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Abstract—This work studies the problem of tracking signal-emitting mobile targets using navigated mobile sensors based on signal

reception. Since the mobile target’s maneuver is unknown, the mobile sensor controller utilizes the measurement collected by a

wireless sensor network in terms of the mobile target signal’s time of arrival (TOA). The mobile sensor controller acquires the TOA

measurement information from both the mobile target and the mobile sensor for estimating their locations before directing the mobile

sensor’s movement to follow the target. We propose a min-max approximation approach to estimate the location for tracking which can

be efficiently solved via semidefinite programming (SDP) relaxation, and apply a cubic function for mobile sensor navigation. We

estimate the location of the mobile sensor and target jointly to improve the tracking accuracy. To further improve the system

performance, we propose a weighted tracking algorithm by using the measurement information more efficiently. Our results

demonstrate that the proposed algorithm provides good tracking performance and can quickly direct the mobile sensor to follow the

mobile target.

Index Terms—Mobile sensor navigation, weighted tracking, TOA

Ç

1 INTRODUCTION

IN recent years, wireless sensor networks have found
rapidly growing applications in areas such as automated

data collection, surveillance, and environmental monitor-
ing. One important use of sensor networks is the tracking of
a mobile target (point source) by the network [1]. Mobile
target tracking has a number of practical applications,
including robotic navigation, search-rescue, wildlife mon-
itoring, and autonomous surveillance. Typically, target
tracking involves two steps. First, it needs to estimate or
predict target positions from noisy sensor data measure-
ments. Second, it needs to control mobile sensor tracker to
follow or capture the moving target. In this paper, we study
the problem of mobile target positioning in a sensor
network that consists of stationary sensors and a mobile
sensor. The goal is to estimate the target position and to
control the mobile sensor for tracking the moving target.

1.1 Brief Literature Review

The challenge of target tracking and mobile sensor naviga-
tion arises when a mobile target does not follow a
predictable path. Successful solutions require a real-time
location estimation algorithm and an effective navigation
control method. Target tracking can be viewed as a
sequential location estimation problem. Typically, the target
is a signal emitter whose transmissions are received by

a number of distributed sensors for location estimation.
There exist a number target localization approaches-based
various measurement models such as received signal
strength (RSS), time of arrival (TOA), time difference of
arrival (TDOA), signal angle of arrival (AOA), and their
combinations [2], [3]. For target tracking, Kalman filter was
proposed in [4], where a geometric-assisted predictive
location tracking algorithm can be effective even without
sufficient signal sources. Li et al. [5] investigated the use of
extended Kalman filter in TOA measurement model for
target tracking. Particle filtering has also been applied with
RSS measurement model under correlated noise to achieve
high accuracy [6].

In addition to the use of stationary sensors, several
other works focused on mobility management and control
of sensors for better target tracking and location estima-
tion. Zou and Chakrabarty [7] studied a distributed
mobility management scheme for target tracking, where
sensor node movement decisions were made by consider-
ing the tradeoff among target tracking quality improve-
ment, energy consumption, loss of connectivity, and
coverage. Rao and Kesidis [8] further considered the cost
of node communications and movement as part of the
performance tradeoff.

To enable target tracking by a mobile sensor with a prior
knowledge on target motion, [9], [10] presented a propor-
tional navigation strategy and several variants. In [11], a
continuous nonlinear periodically time-varying algorithm
was proposed for adaptively estimating target positions
and for navigating the mobile sensor in a trajectory that
encircles the target. Belkhouchet et al. [12] modeled the
robot and the target kinematics equations in polar coordi-
nates, and proposed a navigation strategy that attempts to
position the robot in between a reference point and the
target so as to successfully follow the target. Using the
similar set of nonlinear kinematics equations, Vargas et al.
[13] proposed a cubic navigation function, which is both

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 1, JANUARY 2013 177

. E. Xu is with Broadcom Corporation, Sunnyvale, CA.
E-mail: eyxu@ece.ucdavis.edu.

. Z. Ding is with the Department of Electrical and Computer Engineering,
University of California, Davis, 2064 Kemper Hall, 1 Shields Avenue,
Davis, CA 95616. E-mail: zding@ece.ucdavis.edu.

. S. Dasgupta is with the 5322 Seamans Center for the Engineering Arts and
Sciences, University of Iowa, Iowa City, IA 52242.
E-mail: dasgupta@engineering.uiowa.edu.

Manuscript received 8 Aug. 2011; revised 4 Nov. 2011; accepted 18 Nov.
2011; published online 8 Dec. 2011.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2011-08-0444.
Digital Object Identifier no. 10.1109/TMC.2011.262.

