outlet_1=correct 

Σ14 0.23 0.57 0.20  



 

 
Evaluation 
 
The model described previously is not based on the construction of expert solutions, but on a set of 
domain constraints representing the expertise of the domain. The approach we used is similar to an 
expert system approach (Russel & Norvig, 2003; Mayo & Mitrovic, 2001), especially in the engineer-
ing of IF-THEN rules, but we examined and modeled the temporal dimension explicitly and system-
atically. For the time being the validation of our approach is based on methods used in expert centric 
approaches and decision-theoretic expert systems. We validated several computational aspects related 
to the possibility to produce a cognitive diagnosis: we defined a gold standard validation (Russell & 
Norvig, 2009) in which we identified a set of scenarios with a set of correct input and output pairs. 

The input is the actions and the traces of the pin course while the learner is interacting with the 
simulation component, and the output is the diagnosis produced by the diagnosis component (e.g., see 
Table 9). Our research team, including computer scientists and didactic experts, worked collabora-
tively to specify and validate the testing scenarios. The validation we performed with 6 scenarios and 
about 20 controls suggests that our diagnosis agent is able to produce coherent diagnosis with an ac-
ceptable response time (say, less than five seconds when running on a Dell PC with a 2.4Ghz proces-
sor and a 512Mb RAM). For example, the diagnosis result shown in Table 9 may be interpreted, as 
follows: After Action 4, because the learner made an incorrect distance between the pin and the ante-
rior cortex and he or she took an inlet view, the outcome NBP (not brought into play) of the related 
control (i.e., Σ14) is increased. After Action 10, because it seems that the learner corrected the pin 
course in a good way, the outcome BPV (brought into play validly) of Σ14 is increased. After Action 
12, however, because the learner validated an incorrect solution, the outcome BPI (brought into play 
invalidly) of Σ14 is increased. 
 
Discussion 
 
In the Bayesian network, we modeled the learner's behavior only at two points in time: the current 
time and the most previous time (each point in time corresponds to an action of the learner while inter-
acting with the simulation component). The learner's behavior at other points in time (i.e., before the 
most previous time) is taken into account when the Bayesian network is updated at the most previous 
time (see Step 4 in the previous sub-section about the diagnosis process). More specifically, the con-
trol nodes ending with “_0” cumulatively represent the diagnosis result of the learner’s knowings from 
the beginning of the problem-solving session to the most previous time. A technical metaphor for that 
process could be a recursive formulas to compute the sum of 1 to N: F(1) = 1, F(N) = F(N-
1) + N where N > 1, in which computing F(N) is based on the value of F(N-1) and the value of N; 
so, the metaphor of F(N) is the control nodes ending with “_1”, the metaphor of F(N-1) is the control 
nodes ending with “_0”, and the metaphor of N is the action and the traces of the pin course at present. 
In other words, modeling the temporal dimension of the sequence of actions and traces in the Bayesian 
network could also be understood as a means to incrementally construct the student model.  

In addition to the diagnosis result of the current state of the learner’s knowings represented in the 
probabilities of control nodes, the diagnosis component also explicitly provides the diagnosis result of 
the learner’s cognitive behavior over time, which is represented, for example, by correction nodes. 
The former diagnosis result has been proved to be critical in many traditional ITSs (Wenger, 1987). 



 

The latter diagnosis result about cognitive behavior, we believe, could be also important. On the one 
hand, it may help the didactic decision agent generate better feedback for the learner. For instance, in 
the previous example the diagnosis agent detects that the learner validated an incorrect pin course, and 
it also recognizes that he or she corrected the pin course in a good way before the validation, it may 
therefore ask the didactical decision agent to generate feedback by focusing on the learner’s correction 
behavior before on his or her validation mistake—these choices may be driven by parameterizable 
pedagogical hypotheses. On the other hand, it may help the system recognize when and how learning 
happens within a process of solving a problem and across multiple processes of solving different prob-
lems, so as to improve the student model and to generate better feedback for the student. For instance, 
let us return to the previous example, after several error-feedback interactions between the learner and 
the system, he or she is asked to solve another problem, he or she makes an incorrect pin course, then 
corrects the pin course in a good way several times until the pin course is correct, and finally validates 
the pin course. In this case, the system may recognize that learning (how to do to correct a wrong pin 
course) happens, probably with the assistance of the previous feedback generated by the system for the 
student. So, the system would continue to use the same effective strategy to generate that kind of feed-
back in similar cases.  

