
Run-time Monitoring and Real-time Visualization of Software Architectures

Ana Dragomir, Horst Lichter
RWTH Aachen University, Research Group Software Construction

Aachen, Germany
{adragomir, lichter}@rwth-aachen.de

Abstract — Software architecture stands at the backbone of
any software system. An up-to-date description of the
architecture greatly contributes to its understanding,
evaluation and evolution. Despite its importance, the
architecture is typically described only in the preliminary
development phases and later becomes subject of continuous
degradation. Therefore, methods and corresponding tool
support for reconstructing the current views of a system’s
architecture have been developed and proposed. Current state
of the art addresses the reconstruction of static and dynamic
views separately. The reconstruction is typically conducted
post-mortem using heavy weight infrastructures. We have
conceptually defined and built a light-weight run-time
monitoring infrastructure that produces meaningful real-time
visualizations of object-level interactions. We consider that the
possibility to observe the behavior of a system in real-time
positively impacts the documentation of the software
architecture, its understandability, communication and
traceability to usage scenarios. We have evaluated the
monitoring infrastructure on a software project in different
development stages. The evaluation has shown very promising
results. (Abstract)

Keywords- software architecture; real-time visualization;
run-time analysis;

I. INTRODUCTION AND MOTIVATION
The architecture of software systems directly influences

crucial quality attributes and therefore should be considered
whenever important decisions regarding their evolution must
be taken. However, even though the importance of software
architectures is widely acknowledged, complete and/or up-
to-date architecture descriptions rarely exist [1], [2], [3]. We
consider that a complete software architecture description
corresponds to the one presented in [1] and assumes the
existence of information regarding at least the static, the
dynamic and the deployment view of the system. We claim
that an architecture description is up to date if it adequately
reflects the described software system.

During the initial development phases, the software
systems might be conformant with their architecture
description. However, in later phases, the software systems
tend to evolve independently. The architecture description is
no longer updated and it soon tends to become useless for
supporting further architecture-based decisions. Due to time
and resource constraints, the effort required to proactively
document the necessary changes in the software architecture
description is perceived as being considerably higher than
the effort needed to simply accommodate the required
changes in the code. Conversely, once the changes have

been made to the code, their documentation is typically not
promoted at the architecture level, leading to a so-called
architectural drift or architectural erosion ([2], [4], [5], [6]).
However, to employ a reasonable, controlled evolution of the
software architecture, the architect must first have an up-to-
date description of it.

Our proposed concept for addressing these problems is
called ARAMIS (Architecture Analysis and Monitoring
Infrastructure) and has been presented in [7]. The goal of
ARAMIS is to sustain the architecture-centric evolution and
evaluation of software systems. ARAMIS offers a process-
oriented approach for the evolution and evaluation of
software systems that relies on a run-time monitoring
infrastructure to reconstruct the behavior of the system, on
more architecture abstraction levels.

The current paper presents the implementation results of
some of the central aspects of ARAMIS, focusing on the
reconstruction of object-level interactions only. We have
used aspect-oriented techniques to lightly instrument the
analyzed system and enable the extraction of architectural
information during its run-time. Furthermore, we have used
the Extensible Messaging and Presence Protocol (XMPP) , to
distribute run-time collected information about the behavior
of the monitored system to registered visualization
components in real-time.

The real-time visualization promises important
advantages: real-time, on-the-fly architecture
documentation and communication becomes possible.
Upon system testing one can immediately observe and
document the triggered behavior and evaluate if the
predetermined architecture rules have been respected.
Real-time visualization can also prove itself useful upon the
completion of a new feature: when the new feature is
demonstrated, the architect can immediately check if the
prescribed architecture rules have been violated by the
introduced changes. Furthermore, the possibility to link the
usage scenarios of the system with the actual behavior view
of the architecture can significantly improve the
traceability between a system’s requirements and its
implementation and architecture documentation. As a
consequence, the overall understandability,
communication and documentation of the system’s
architecture can be considerably improved.

We have evaluated our approach on a software system
implemented using Java Enterprise Technologies, in two
development phases: directly after its initial generation using
a code generator and on its final form, after all the needed
functionality has been manually added. Thus, we were able
to analyze how the architecture of the system evolved

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.60

396

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.60

396

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.60

396

between these two phases as well as the overall impact of our
monitoring and visualization methods.