1536-1233/13/$31.00 � 2013 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS



simple and effective. In our work, we adopt this simple
navigation function.

1.2 New Contributions

In this work, we consider the joint problem of mobile sensor
navigation and mobile target tracking based on a TOA
measurement model. Our chief contributions include a more
general TOA measurement model that accounts for the
measurement noise due to multipath propagation and
sensing error. Based on the model, we propose a min-max
approximation approach to estimate the location for tracking
that can be efficiently and effectively solved by means of
semidefinite programming (SDP) relaxation. We apply the
cubic function for navigating the movements of mobile
sensors. In addition, we also investigate the simultaneous
localization of the mobile sensor and the target to improve
the tracking accuracy. We present a weighted tracking
algorithm in order to exploit the measurement information
more efficiently. The numerical result shows that the
proposed tracking approach works well.

There are several important reasons for us to utilize the
TOA measurement model. First, TOA measurements are
easy to acquire, as each sensor only needs to identify a
special signal feature such as a known signal preamble to
record its arrival time. Second, our particular use of TOA is
a more practical model because we do not need the sensors
to know the transmission start time of the signal a priori. As
a result, our TOA model enables us to directly estimate the
source location by processing the TOA measurement data.
Furthermore, Xu et al. [14] have shown that direct TOA
localization offers some performance gain over TDOA
localization. Since the mobile sensor navigation control
depends on the estimated location results, more accurate
localization algorithm from TOA measurements leads to
better navigation control.

The rest of the paper is organized as follows. In Section 2,
we describe the tracking and navigation problem that
involves the localization of a mobile target and the control
of a mobile sensor. In Section 3, we discuss the cubic
navigation law for tracking of the target. We present the
weighted tracking approach in Section 4 and analyze the
posterior Cramer-Rao bound in Section 5. Our numerical
results are shown in Section 6 before concluding in Section 7.

2 PROBLEM STATEMENT

We consider a sensor network of N anchored nodes at the
positions denoted by a set of m-dimensional vectors
x1; . . . ;xN (with m ¼ 2 or 3 for 2D or 3D space, respec-
tively). A moving target travels nearby, whose maneuver is
not known in advance. However, the moving target is a
signal emitter whose signal transmission is measured by the
N anchor sensor nodes. A mobile sensor also emits signals
to allow sensors to collect information necessary to
determine its location. The mobile sensor, at the same time,
can also measure signal from the target. In the data fusion
center, a mobile sensor controller directs the mobile sensor
to reach and follow the target based on multiple sensor
measurements.

To track a moving target with a mobile sensor, the data
fusion center must estimate the locations of both the target

(located at yj) and the mobile sensor (located at zj) at time
instant Tj. This paper considers the scenario that each anchor
sensor node records and sends, to the data fusion sensor, its
TOA measurement of target signal and mobile sensor signal.
In other words, the mobile sensor controller receives the
TOA measurements regularly from the anchor sensors to
estimate the target and mobile sensor locations and to direct
the movement of the mobile sensor for target tracking.

In wireless environment, signals from transmitters to
their receivers may undergo both line-of-sight (LOS) and
nonline-of-sight (NLOS) propagations. We illustrate a
typical scenario that involves multipath channels consisting
of both LOS and NLOS propagations in Fig. 1. There are
two kinds of measurement noises, noise due to multipath
signal propagation and noise due to limited sensing
precision of each sensor [3]. Because of the generally
complex multipath effects, noise from multipath propaga-
tion in the estimated signal time of arrival is approximately
proportional to the actual signal propagation time, and the
observed signal propagation time should be no less than the
LOS propagation. In other words, the multipath propaga-
tion noise is typically nonnegative. This is consistent with
the noise model of the distance measurement in [15]. As a
result, the TOA measurement at the sensor closer to the
target will suffer less from the multipath propagation noise.
In addition, noise from sensing error is not related to the
distance between the target and the sensor, and is i.i.d.
among all the sensors. Moreover, it can be many times
weaker than the noise from multipath propagation accord-
ing to [3].

Therefore, we model the time of arrival measurements at
the anchor node xi at time instant Tj for the signal from the
target and the mobile sensor, respectively, as

tji ¼
1

c
kxi � yjk þ tj0 þ

1

c
kxi � yjknji þ �j; ð1Þ

�ji ¼
1

c
kxi � zjk þ �j0 þ

1

c
kxi � zjk�ji þ �j: ð2Þ

Here, c is the signal traveling speed, tj0, �j0 are, respec-
tively, the time instants that the target and the mobile
sensor transmitted their signals. Furthermore, note that
1
c kxi � yjknji; 1

c kxi � zjk�ji with nji � 0; �ji � 0 are multi-
path propagation noise, whereas �j and �j are noise from
sensing error.