The IF-THEN rules and the temporal Bayesian network presented earlier may not be the only 
way to take into account the temporal dimension in student modeling and diagnosis. One may use, for 
instance, more IF-THEN rules and less deterministic nodes in the Bayesian network than we did to 
arrive at the same solution. The point is that the temporal dimension should be systematically modeled 
in both the IF-THEN rules and the Bayesian network. 

There may be certain dependencies among control nodes in the proposed Bayesian network, for 
example, if one knows the student’s cognitive state about a certain control, he or she may be able to 
deduce the student’s cognitive state about the controls that are “cognitively related” to that control. We 
believe that the consideration of this kind of dependencies in the engineering of the proposed Bayesian 
network could improve its effectiveness in terms of diagnosis. We shall take into account that kind of 
dependencies in future research. 
 
 
RELATED WORK AND DISCUSSION 
 
In this section, we discuss several cognitive approaches for student modeling and diagnosis that are 
closely related to ours: a conception-based approach, a constraint-based approach, and a Bayesian-
network-based approach. The main contribution of this paper to those existing approaches is a new 
temporal-Bayesian-network-based model for student modeling and diagnosis, in which in addition to 
diagnosing the learner’s current knowing state we emphasize the importance of explicitly and system-
atically diagnosing the learner’s cognitive behavior expressed by a sequence of actions and produc-
tions he or she performed within a problem and across problems. 

The interested reader is referred to the work of Wenger (1987) and of Webber (2004) for reviews 
of other cognitive approaches such as the overlay approach (Clancey, 1983; Burton & Brown, 1982), 
the buggy approach (Conati, Gertner, & VanLehn, 2002; Brown & Burton, 1978), and the model trac-
ing approach (Koedinger, Anderson, Hadley, & Mark, 1997; Anderson, Boyle, & Yost, 1986; Ander-
son, Farrell, & Sauers, 1984). 

In this paper, the simulation for sacro-iliac screw fixation is used only as an example to illustrate 
and evaluate our proposed model. That is, this paper goes beyond the example of medical education 



 

and computer-based training simulations. The reader who is interested in those fields is referred to a 
brief review of technology in medical education (Lajoie, Faremo, & Wiseman, 2001) and a review of 
simulation-based learning systems, including simulation-based ITSs (Joab, Guéraud, & Auzende, 
2005). 
 
Conception-based Approach 
 
The conception-based approach (Webber, 2004) is also grounded in the theoretical framework pre-
sented previously, especially the cK¢ model. This approach has been used for student modeling and 
diagnosis in the Baghera project (Soury-Lavergne, 2003), which provides a platform to help students 
learn doing proofs in geometry. The approach is an emergent, multi-agent, and bottom-up approach, in 
which there are two main levels: the micro level and the macro level. The former consists of a com-
plex network of conception elements (i.e., problems, operators, representation system, and controls), 
based on the ck¢ model. The latter represents the set of conceptions the student may hold, for example, 
central symmetry, orthogonal symmetry, and parallelism symmetry in the domain of reflection. Thus, 
the macro level corresponds to an abstraction (in terms of knowledge) of what is represented in the 
micro level. More specifically, the major role of the macro level is to observe and interpret the final 
state of the agents in the micro level in terms of diagnosis result.  

During the student’s problem-solving process, the agents in the micro level will use group-
decision-making strategies (a spatial voting mechanism) and coalition formation (Sandholm, 1999) to 
update the representation of the diagnosis result at the current time, and one or more agents in the 
macro level will interpret that representation in terms of conceptions held by the student at the current 
time. Those conceptions are associated with utility values (e.g., 20 for central symmetry, 11 for 
orthogonal symmetry, and 10 for parallelism symmetry). A Tutor agent in the macro level will choose 
the conception(s) with the largest utility (i.e., central symmetry in the example) and provide the stu-
dent with relevant feedback regarding those conceptions. For example: (1) presenting the student with 
a new activity to reinforce his or her correct conceptions, (2) confronting the student with more com-
plex situations, (3) presenting examples or counterexamples to the student, (4) promoting interactions 
between the student and peers or the teacher. 