The remainder of this paper is organized as follows: in
Section II we present our research goals. Section III
highlights the approach that we have developed. Section IV
discusses the evaluation of our results. Section V offers an
overview of related work and Section VI concludes the
paper.

II. GOALS
Considering the aforementioned problems, our main goal

is to sustain the systematic and meaningful evolution of
software architectures. The first step in evolving a system is
to understand it. The architect should thus be able to answer
the following questions: how does the intended architecture
description differ from the actual one? How are the various
building blocks (classes, methods, etc) interacting to deliver
a certain system functionality? Based on the answers to these
questions, the architect can specify how the architecture and
the system should be changed and what architectural rules
must be obeyed, to accommodate the new requirements.
Ideally, once the changes have been performed, the architect
should be able to easily check if the prescribed architecture
and its rules have been respected. To support the architects
we have developed an architecture monitoring and
visualization approach of object-level interactions pursuing
the following -goals:

• G1: Support the run-time monitoring of software
systems. The employed monitoring technique should
enable the extraction of run-time information, based
on which the system’s object-level interactions can
be reconstructed.

• G2: Support the real-time visualization of the
object-level interactions. By being able to visualize
the interactions in real-time, the architect will
constantly be able to analyze the current behavior of
the running system, as caused by given stimuli.

• G3: Develop a minimally intrusive technical
solution for run-time monitoring and real-time
visualization. We thus strive to achieve a high-
acceptance of the developed method. Avoiding the
direct instrumentation of the system’s source code
and any additional infrastructure-installation burdens
should positively contribute to this goal.

• G4: Develop an extendable solution that allows to
add new architecture visualizations if needed, in
order to address the information needs of all
interested stakeholders. Because the same
information can be visualized using different
visualization types (e.g. sequence diagrams,
communication diagrams, textual representations,
etc), different stakeholders can have different
preferences. Hence, we aim to offer support for the
straight-forward addition and configuration of new
visualization types.

III. PROPOSED APPROACH

A. Conceptual overview
In our previous work [7], we have presented ARAMIS, a

conceptual approach to monitor software systems on
different levels of abstraction. Its main components are
represented in Figure 1.

ARAMIS collects architectural information of a software
system during run-time (G1), via an Architectural
Information Bus (AIB) that further redirects the collected
information to a central Architectural Information Broker
(AIBR). Architectural Information Processors (AIP)
corresponding to the various abstraction levels register to the
AIBR, which consequently forwards them information
relevant for their analysis purposes. To visualize interactions
between building blocks, several Architecture Information
Viewers (AIV) implementing specific visualization types
(G3, G4) can be attached to a given AIP. Furthermore, if the
transfer of architectural information between the AIB, AIBR,
AIPs and AIVs occurs in real-time, then real-time
visualizations also become possible (G2).

In the following we present an implementation of
ARAMIS that offers a real-time visualization of the system’s
object-level interactions. The currently addressed conceptual
part of ARAMIS has been grayed out in Figure 1.

Figure 1. ARAMIS – Conceptual Overview ([7])

At first we present a technology case study that shortly
explores and motivates our choices regarding the
technologies used to implement ARAMIS. Then we
conclude with describing the actual implementation of the
run-time monitoring infrastructure together with the
real-time visualization.

B. Technology Case Study
Based on the conceptual overview of ARAMIS presented

in the previous sub-section, we have performed a case study
to explore which existing technologies can be employed for
its implementation. Our case study was based on the
following assumptions and constraints:

C1. The monitored systems are written in high-level,
object-oriented programming languages. More
precisely, we have limited our approach to Java and
J2EE systems.

397397397

C2. The analyzed systems should allow monitoring. The
employed monitoring technology should be as
easily-applicable, efficient and unobtrusive as
possible.

C3. The monitoring and visualization components should
base on technologies that allow the real-time data
transmission, reception and representation of the
collected information.

C4. The visualization component should be decoupled
from the rest of the monitoring infrastructure and
should base on standard software existing on
average computers.

A1. An up-to-date internet browser is available to
display the visualizations.