Moreover, we have the time of arrival measurement at
the mobile sensor at time instant Tj for the signal from the
target as
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Fig. 1. Illustration of the signal transmission path from the transmitter to
the receiver.



’j ¼
1

c
kyj � zjk þ tj0 þ

1

c
kyj � zjk�j þ �j; ð3Þ

where 1
c kyj � zjk�j with �j � 0 represents the multipath

propagation noise, and �j is the noise due to sensing error.

After the data fusion center receives the measurement
data, it estimates the target location yj and the mobile
sensor location zj. Based on estimated locations, the
controller directs the mobile sensor to approach and follow
the target by applying its navigation law. At each time
instant, the mobile sensor can adjust its moving speed and
direction according to the control signal from the controller.

In short, the mobile sensor navigation and tracking
process consists of two steps: mobile sensor movement
control and tracking. Thus, we will discuss these two steps
in the next two sections.

3 MOBILE SENSOR NAVIGATION STRATEGY

A navigator in this case aims to control the mobile sensor to
get close to the moving target from any initial position.
Since the target maneuvers are not known a priori to the
controller, solving the problem requires a real-time strategy.

In Fig. 2, we illustrate the geometric model of the

navigation problem in a 2D space. At time instant Tj, the

mobile sensor is positioned at zj ¼ ½zj1 zj2�T with a velocity

�j and angle 	j to the positive horizontal axis, and the target

locates at yj ¼ ½yj1 yj2�T with a velocity 
j and angle �j to

the positive horizontal axis. The radial line that connects the

mobile sensor and the target is denoted by rj, with angle �j
to the positive horizontal axis.

In polar coordinates, the mobile sensor and target move
according to the following kinematics:

_zj1 ¼ �j cos	j; _zj2 ¼ �j sin	j; ð4Þ

_yj1 ¼ 
j cos �j; _yj2 ¼ 
j sin �j; ð5Þ

respectively. Since tan�j ¼ yj2�zj2
yj1�zj1 , the decomposition of the

relative velocity gives the following relative kinematics

equations between the mobile sensor and the target [12]

_rj ¼ 
j cosð�j � �jÞ � �j cosð	j � �jÞ; ð6Þ

rj _�j ¼ 
j sinð�j � �jÞ � �j sinð	j � �jÞ: ð7Þ

If _rj < 0, then the distance between the mobile sensor
and the target is decreasing, i.e., the mobile sensor is
approaching the target. In [13], a cubic navigation strategy
has been proposed, where

	j ¼ �j þK�3
j : ð8Þ

Assuming �j > 
j, it has been proven that under this cubic

law, the corresponding _rj < 0, and the mobile sensor will

reach the target successfully. Because of the simplicity of

this navigation law, we will apply this strategy in our work.

Alternatively, we may be interested in keeping the

mobile sensor at a given distance away from the target for

surveillance purpose without being discovered. In such

applications, we need to set _rj ¼ 0. Combining (6) and (8),

we have


j cosð�j � �jÞ ¼ �j cosðK�3
j Þ; ð9Þ

which gives the mobile sensor speed as

�j ¼

j cosð�j � �jÞ

cosðK�3
j Þ

: ð10Þ

4 TRACKING ALGORITHM

4.1 Target Localization

The first step of tracking is to estimate positions of both

target and mobile sensor. Since the measurement in the

form of TOA information collected at the data fusion center

is the same for both the target and the mobile sensor, we,

therefore, focus our discussion on how to estimate the

location vector yj of the target at a given time instant Tj.
We can modify the TOA model by rewriting (1) into

tji � tj0 ¼
1

c
kxi � yjk þ

1

c
kxi � yjknji þ �j: ð11Þ

Squaring both sides, we get

ðtji � tj0Þ2 �
1

c2
kxi � yjk2

¼ 1

c
kxi � yjknji þ �j

� �
1

c
kxi � yjkð2þ njiÞ þ �j

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

!ji

; ð12Þ

for i ¼ 1; . . . ; N .