The main difference between the conception-based approach and our approach, as mentioned 
previously, is the modeling of the temporal dimension. Indeed, the conception-based approach ana-
lyzes the student’s actions and productions and updates the student model only at the moment when 
the student validates a solution, and it does not analyze each step of the problem-solving process and 
model the student’s cognitive behavior, as does our approach. The conception-based system is able to 
produce a diagnosis only at the final stage of the problem-solving process, whereas our system evolves 
throughout the student’s interaction with the simulation component, thanks to the temporal Bayesian 
network, and in consequence our system is able to provide feedback to the student at any step of the 
problem-solving session. Thus, we believe that our approach could get closer to the notion of “milieu” 
proposed by Brousseau (1997) than the conception-based approach. 

There is another noteworthy difference: our diagnosis component focuses on controls, but not on 
conceptions. In principle, using a control-based diagnosis result could generate more fine-grained 
feedback than using a conception-based diagnosis result. For example, by targeting “fine-grained” 
controls the system is able to suggest the student to explore a precise part of a web content page re-
lated to the targeted controls, whereas by targeting conceptions, which are usually general (e.g., cen-
tral symmetry), the system may be able to suggest only a chapter or a section for the student. Obvi-



 

ously, because controls are a part of the conception network, it may not be difficult to switch from 
conception focus to control focus in the conception-based approach. 
 
Constraint-based Approach 
 
Student modeling and diagnosis of a constraint-based ITS (Ohlsson, 1992, 1994) are principally based 
on a database of domain constraints, which models correct evaluative knowledge of the subject being 
taught—evaluative knowledge is used to evaluate outcomes of one’s action as desirable or undesir-
able. In the domain of Lisp programming, for example, here is a simple constraint (Mitrovic & Ohls-
son, 1999, p. 239): “If the code for a Lisp function has N left parentheses, there has to be N right pa-
rentheses as well (or else there is an error).” This constraint can be used to evaluate the learner’s ac-
tion of constructing a Lisp expression. 

During the problem-solving session, the constraint-based tutor analyzes the learner’s solution 
with respect to the set of constraints, and sometimes to the ideal solutions of the given problems, to 
detect the constraint(s) the learner may have violated. The student modeler of the tutor records the 
history of each constraint throughout the learner’s problem-solving process, for example, how often 
the learner satisfied / violated the constraint. After the learner submits a solution, the tutor always con-
centrates on one violated constraint, if any, to generate feedback for the learner—if multiple violated 
constraints are identified, the tutor will select the constraint with the largest number of violations. 
Feedback may be organized into five levels of detail: right/wrong, error flag, hint, partial solution, and 
complete solution. The right/wrong feedback is often used after the first attempt of the learner, 
whereas the flag feedback and the hint feedback are often used after several unsuccessful attempts. 
The learner can view the partial solution or the complete solution if he or she wants. 

Although the theoretical framework of the constraint-based approach and that of ours are differ-
ent, both share several common important points. Firstly, the constraint-based approach concentrates 
on modeling evaluative knowledge, which is somewhat similar to control knowledge modeled in our 
approach, except for our explicit modeling of tacit pragmatic knowledge. Secondly, both approaches 
are not mainly based on the construction of expert solutions, but on the set of domain constraints. In 
other words, in principle the diagnosis component in a tutor applying either approach cannot be exe-
cuted to solve problems. Both approaches, however, are able to detect multiple correct solutions by the 
learner, some of which may be different from expert solutions. This feature is critical because “[the 
tutor needs] not be thrown off track by correct but creative or unusual solutions” (Mitrovic & Ohlsson, 
1999, p. 253). Thirdly, targeting constraints or controls as the object of the diagnosis could be promis-
ing because the tutor is able to provide the learner with fine-grained feedback directly concerned with 
a constraint or control or a group of constraints or controls, for example, a constraint-based SQL-Tutor 
contains about 400 constraints, each of which may be associated with different feedback. Additionally, 
it would be not too difficult for the ITS designer to build and maintain the diagnosis component using 
either approach, for example, to add or remove constraints in the constraint-based model or controls in 
our model. 

Beside the main difference between the two approaches about the explicit modeling of the tempo-
ral dimension, as the difference between the conception-based approach and ours, there is another 
technical difference: we use Bayesian networks as a complementary tool to the set of IF-THEN rules 
to diagnose the cognitive state of the learner about the use of controls.  
 



 

Bayesian-network-based Approach 
 
The work of Mayo and Mitrovic (2001) provides a detailed review on the use of Bayesian networks 
for student modeling and diagnosis. In this sub-section, we give only an overview of this approach. 
Sometimes, the distinction between the Bayesian-network-based approach and other approaches is not 
clear-cut, because there are ITSs, for example the CAPIT tutor (Mayo & Mitrovic, 2001), that use 
Bayesian networks as a complementary tool to improve an existing student model. 