According to our case study, there are several options
available for monitoring the execution of Java and J2EE
systems (C1), all of them capable of retrieving information
based on which object-level interactions can be
reconstructed. To ensure the technology-independence of
the collected information, we have defined a simple JSON
schema to which all the object-level interaction descriptions
must adhere. The schema can be found at [27] but it is yet to
be adapted, as ARAMIS will evolve to support monitoring of
systems written in non-object oriented programming
languages. Table 1 contains an overview of 4 considered
techniques, with their advantages and disadvantages. Taking
into account the numerous advantages of aspect orientation
and its relatively few disadvantages and considering that
architecture monitoring can indeed be considered a cross-
cutting concern of any system, we have decided to choose
this technique (C2). Furthermore, the use of aspect
orientation also eliminates the source code tagging step
mentioned in our previous work [7]. However, when
analyses on higher abstraction levels will be included,
mappings of the class-level information to architectural units
will still be necessary.

For the real-time transmission of data we needed to take
into account that the visualization components should be
decoupled from the rest of the infrastructure and are not
necessarily Java-based. We have thus excluded from our
consideration Java-specific solutions, like e.g. the Java
Messaging Service [8], because their choice would have
limited us to employing just Java-based visualizations.
XMPP (Extensible Messaging and Presence Protocol) is a
mature and open standard XML-based communication
protocol for real-time communication [9]. Since its
introduction, XMPP has proved itself to be very efficient in
various real-time communication scenarios and has been
applied in numerous real-time collaboration, instant
messaging, light-weight middleware and content syndication
contexts [9] (C3). Also, XMPP APIs are available for most
modern programming languages (Java, C++, C#, JavaScript,
Python, etc), thus allowing real-time communication
between decoupled (C4) and heterogeneous systems.
Because XMPP is a relatively light-weight solution to
transfer data between communicating entities and it fulfils
our assumptions and constraints, we have decided to use it
for sending the data from the monitored systems to the
visualization components.

Regarding the representation of the monitored data (C3),
we have focused our search on libraries supporting the
creation of sequence diagrams, because this diagram type
intuitively depicts important information about the object
interactions: the order in which they interact, the called
methods’ name, their parameter types and values, caller and
callee objects. jsUML2 [10] is a third-party open-source
“light-weight HTML5/JavaScript library for UML2
diagramming”. Because jsUML2 offers a straight-forward
possibility to represent sequence diagrams directly in the
browser (A1), we have chosen jsUML2 to build our
visualization components.

Java/J2EE
Monitoring
Technique

Advantages Disadvantages

Run in
Debugging
Mode

• The architect can freely
choose where to start the
monitoring from

• The flow can be steered in
a very flexible fashion

• Easy to set up for trivial
systems

• Does not require any
modification of the
monitored system's source
code

• The architect might not
know where to set up
breakpoints

• The architect must
manually steer the
debugging process

• It is time-consuming
• It is complicated to set-up

for distributed systems
• Not suitable for

employing on production
systems

• There is no established
method, to automatically
document the debugging
traces

Insert
Log
Messages
in the Code

• The architect can freely
choose where the logs
should be inserted and
what they should contain.

• It is very easy to use

• The architect might not be
aware of where the
messages or logs should
be inserted

• It requires the direct
modification of the
monitored system's code

• The system must be
recompiled

Use
Run-time
Profiling

• It does not require the
modification of the
monitored system's source
code

• It provides filtering
techniques, to filter out
uninteresting information

• Profilers make use of
sampling techniques to
measure the performance
of the analyzed system,
determine bottlenecks,
etc. They are not
optimized for analyzing
traces.

• Profiling tools still have a
steep learning curve

Employ
Aspect
Orientation

• Does not require the direct
modification of the
monitored system's source
code. The introduced code
is isolated from the rest of
the system.

• Due to the availability of
sophisticated filtering
techniques, the architect
must not manually define
all the point- cuts

• Lean learning curve
• Good overall performance
• A vast majority of

programming languages
have AOP support (e.g.
Java, C, Cobol,
JavaScript, etc)

• Additional code needs to
be added (even if it is
isolated)

• Imposes recompilation of
the system

• AOP is not generally used
in the industry

Table 1. Monitoring Techniques ([11], [12], [13])

398398398

C. Technical Implementation
Given the results of our technology case study we have

decided to apply aspect-oriented programming and the
XMPP protocol to implement an instance of ARAMIS that
offers real-time visualizations of run-time object-level
interactions.