The right-hand side of (12) is a noise term !ji that is

independent for different indices i. If nij and �j are zero,

then the right-hand side of (12) would be zero. Therefore,

one way to estimate the optimum yj without assuming any

particular characteristics on !ji is to minimize the ‘1 norm

of !ji. This approach makes no assumption on the noise

distribution or on the noise dependency. It simply tries to

minimize the peak error. Therefore, its performance is

expected to be less sensitive to the noise distribution or

correlation. Thus, we propose to adopt the min-max

criterion for location estimation via

ŷj ¼ arg min
yj

max
i¼1;...;N

ðtji � tj0Þ2 �
1

c2
kxi � yjk2

����
����: ð13Þ

The min-max formulation (13) is nonconvex, but is quite
amenable to semidefinite relaxations as shown below. We
first introduce two auxiliary variables yjs ¼ yTj yj and tjs ¼
tj0 � tj0, and define the following function:
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Fig. 2. Illustration of the navigation problem.



 ðtjs; tji; tj0; yjs;xi;yjÞ

¼ tjs � 2t2ji þ t2ji �
1

c2

�
yjs � 2xTi yj þ xTi xi

�
:

ð14Þ

Then, (13) can be rewritten as

ŷj ¼ arg min
y; yjs; tj0; tjs

max
i¼1;...;N

j ðtjs; tji; tj0; yjs;xi;yjÞj; ð15Þ

which is a convex function of yj, yjs, tj0, and tjs.
However, the two equalities yjs ¼ yTj yj and tjs ¼ tj0 � tj0

are not affine. In order to make the whole formulation
convex, we relax the two equalities yjs ¼ yTj yj and tjs ¼
tj0 � tj0 to inequalities yjs � yTj yj and tjs � tj0 � tj0, respec-
tively. These inequalities can also be expressed in linear
matrix inequalities, i.e.,

I yj
yTj ys

� 	
� 0;

1 tj0
tj0 tjs

� 	
� 0: ð16Þ

In addition, based on the location estimate at time instant
Tj�1, we can obtain an approximate location vector for the
target at time instant Tj. Let �Tj ¼ Tj � Tj�1 and 
j�1 be the
estimated velocity vector of the target at time instant Tj�1.
Then the location change can be approximated as
�yj ¼ yj � yj�1 � �Tj
j�1. This can be used as additional
constraints for the target location estimation at time instant
Tj. Considering in 2D, the location change vector �yj is
restricted to a box, then the corresponding yj will also be
constrained to a box, i.e.,

yjl � yj1 � yjr; yjd � yj2 � yju: ð17Þ

Define aj ¼ ½yjl yjd�T , bj ¼ ½yjr yju�T , and yjs ¼ yTj yj. We can
apply the Reformulation-Linearization-Technique (RLT)
[16] to (17) in order to obtain some extra constraints. In
fact, based on RLT, (17) can be relaxed as

aTj aj � aTj yj � aTj yj þ yjs � 0;

bTj bj � bTj yj � bTj yj þ yjs � 0;

�aTj bj þ aTj yj þ bTj yj � yjs � 0;

ð18Þ

which can be rewritten in the following matrix form

kajk2 �2aTj 1

kbjk2 �2bTj 1

�aTj bj aTj þ bTj �1

2
64

3
75 1

yj
yjs

2
4

3
5 � 0: ð19Þ

Here “� 0”’ denotes that each element in the vector is
nonnegative.

Combining the above constraints, we obtain the follow-
ing SDP optimization formulation:

min
yj;yjs;tj0;tjs

j

s:t: �j <  ðtjs; tji; tj0; yjs;xi;yjÞ < j;

I yj

yTj yjs

" #
� 0;

1 tj0

tj0 tjs

� 	
� 0;

kajk2 �2aTj 1

kbjk2 �2bTj 1

�aTj bj aTj þ bTj �1

2
664

3
775

1

yj

yjs

2
64

3
75 � 0:

ð20Þ

The SDP problem of (20) can be solved using some common

tools such as SeDuMi [17].

4.2 Mobile Sensor Localization

Similar to estimating the location of the target, we can

reformulate the mobile sensor localization problem into an

SDP relaxation problem. More specifically, we can estimate

the mobile sensor location zj via the similar formulation

based on the TOA measurements at the anchor nodes from

the signal received from the mobile sensor (2).

Define zjs ¼ zTj zj and �js ¼ �j0 � �j0. Similarly, based on

the input velocity vector �j�1 of the mobile sensor from the

controller at time instant Tj�1, we can approximate the

location change of the mobile sensor as �zj ¼ zj � zj�1 �
�Tj�j�1. Then the corresponding zj will also be con-

strained to a box, i.e.,

zjl � zj1 � zjr; zjd � zj2 � zju: ð21Þ

Let dj ¼ ½zjl zjd�T and ej ¼ ½zjr zju�T . By applying the similar

relaxations, we obtain the following SDP formulation:

min
zj;zjs;�j0;�js

j

s:t: �j <  ð�js; �ji; �j0; zjs;xi; zjÞ < j;

I zj

zTj zjs

" #
� 0;

1 �j0

�j0 �jsa

� 	
� 0;

kdjk2 �2eTj 1

kejk2 �2eTj 1

�dTj ej dTj þ eTj �1

2
664

3
775

1

zj

zjs

2
64

3
75 � 0:

ð22Þ

4.3 Joint Target and Mobile Sensor Localization

Note, however, that the mobile sensor also receives target

signal information and can obtain an additional measure-

ment of TOA from the target to the mobile sensor in (3).