According to Mayo and Mitrovic (2001), it is possible to classify Bayesian-network-based stu-
dent models into three categories, regarding the techniques researchers have used to build those mod-
els, though this distinction is not well-defined: (1) expert-centric (Gertner & VanLehn, 2000; Miselvy 
& Gitomer, 1996), (2) efficiency-centric (Murray, 1998; Reye, 1998), and (3) data-centric (Mayo & 
Mitrovic, 2001; Stern, Beck, & Woolf, 1999). In the expert-centric category, one or several experts 
specify the complete structure and CPTs of the Bayesian network, either directly or indirectly. So, the 
student model is an unrestricted product of domain analysis. In the efficiency-centric category, on the 
other hand, researchers partially specify or restrict the structure as well as the CPTs of the Bayesian 
network, and then domain knowledge is “fitted” to that network. Generally, the restrictions are chosen 
in such a way that can maximize several aspects of efficiency of that network (e.g., the evaluation 
time). In the third category, the system applies a number of techniques in machine learning to “learn” 
from available data (e.g., from data about interactions between the student and the system), so as to 
adjust the structure and/or the CPTs of the Bayesian network on the fly. 

There is a significant difference between the approach we used to build our Bayesian network and 
the previous approaches: we use dynamic Bayesian networks (Russell & Norvig, 2009; Ghahramani, 
1998) to model the temporal dimension explicitly and systematically. Indeed, all of the evolution vari-
ables, the correction variables, and the control variables in our Bayesian network are created in such a 
manner that models the learner’s cognitive behavior and state by considering his or her sequence of 
actions and productions deliberately. In the future, we shall apply techniques in the previous ap-
proaches to make our network more efficient and effective in terms of diagnosis, for example, to con-
sider “cognitive” relationships among control nodes, to use machine-learning techniques to improve 
CPTs.  
 
 
CONCLUSIONS 
 
Our main affirmation in this paper is that an appropriate use of dynamic Bayesian networks for model-
ing the temporal dimension together with fine-grained didactic analysis could be an effective way for 
student modeling and diagnosis, especially modeling the learner’s cognitive behavior in complex do-
mains such as orthopedic surgery. On the one hand, in those domains pragmatic knowledge plays an 
important role, particularly in better understanding the learner’s cognitive behavior during a problem-
solving process. Such knowledge, however, is not completely reported in standard instructional mate-
rials such as textbooks, and it is not easy to reveal it from practitioners. Therefore, we argue for a fine-
grained didactic analysis to understand the nature of knowledge being taught in problem solving as 
completely as possible. Indeed, this paper has showed that the didactic analysis is useful in implement-
ing a robust domain knowledge component for student diagnosis. On the other hand, dynamic Baye-
sian networks provide significant help in modeling the temporal dimension as completely as possible. 
It is also not difficult to integrate IF-THEN rules, which represent part of domain expertise, into tem-



 

poral Bayesian networks. We believe that modeling both the student’s knowing state and his or her 
cognitive behavior over time may help the system provide him or her with more relevant and fine-
grained feedback, and consequently improve the student’s learning outcomes. 

In the future, we shall carry out empirical studies by using both quantitative and qualitative meth-
ods in order to know the full extent of the impact of our diagnosis component as well as of our learn-
ing environment on the student’s learning (Rieber, 2005). For example, we shall compare diagnosis 
results of the system with those of expert teachers for a number of real students’ problem-solving ses-
sions (Webber, 2004). We may also use thinking-aloud methods (Leplat, 2000; Lewis, 1982) to com-
pare the system’s diagnosis results with what the learners speak aloud. 

We shall also look further into the following three directions: (1) a method for the development 
of an easy-to-use authoring tool to help educational researchers in didactic engineering and reengi-
neering, regarding our framework; (2) a method for automating the construction of IF-THEN rules and 
of the temporal Bayesian network from the results of the didactic analysis; and (3) the possibility to 
reuse our approach for other domains such as mathematics teacher education in which we are inter-
ested because recent studies in mathematics teaching have also indicated the importance of tacit 
knowledge (e.g., knowledge of student and content, knowledge of content and teaching, specialized 
content knowledge, see Ball, Thames, & Phelps, 2008) in the practice of teaching mathematics. 
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