Our approach, as represented in Figure 2, consists of
three main steps that aim together to accomplish the major
goals formulated in the previous section:

• Step 1: instrumentation of the considered system(s)
• Step 2: real-time data transfer
• Step 3: real-time data visualization
In the first step the system to be monitored is

instrumented. This corresponds to building the AIB
(information bus that collects run-time data), as this will
enable to capture architectural information during run-time.
Technically, we have used the well-known AspectJ
framework [14]. The analyzed system was modified by just
adding a new package called “monitoring” which contains a
new aspect class, offering methods that should be called
“before” and “after” each method-call in the analyzed
system. Within the “before” and “after” aspect-methods, one
can easily access information regarding the caller and callee
of the intercepted methods, passed argument types and
values as well as possibly fired exceptions and/or returned
results. No other changes to the system’s source code are
necessary. Furthermore, by using build tools like Apache
Maven [15], one can determine via build plug-ins at the
configuration level whether the defined aspect should be
compiled or not, thus deciding on whether the system will be
monitored or not.

Figure 2. ARAMIS - Implementation Overview

The second step addresses the real-time data transfer of
the information collected through the instrumentation of the
system. This corresponds to building the AIBR (component
responsible with the distribution of the monitored data). To
sustain the transmission of the XMPP messages to the
visualization clients we have used a cross-platform, open-
source Openfire Xmpp Server ([16]), which is responsible to
establish the necessary connections and to real-time route the

data. As represented in Figure 3, in our scenario the
communication partners (XMPP clients) are the various
systems to be monitored (left side of Figure 3) and the
corresponding visualization components (right side of Figure
3). To receive monitoring data from some given monitored
system(s), the visualization component must be associated
with the monitored system(s) in the configuration of the
Openfire server.

Figure 3. Resulted XMPP Network

The third step addresses the visualization of the received
data. Our main goal was to depict the object interactions in
an intuitive fashion that preferably does not require the
installation of any specialized infrastructure. The jsUML2
library [10] identified in our previous case-study meets these
requirements, enabling the construction of sequence
diagrams in a web browser environment. However, the
XMPP-based architecture of our solution is very flexible and
allows to easily add other visualization methods at any time
(including during the monitoring itself).

The AIP (component responsible with processing the
transmitted messages) has been written in JavaScript and its
main responsibility is to receive the data transmitted over
XMPP, parse it and hand it in to a jsUML2 wrapper (written
by us), which keeps track of the currently defined lifelines
and checks how and where should the currently received
interaction description be placed in the overall diagram.
Then, the data is forwarded to the AIV (the visualization
component), in this case represented by the jsUML2 library,
which eventually displays it graphically in a sequence
diagram.

IV. EVALUATION
We have applied this implementation of ARAMIS in two

evolution phases of a J2EE based software system. The
purpose of the evaluation was to explore if our method is
useful to determine how a software system has evolved and
to check if the goals that we have stated in Section II have
been fulfilled.

 The evaluation scenario resembles a real-world situation,
in which a software system first adheres to a given software
architecture description and then it progressively degrades
and violates the previously established architecture rules.
The initial version of the system has been generated with an
EJB-code generator, based on a class-diagram depicting the
system’s business entities and their relations. Being

399399399

generated, it was ensured that the system has initially
adhered to a predefined architecture description. The
generated software system was the first version of a
prototype in the context of the MoSaIC PhD Project [17].
During the first phase of our evaluation we have applied
ARAMIS on this initial, generated version of the system and
documented its interactions. Since the code generator could
only generate the basic CRUD (create, retrieve, update,
delete) functionality of the system, later the core business
functions were implemented manually. This was done by a
master-thesis student whose task was to manually enhance
the generated system based on further requirements.
Previous to any development tasks, the architecture of the
developed software system as well as the architecture rules
that needed to be obeyed have been presented to the student.
Upon completion of the development, the resulting second
version of the system was analyzed again in the second
phase of our evaluation. By comparing the results obtained
during the first and the second phase, we were able to
identify how was the system evolved and whether or not the
predefined architecture rules have been violated.