This TOA information provides a connection between the

target and the mobile sensor locations. If zj is known in (3),

we can treat the mobile sensor as another anchor node,

and add one more inequality in (20). This additional

information can be obtained by solving (22) first and then

using the output zj in (3). However, since we are not able

to obtain the accurate zj, this will induce error propaga-

tion. Therefore, we propose to solve both yj and zj
simultaneously in order to better utilize the TOA measure-

ment information in (3).

To do so, we first need to introduce one more variable to

make the whole problem convex. Let qj ¼ yTj zj, then

kyj � zjk2 ¼ yjs � 2qj þ zjs. And we have the following

constraint:

� 1

2
ðyjs þ zjsÞ � qj �

1

2
ðyjs þ zjsÞ: ð23Þ

By combining the above formulation and constraints, we

arrive at the following joint optimization formulation:
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min
yj;yjs;tj0;tjs;zj;zjs;�j0;�js;qj

j

s:t: �j <  ðtjs; tji; tj0; yjs;xi;yjÞ < j;

�j <  ð�js; �ji; �j0; zjs;xi; zjÞ < j;

�j < tjs � 2’jtj0 þ ’2
j �

1

c2
ðyjs � 2qj þ zjsÞ < j;

I yj

yTj yjs

" #
� 0;

1 tj0

tj0 tjs

� 	
� 0;

kajk2 �2aTj 1

kbjk2 �2bTj 1

�aTj bj aTj þ bTj �1

2
664

3
775

1

yj

ys

2
64

3
75 � 0;

� 1

2
ðyjs þ zjsÞ � qj �

1

2
ðyjs þ zjsÞ;

I zj

zTj zjs

" #
� 0;

1 �j0

�j0 �js

� 	
� 0;

kdjk2 �2eTj 1

kejk2 �2eTj 1

�dTj ej eTj þ eTj �1

2
664

3
775

1

zj

zjs

2
64

3
75 � 0:

ð24Þ

Using SeDuMi [17], we can simultaneously obtain estimates

for the target and the mobile sensor locations.
More generally, multiple mobile sensors can be deployed

and multiple TOA measurements can be utilized. Expand-

ing the single mobile sensor formulation of (24), we have

multiple zj’s to estimate. Without having to present the

formulation in detail, we can see that it is straightforward to

generalize the formation (24) to include multiple measure-

ments of multiple mobile sensors.

4.4 Conditions for Localization

We note that source localization is not unconditional and

depends on the sensor geometry. As shown in [18], in 2D

spaces, if all the anchored sensor nodes lie on a single line,

i.e., they are collinear, then the problem of source location

becomes ill-conditioned and the result surfers from an

ambiguity. In fact, there can be multiple location candidates

when no additional information is provided beyond the

TOA measurements. Naturally, during the course of target

tracking, we may occasionally encounter such collinear

scenarios. However, since we have other a priori informa-

tion about the location of the target (17) from the previous

time instant(s) as well as from its mobile velocity, these

prior knowledges enable us to resolve the location

ambiguity caused by the collinear sensors. Indeed, we

actually combine such priori information in our formula-

tion (24). Therefore, the ambiguity can be resolved in our

solution (24).

5 WEIGHTED TRACKING ERROR AND ITERATIVE

TRACKING

For the particular TOA model of (11), because the noise due

to multipath propagation is often much greater than the

noise due to sensing error [3], the dominant noise term of

!ji in (12) is 2
c2 kxi � yjk2nji after we neglect the smaller

noise from sensing error and second order noise terms. By

focusing on the dominant noise term, we can rewrite
equality of (12) as

c2

2kxi � yjk2
ðtji � tj0Þ2 �

1

c2
kxi � yjk2

� �
¼ nji: ð25Þ

Thus, the right-hand side of (25) is only related to the noise
factor nij for all the anchor sensors.