The rest of this section is structured as follows:
Subsection A gives an overview of the overall evaluation
setup. It describes the general technical setup needed to
employ ARAMIS in the two mentioned evolution phases of
the considered software system. Subsection B gives an
overview of the first evaluation phase. First, the
architecture description of the generated software system is
shortly explained. Next, an overview of the sequence
diagrams retrieved by employing ARAMIS on the generated
system and their connection to the previously mentioned
architecture description is given. Subsection C approaches
the second evaluation phase. First, the architecture rules
that had to be respected during further development are
given. Lastly, a snippet of a sequence diagram retrieved by
employing ARAMIS on the final version of the system is
given and discussed. Subsection D analyses the achievement
of our goals, as previously described in Section II.

A. Evaluation Setup
We have performed our case study as depicted in Figure

4. The grey component represents the monitored EJB
system. Using a very basic web-based user interface, we
have called some of the most important methods published in
the system’s façade. The resulted interactions were
monitored at run-time, as the EJB system was previously
instrumented using aspect-orientation. The resulted
architectural information was then pushed to the Openfire
XMPP server, installed on a separate computer (Physical
Machine II). In turn, the XMPP server further pushed the
received information to a web-based HTML5/Ajax
application running on a web-browser from yet another
computer (Physical Machine III). This web-application
builds the resulted sequence diagrams in real-time, upon
receiving the architectural information from the Openfire
Server.

Figure 4.

ARAMIS Deployment Diagram

By using 3 different physical machines for our setup, we
wanted to demonstrate the low coupling of the various
components and the minimally intrusiveness of our
approach. The web-application that constructs the sequence-
diagram visualization only needs the address of the XMPP
Server it should connect to. The needed JavaScript libraries
required are downloaded during application load and this is
completely transparent for the end-user interested in the
visualization. Also, the XMPP server does not necessarily
need to be installed on the same computer as the one on
which the application server is residing. The monitoring code
merely needs the address to which the collected architectural
information needs to be sent.

B. First Evaluation Phase

Figure 5. Generated System’s Architecture ([18])

The architecture of the first generated version of the
monitored system consists of the business and the data layer
and is depicted in Figure 5. To sustain the explanation of the
architecture diagrams that we have recovered and that will be
presented in the next paragraphs, a short incurs in the
architectural details of the generated system is necessary:
The business layer functionality is accessible to the clients
through the façade, which is technically a local EJB interface
implemented by a stateless EJB bean. The façade delegates
the calls to corresponding controller components. The
controller components implement the actual business
functionality of the system. To access the business entities,
the controllers use data managers that are responsible to

400400400

retrieve the entities from the database via a JPA entity
manager. The used code generator generates a corresponding
controller and data manager component for each defined
entity which are aggregated together in the higher level
“Controllers” and “Data Managers” components, as shown
in Figure 5. As in the case of the façade, the controller and
data managers are accessible via local interfaces and
implemented by EJB stateless beans.

To demonstrate and document the adherence of the
generated system to the above mentioned architecture
description we have employed ARAMIS.

A snapshot of a generated sequence diagram depicting
the behavior of the system, upon calling the method
createReferenceModel(), which in this case creates a
new “Reference Model” object called “COBIT” is shown in
Figure 6. The represented interactions clearly correspond to
the architecture description given earlier.

The generated sequence diagrams are rather lengthy and
the visualization soon becomes cumbersome, even
considering the availability of both horizontal and vertical
scrollbars. However, despite these limitations, we consider
that the diagrams are very suitable for explaining and
clarifying the interactions of the system upon given stimuli.

C. Second Evaluation Phase
Based on the generated first version of the system the

missing business functions were implemented manually. The
following architecture rules should be obeyed:

• The system’s façade should only access controller
components

• Controllers should only access data-manager
components, entities and their factories. The
controllers should not directly access the Entity
Manager or the Application Façade components

• The entities should only contain mutator and
accessor methods

When calling the method createReference-
Model() on the final system again, we observed – by
manually comparing the new obtained sequence diagram
with the one obtained in the first phase – that while the
general sequence flow has mostly remained unchanged, a
new method determineUnqualifiedName() has been

called, as represented in Figure 7 in the grayed-out
rectangular zone. This clearly contradicts to the third rule
listed above.

Figure 7. Final System - Sequence Diagram Excerpt
The first two rules were not violated in any of the other

scenarios that we have monitored. While this cannot
guarantee that these rules have never been violated
throughout, it does confirm that the most important scenarios
are architecture-conformant.