Observe that, in the TOA model (1)-(3), the noise from
multipath propagation is proportional to the propagation
time. As a result, the TOA measurement of shorter
propagation time is less noisy and should be more
dependable. In addition, the right side of (12) is expected
to be lower if the measurement 1

c kxi � yjk is smaller. For
this reason, it is more sensible to place more emphasis on
those TOA measurements of higher confidence. Similar
ideas have been explored for localization algorithms in [15]
and [19]. Since we have mobile sensors moving towards the
target, measurements collected by mobile sensors are more
reliable than other sensing nodes. We, therefore, advocate a
weighted tracking error to improve target tracking perfor-
mance. Thus, we can add a weighting factor to the min-max
criterion (13) to estimate the target location via

ŷj ¼ arg min
yj

max
i¼1;...;N

�ji ðtji � tj0Þ2 �
1

c2
kxi � yjk2

����
����; ð26Þ

where �ji is the weighting factor.
Using the similar semidefinite relaxation technique we

discussed in Section 3, we obtain the following SDP
formulation for weighted tracking:

min
yj;yjs;tj0;tjs;zj;zjs;�j0;�js;qj

j

s:t: �j < �
ð1Þ
ji �  ðtjs; tji; tj0; yjs;xi;yjÞ < j;

� j < �
ð2Þ
ji �  ð�js; �ji; �j0; zjs;xi; zjÞ < j;

� j < �
ð3Þ
j tjs�2’jtj0 þ ’2

j �
1

c2
ðyjs � 2qj þ zjsÞ

� �
< j;

I yj

yTj yjs

" #
� 0;

1 tj0

tj0 tjs

� 	
� 0;

kajk2 �2aTj 1

kbjk2 �2bTj 1

�aTj bj aTj þ bTj �1

2
664

3
775

1

yj

ys

2
64

3
75 � 0;

� 1

2
ðyjs þ zjsÞ � qj �

1

2
ðyjs þ zjsÞ;

I zj

zTj zjs

" #
� 0;

1 �j0

�j0 �js

� 	
� 0;

kdjk2 �2dTj 1

kejk2 �2eTj 1

�dTj ej dTj þ eTj �1

2
664

3
775

1

zj

zjs

2
64

3
75 � 0;

ð27Þ

where �
ð1Þ
ji , �

ð2Þ
ji , and �

ð3Þ
j are weighting factors. We note

again that it is straightforward to generalize the formation

(27) to include multiple mobile sensors.
The remaining issue is the optimum choice of the

weighting factors in (27). Our way is to consider (25),
according to which the weighting factors can be set as
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�
ð1Þ
ji ¼

1

kxi � yjk2
;

�
ð2Þ
ji ¼

1

kxi � zjk2
;

�
ð3Þ
j ¼

1

kyj � zjk2
:

ð28Þ

Alternatively, we may consider a singe-side i.i.d. multipath

propagation noise from a truncated Gaussian distribution.

By neglecting the noise from sensing errors, the joint

conditional probability density function of the measure-

ment data in (1) follows equality

p tj1; tj2; . . . ; tjN jy; tj0
� �
¼
YN
i¼1

ffiffiffi
2
p

cffiffiffi
�
p

�pkxi � yjk
exp � c2

2�2
p

XN
i¼1

ðtji � 1
c kxi � yk � t0Þ2

kxi � yjk2

 !
;

ð29Þ

where �p is the variance of nij. We can see that the choices of

weighting factors (28) are consistent with the maximum

likelihood (ML) criteria.
Nevertheless, neither yj and zj is known a priori. As a

result, we can not find the optimum weighting factor in (28)

without first estimating the target and mobile sensor

locations. Thus, we propose an iterative approach by

estimating the target and sensor locations before determin-

ing the new weighting factors, which in turn, will be used to

estimate the target and mobile sensor locations in the next

iteration. To begin with, in the first iteration, we set the

default weighting factors all to unity, for obtaining initial

estimates of yj and zj. By performing iterative weighted

tracking, we can get a better performance.

6 THE POSTERIOR CRAMER-RAO BOUND

In this section, we derive the Cramer-Rao Bound for the

tracking process. Suppose that a target is moving in the area

according to a dynamic model:

Sjþ1 ¼ Gjþ1Sj þNj; ð30Þ

where Sj is the target state vector defined as Sj ¼
½yj1;yj2; _yj1; _yj2�T , Gj is the motion matrix, and Nj is the

process noise which can be approximately assumed to be

Gaussian with zero mean and covariance matrix Q.
Denote the total measurement sequence up to time instant

Tj as t1:j ¼ ½t1; t2; . . . ; tj�T , where tj ¼ ½tj1; tj2; . . . ; tjN �T , and

denote the continuous state sequence S1:j ¼ ½S1;S2; . . . ;Sj�T .