D. Goals Achievement
The evaluation shows that our approach can be

successfully applied to demonstrate, exemplify and
understand the behavior of a monitored system. The architect
can simply demonstrate a user-story on the system and the
system’s interactions are immediately available for analysis.
Also, by comparing the behavior of the system during
various evolution phases, architecture violations can be
identified.

Related to the first stated goal in Section II (G1), we have
successfully employed aspect-oriented programming
techniques to enable the run-time monitoring of the
considered systems.

With respect to G2, ARAMIS can be applied to create
sequence diagrams depicting the behavior of the system at an
object-level. The XMPP protocol enables the real-time data
transfer and reception of the monitored information. The
visualization is also constructed dynamically, as soon as the
architectural information is received. However, the
constructed sequence diagrams soon become very extensive
and, as we have previously mentioned, work still needs to be
invested to also achieve meaningful visualizations on higher
levels of abstraction.

Furthermore, the developed XMPP-based infrastructure
permits to easily add new visualizations (G4). The
visualizations can be applied in parallel and can be added
and removed at any time, without requiring any restart or
redeployment of the XMPP server or of the monitored
system respectively. To demonstrate our approach, we have
integrated an HTML 5 library for UML2 diagramming that
displays the data using sequence diagrams format and a Java-
based chat client for displaying the data in a textual format.
Any other customization of the visualization is possible,
provided that it builds on top of XMPP-supporting
technologies (Java, JavaScript, Python, etc).

With respect to G3, this implementation of ARAMIS
does not impose the installation of any additional software or
infrastructure at the visualization sites. Furthermore, as
demonstrated in our evaluation setup, the XMPP server and

Figure 6. ARAMIS Sequence Diagram

401401401

the visualization software can reside on different physical
machines as the monitored system leading to a low coupled
infrastructure. Regarding the minimal intrusiveness with
respect to the source code of the monitored system, the
use of aspect-oriented techniques for extracting monitoring-
relevant data ensures that the impact on the source-code is
kept at a minimum. The aspect-weaving of the system can be
decided at configuration level and no additional source-code
modifications are necessary. However, given that the running
system is eventually instrumented, we have also performed a
small case study, to analyze the intrusiveness of ARAMIS
with respect to the response-time of the studied system.

To achieve this, we have used ten Arqullian test cases
developed in the context of the final system. We have run
these test cases in three phases:

• Phase 1: Before the instrumentation of the system
• Phase 2: After the instrumentation with aspect-

oriented techniques, which extract the required run-
time architectural information, but before employing
the sending of messages via XMPP.

• Phase 3: After the complete aspect- and XMPP-
based instrumentation, which enables the sending of
the information collected using aspect-oriented
techniques to XMPP clients that provide
visualization

The presented measures show that the overhead
introduced by the aspect- and XMPP-based instrumentation
is rather high, on average leading to execution times that are
approximately 50% longer. Furthermore, the results show
that the aspect-based instrumentation itself is comparatively
not as severe, worsening the execution time with only 9% on
average. Therefore, we can deduce that the biggest impact on
the execution time is caused by the XMPP-based
instrumentation.
 test-case #

 phase
tc
1

tc
2

tc
3

tc
4

tc
5

tc
6

tc
7

tc
8

tc
9

tc
10

average

Phase 1
(miliseconds)

9 24 214 59 103 131 23 200 172 137 107,18

Phase 2
(miliseconds)

10 24 223 65 114 167 25 209 173 144 115,4

Phase-2
 overhead

11% 3% 4% 10% 11% 27% 10% 4% 1% 5% 9%

Phase 3
(miliseconds)

13 32 322 81 162 232 37 278 264 211 163,14

Phase 3-
 overhead 42% 36% 50% 36% 57% 77% 62% 39% 54% 54% 51%

Figure 8. Performance Evaluation results
However, the introduced overhead of our approach does

not invalidate its applicability. For analyses purposes the
overhead is acceptable. Currently we apply ARAMIS in a
sandbox-like environment before a system is deployed in the
actual production environment.

In conclusion, our evaluation has shown that the goals
that we have set in Section II have been achieved to a great
extent by our implementation of ARAMIS.

V. RELATED WORK
The idea of extracting up-to-date software architecture

descriptions from the source code of software systems is not
new. The already existing approaches basically focus on the

extraction of either static or dynamic views of the
architecture. To the best of our knowledge, there is currently
no available approach that combines the extraction of
dynamic views with the real-time visualization of the
monitoring results.

Pioneer tools (e.g., DALI [4], Alborz [19], etc.) statically
analyzed the source code to recover static architecture views.
Human experts could then correct and/or refine the thus
obtained results according to their knowledge. In [20]
viewpoints are also applied post-mortem on the recovered
models, to produce desired architectural views. Other
approaches, such as SAVE [2] and Sotoarc [21], allow the
specification of models and rules against which architecture
conformance can be automatically checked. In [22] the
authors also discuss the necessity of developing appropriate
software architecture monitoring methods, but just as the
proposals mentioned previously, only the static view is
considered.

Based on priory specified naming conventions,
DiscoTect [23] analyses the system’s run-time traces to
extract architectural information (method calls, calling
objects, etc). The run-time monitoring is achieved via
logging. The logged messages are then also parsed according
to specified rules producing post-mortem dynamic views of
the analyzed system.

SoftArch [24] presents dynamic information based on
modified “copies of the recovered static views” of the
system. Dedicated behavior-related views (e.g., sequence
diagrams) are not offered.

Kieker [25] is “an extensible framework for monitoring
and analyzing the run-time behavior of concurrent and
distributed software systems” that also applies aspect-
oriented techniques to extract various visualizations (e.g.,
sequence diagrams, dynamic call trees, etc) of the dynamic
view of the studied system. Lastly, Kieker requires the
Graphviz visualization software, which needs to be
downloaded and installed by the users in order to construct
the visualizations, and is therefore not as light-weight as our
solution. Furthermore, Kieker does not support the real-time
visualization of the interactions and its main focus is to study
the performance of the analyzed systems, rather than
supporting visualizations on more abstraction levels and
checking architectural rules violations.

In [26] the authors present an architecture meta-model
for software-intensive systems. Architecture view-points are
also extracted based on the analysis of the system’s logs.
This approach also doesn’t support the real-time
visualization of architecture views and the monitoring is
based on logged information analysis unlike aspect-
orientation instrumentation, as in our case.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an infrastructure for the
real-time visualization of architectural information extracted
via run-time monitoring of Java and J2EE-based software
systems. Using aspect-oriented techniques, relevant run-time
information is extracted from the monitored system and then
sent via the XMPP communication protocol to registered
listeners that are responsible for constructing proper

402402402

visualizations. For demonstration purposes, we have
developed an HTML5-based visualization client that
constructs sequence-diagrams while receiving real-time
messages from the monitored system. We have evaluated our
work on an EJB-based system, which was initially generated
and then subsequently manually modified to include all the
required business functionality. Our evaluation has shown
that the developed ARAMIS infrastructure can easily be
used to demonstrate the behavior of the monitored system.
Also, analyses on the evolution of a certain behavior are
possible, including the identification of architecture rules’
violations.

In our future work we plan to construct visualizations on
more abstraction levels of the architecture (layers
interactions, components interactions, etc.). Furthermore,
methods for the automatic detection of architecture-
violations will be defined and employed and effort will be
invested in increasing the overall performance of the
monitoring infrastructure. Security-based concerns will also
be considered and extensively explored, in order to ensure
the method’s applicability on production systems Last but
not least, the proposed method and infrastructure will be
evaluated in more case studies, to further explore its
acceptance and feasibility.

REFERENCES
[1] R. Reussner, W. Hasselbring, “Handbook of Software Architecture”,

dpunkt.Verlag, 2009 (in German)
[2] M. Lindvall, D. Muthig, “Bridging the Software Architecture Gap”,

Proceedings of Journal of IEEE Computer, Volume 41, Issue 6, pp.
98-101, June, 2008

[3] C. Del Rosso, “Continuous evolution through software architecture
evaluation: a case study”, Proceedings of Journal of Software
Maintenance and Evolution: Research and Practice, Volume 18, Issue
5, Pages 351 – 383, 2006

[4] R. Kazman, S.J. Carrière, “Playing Detective: Reconstructing
Software Architecture from Available Evidence”, Proceedings of
Journal of Automated Software Engineering, Volume 6, Issue 2,
Pages 107 – 138, April 1999

[5] S. Ducasse, D. Pollet, “Software Architecture Reconstruction: A
Process-Oriented Taxonomy”, Proceedings of IEEE Transactions on
Software Engineering, Volume 35, Issue 4, Pages 573 – 591,
July/August 2009

[6] R. N. Taylor, N. Medvidovic, E. M. Dashofy, “Software Architecture:
Foundations, Theory, and Practice”, Wiley Publishing, 2009.