The optimal Bayesian solution to the problem cannot be

computed analytically since the measurement equation is

nonlinear. Let Ŝj be an unbiased estimator of the state

vector Sj, based on the set of measurements t1:j. Then, the

estimate covariance Wj is bounded by

Wj ¼ Ef½Ŝj � Sj�½Ŝj � Sj�Tg � F�1
j ; ð31Þ

where Fj is the posterior Fisher information matrix (FIM):

Fj ¼ Ef�rSjrT
Sj

log pðSj; tjÞg; ð32Þ

and rSj is the first-order partial derivative operator with
respect to Sj.

According to Tichavsky et al. [20], the Fisher information
matrix Fj can be recursively calculated as

Fjþ1 ¼ U22
j � U21

j ðFj þ U11
j Þ
�1U12

j ; ð33Þ

where

U11
j ¼ E

�
�rSjrT

Sj
log pðSjþ1=SjÞ

�
;

U12
j ¼


U21
j

�T ¼ E��rSjrT
Sjþ1

log pðSjþ1=SjÞ
�
;

U22
j ¼ E

�
�rSjþ1

rT
Sjþ1

log pðSjþ1=SjÞ
�
:

The recursive equation (33) can be initialized as

F0 ¼ E
�
�rS0

rT
S0

log pðS0Þ
�
: ð34Þ

Based on (30), we have

U11
j ¼ GT

jþ1Q
�1Gjþ1;

U12
j ¼


U21
j

�T ¼ �GT
jþ1Q

�1;

U22
j ¼ Q�1:

Using the above equations, we can numerically compute the
posterior Cramer-Rao Bound at different time instants.

7 NUMERICAL RESULTS

In this section, we provide examples to illustrate the

tracking performance of the proposed algorithm. For

tracking comparison, we include the performance of classic

TDOA algorithm [2] in combination with a Kalman filter

(labeled as “Kalman”) in our simulation examples. We

denote our proposed tracking performance with and with-

out weighting factors as “MMA,” “WMMA,” respectively.

In addition, the cubic navigation strategy is used for mobile

sensor navigation. For simplicity, we convert the noise in

(1)-(3) into to the distance domain in our examples.

Example 1. In this example, we place N ¼ 15 anchor sensor

nodes in an area ½�20; 20� 	 ½�20; 20� as shown in Fig. 3.

The target moves from ½�16; 1�T following a sinusoidal

trajectory while the mobile sensor initially sits at

½�16;�16�T with the navigation parameter K ¼ 2. The

multipath propagation noise and the sensing error noise

in (1), (2), and (3) are all Gaussian variables with variance

1=�2
p ¼ 16 dB, 1=�2

s ¼ 20 dB, respectively. The transmis-

sion start time t0; �0 are randomly chosen with normal

distribution of zero mean and variance of 4. For the

WMMA algorithm, we only need two iterations. We

illustrate the estimated target trajectories using both the

Kalman and our proposed algorithms. The resulting

navigation trajectories of the mobile sensor are also

shown in Fig. 3. Moreover, we provide the average RMSE

of the target location in Fig. 4. From these results, we can

see that the proposed MMA algorithm gives a more
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accurate trajectory estimate than the Kalman algorithm.

In addition, the WWMA algorithm improves over the

MMA algorithm, at the cost of one more iteration. We can

also find that the navigation based on the more accurate

target trajectory can reach the target faster.

To further compare the tracking algorithms, we compare

the average root mean squared error (RMSE) of the location

estimate as standard deviation of the multipath propagation

noise varies in Fig. 5, where the sensing error noise is set to

1=�2
s ¼ 20 dB. By processing the measurement data directly

and using the additional RLT constraints, we can see that

MMA and WMMA offer about 2 and 2.5 dB performance

gain over the Kalman algorithm, respectively. Hence,

navigation based on the estimated target trajectory from

MMA and WMMA algorithms should be better.

Example 2. In this example, we control the mobile sensor to

keep it at a constant distance r ¼ 4 away from the target.

We again place N ¼ 15 nodes in an area of ½�20; 20� 	
½�20; 20�. Here the multipath propagation noise and the

sensing error noise are all Gaussian distributed variables,
and are set to 1=�2

p ¼ 16 dB, 1=�2
s ¼ 20 dB, respectively.

The transmission start time t0; �0 are randomly chosen
with normal distribution of zero mean and variance of 4.
The trajectories of the target and the mobile sensor under
different algorithms are shown in Fig. 6. From the
results, we can see that the proposed tracking algorithms
work well with the navigation strategy and the mobile
sensor is able to keep a certain distance away from the
target much faster under the WMMA algorithm. This
example shows that our algorithm can be used in
surveillance applications such as battlefield.