[7] A. Dragomir, H. Lichter, “Model-based Software Architecture
Evolution and Evaluation”, Proceedings of the 19th Asia-Pacific
Software Engineering Conference, Pages 697-700, Hong Kong,
China, 2012

[8] R. Monson-Haefel and D. Chappell, “Java Message Service”,
O'Reilly & Associates, Inc., Sebastopol, CA, USA, 2009

[9] The XMPP specification: http://xmpp.org/about-xmpp/
[10] The jsUML2 library website: http://code.google.com/p/jsuml2/
[11] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney,

“Evaluating the accuracy of Java profilers”, Proceedings of the ACM
SIGPLAN conference on Programming language design and
implementation, ACM, Pages 187-197, New York, USA, 2010.

[12] A. Rashid, T. Cottenier, P. Greenwood, R. Chitchyan, R. Meunier, R.
Coelho, M. Sudholt, W. Joosen, "Aspect-Oriented Software
Development in Practice: Tales from AOSD-Europe," Computer ,
vol.43, no.2, pp.19,26, Feb. 2010

[13] D. Darren, J. Albrecht, C. Killian, A. Vahdat, “Live Debugging of
Distributed Systems”, Proceedings of the 18th International
Conference on Compiler Construction: Held as a Part of the Joint
European Conferences on Theory and Practice of Software, Pages 94-
108, York, UK, March 2009

[14] The AspectJ official website http://www.eclipse.org/aspectj/
[15] The Apache Maven Project http://maven.apache.org/
[16] The Openfire Website:

http://www.igniterealtime.org/projects/openfire/
[17] S. Jeners, H. Lichter, A. Dragomir, “Towards an Integration of

Multiple Process Improvement Reference Models Based on
Automated Concept Extraction”, Proceedings of European System,
Software & Service Process Improvement & Innovation , Pages 205-
216, Vienna, Austria, June 2012

[18] The Gargoyle Code Generator: https://www2.swc.rwth-
aachen.de/?post_type=thesis&p=287

[19] K. Sartipi, “Alborz: A Query-based Tool for Software Architecture
Recovery”, the 9th International Workshop on Program
Comprehension, Pages 115 – 118, Toronto, Canada, May 2001

[20] A. Razavizadeh, H. Verjus, S. Cimpan, S. Ducasse, “Multiple
Viewpoints Architecture Extraction”, Proceedings of the 16th
Conference on Reverse Engineering, Pages 237-246, Lille, France,
October 2009

[21] Sotoarc – Basic Product Description, available at
http://www.hello2morrow.com/products/sotoarc

[22] G. Buchgeher, R. Weinreich, “Connecting architecture and
implementation”, Proceedings of OTM Workshops, Volume 5872 of
Lecture Notes in Computer Science, Pages 316 – 326, Vilamoura,
Portugal, November 2009

[23] B. Schmerl, J. Aldrich, D. Garlan, R. Kazman, H. Yan, “DiscoTect: A
System for Discovering the Architectures of Running Programs using
Colored Petri Nets”, Computer Science Technical Reports, Carnegie
Mellon University, Pittsburgh, USA, 2006

[24] J. Grundy, J. Hosking, “High-level Static and Dynamic Visualization
of Software Architectures”, Proceedings of IEEE Symposium on
Visual Languages, Pages 5-12, 2000

[25] A. van Hoorn, J. Waller, W. Hasselbring, “ Kieker: A Framework for
Application Performance Monitoring and Dynamic Software
Analysis”, Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering (ICPE 2012), Boston,
Massachusetts, USA, Pages 247 – 248, April 2012

[26] T.B.C. Arias, P. America, P. Avgeriou, “A top-down approach to
construct execution views of a large software-intensive system: An
experience report”, Proceedings of Journal of Science of Computer
Programming, Volume 76, Issue 12, Pages 1098 – 1112, December
2011

[27] A. Dragomir, JSON Schema for Interaction Descriptions, Software
Constrcution Group, 2013, https://www2.swc.rwth-
aachen.de/docs/ARAMIS/interactionSCHEMA

403403403