Example 3. In this example, we reduce the number of
anchor sensor nodes but increase the number of mobile
sensors to test the difference in tracking performance.
All conditions are identical to those in Example 1 except
that we turn off six anchor nodes and add one more
mobile sensor. We show the estimated trajectories, the
RMSE of the target location, of different algorithms and
the posterior Cramer-Rao bound in Figs. 7 and 8,

XU ET AL.: TARGET TRACKING AND MOBILE SENSOR NAVIGATION IN WIRELESS SENSOR NETWORKS 183

Fig. 4. RMSE of target location and posterior Cramer-Rao bound.

Fig. 5. The average RMSE of the target trajectory estimation under
Kalman, MMA, and WMMA algorithm.

Fig. 6. Navigation to keep a constant distance under different trajectory
estimation algorithms.

Fig. 3. Comparison of the tracking under different trajectory estimation

algorithms.



respectively. From the numerical results, we can find
that although fewer anchor nodes are used than
Example 1, we can still obtain almost the same
performance by relying on one more mobile sensor
since the mobile sensor can provide more reliable
measurements and our weighted tracking algorithm
can utilize the measurements more effectively in the
scenario. In addition, we only use 3/5 of anchor nodes
compared with Example 1 by adding one mobile sensor,
thus we can save the commutation overhead between
the anchor nodes and the data fusion center.

Example 4. In this example, we test our proposed WMMA
tracking algorithms under different number of anchors
and mobile sensors. Unlike the previous examples, the
trajectory of the target is cubic. The multipath propaga-
tion noise and the sensing error noise in (1), (2), and (3)
are all Gaussian variables, with variance 1=�2

p ¼ 15 dB,
1=�2

s ¼ 20 dB, respectively. The transmission start time
t0; �0 are randomly chosen with normal distribution of
zero mean and variance of 4. We simulate two cases. In
the first case, we use one mobile sensor and all the

15 anchor sensors (Groups 1 and 2 in Fig. 9), and in the

second case we use two mobile sensors and part of the

anchor sensors (Group 1 in Fig. 9). The tracking

trajectories under these two cases are shown in Fig. 9.

It can be observed that our algorithm can provide good

tracking accuracy under the cubic trajectory in the two

cases, which demonstrates that the proposed WMMA

approach is robust to different trajectories. Once again,

with one additional mobile sensor, we can obtain good

performance with 2/5 of the anchor sensors off since the

WMMA algorithm can yield good tracking accuracy by

using the measurement information more efficiently.

Example 5. The previous examples are based on Gaussian

noise in the measurement model. To test the robustness

of our algorithm to different noise distributions, this

example considers uniformly distributed noise. We test

our proposed WMMA tracking algorithms with differ-

ent numbers of anchors and mobile sensors. We assume

that the target trajectory follows a semicircular path. We

let the multipath propagation noise and the sensing

error noise in (1), (2), and (3) all be uniformly

distributed variables, with variance 1=�2
p ¼ 15 dB,

1=�2
s ¼ 20 dB. We chose the unknown transmission start

time t0; �0 randomly with normal distribution of zero

mean and variance of 4. We also test two simulation

cases. In the first case, we use one mobile sensor and all

the 10 anchor sensors marked as Groups 1 and 2 in

Fig. 10. In the second test case, we use two mobile

sensors and part of the anchor sensors marked as Group

1 in Fig. 10. Our mobile sensors try to keep a constant

distance r ¼ 20 away from the target. In Fig. 10, we

provide the tracking trajectories of these two cases. From

these results, we can see a close tracking performance by

our proposed algorithms in both cases. Even when the

noise distributions vary, our proposed WMMA algo-

rithm continues to work well for different numbers of

anchor sensors and mobile sensors. This example

demonstrates the robustness of our algorithm to

different noise distributions and sensor configurations.
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Fig. 8. RMSE of target location and posterior Cramer-Rao bound.

Fig. 9. Comparison of the tracking under different number of mobile
sensors and cubic trajectory.

Fig. 7. Comparison of the tracking under different trajectory estimation
algorithms.



8 CONCLUSION

We study the problem of tracking a moving target using
navigated mobile sensors in wireless sensor networks. With
unknown target and mobile sensor locations, we need to
estimate the locations of the target and the mobile sensors
first. Based on a more general TOA measurement model,
convex optimization algorithms through SDP relaxation are
developed for localization. We provide a sequential algo-
rithm and a joint weighted localization algorithm before
controlling the mobile sensor movement to follow the
target. For the navigation of mobile sensors, the cubic law is
applied. Simulation results illustrate successful tracking
and navigation performance for the proposed algorithms
under different trajectories and noises.
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