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Abstract — Software architecture stands at the backbone of 
any software system. An up-to-date description of the 
architecture greatly contributes to its understanding, 
evaluation and evolution. Despite its importance, the 
architecture is typically described only in the preliminary 
development phases and later becomes subject of continuous 
degradation. Therefore, methods and corresponding tool 
support for reconstructing the current views of a system’s 
architecture have been developed and proposed. Current state 
of the art addresses the reconstruction of static and dynamic 
views separately. The reconstruction is typically conducted 
post-mortem using heavy weight infrastructures. We have 
conceptually defined and built a light-weight run-time 
monitoring infrastructure that produces meaningful real-time 
visualizations of object-level interactions. We consider that the 
possibility to observe the behavior of a system in real-time 
positively impacts the documentation of the software 
architecture, its understandability, communication and 
traceability to usage scenarios.  We have evaluated the 
monitoring infrastructure on a software project in different 
development stages. The evaluation has shown very promising 
results. (Abstract) 

Keywords- software architecture; real-time visualization; 
run-time analysis; 

I.  INTRODUCTION AND MOTIVATION 
The architecture of software systems directly influences 

crucial quality attributes and therefore should be considered 
whenever important decisions regarding their evolution must 
be taken. However, even though the importance of software 
architectures is widely acknowledged, complete and/or up-
to-date architecture descriptions rarely exist [1], [2], [3]. We 
consider that a complete software architecture description 
corresponds to the one presented in [1] and assumes the 
existence of information regarding at least the static, the 
dynamic and the deployment view of the system. We claim 
that an architecture description is up to date if it adequately 
reflects the described software system.  

During the initial development phases, the software 
systems might be conformant with their architecture 
description. However, in later phases, the software systems 
tend to evolve independently. The architecture description is 
no longer updated and it soon tends to become useless for 
supporting further architecture-based decisions.  Due to time 
and resource constraints, the effort required to proactively 
document the necessary changes in the software architecture 
description is perceived as being considerably higher than 
the effort needed to simply accommodate the required 
changes in the code.  Conversely, once the changes have 

been made to the code, their documentation is typically not 
promoted at the architecture level, leading to a so-called 
architectural drift or architectural erosion ([2], [4], [5], [6]). 
However, to employ a reasonable, controlled evolution of the 
software architecture, the architect must first have an up-to-
date description of it. 

Our proposed concept for addressing these problems is 
called ARAMIS (Architecture Analysis and Monitoring 
Infrastructure) and has been presented in [7]. The goal of 
ARAMIS is to sustain the architecture-centric evolution and 
evaluation of software systems. ARAMIS offers a process-
oriented approach for the evolution and evaluation of 
software systems that relies on a run-time monitoring 
infrastructure to reconstruct the behavior of the system, on 
more architecture abstraction levels.  

The current paper presents the implementation results of 
some of the central aspects of ARAMIS, focusing on the 
reconstruction of object-level interactions only. We have 
used aspect-oriented techniques to lightly instrument the 
analyzed system and enable the extraction of architectural 
information during its run-time.  Furthermore, we have used 
the Extensible Messaging and Presence Protocol (XMPP) , to 
distribute run-time collected information about the behavior 
of the monitored system to registered visualization 
components in real-time.  

The real-time visualization promises important 
advantages: real-time, on-the-fly architecture 
documentation and communication becomes possible. 
Upon system testing one can immediately observe and 
document the triggered behavior and evaluate if the 
predetermined architecture rules have been respected. 
Real-time visualization can also prove itself useful upon the 
completion of a new feature: when the new feature is 
demonstrated, the architect can immediately check if the 
prescribed architecture rules have been violated by the 
introduced changes. Furthermore, the possibility to link the 
usage scenarios of the system with the actual behavior view 
of the architecture can significantly improve the 
traceability between a system’s requirements and its 
implementation and architecture documentation. As a 
consequence, the overall understandability, 
communication and documentation of the system’s 
architecture can be considerably improved.  

We have evaluated our approach on a software system 
implemented using Java Enterprise Technologies, in two 
development phases: directly after its initial generation using 
a code generator and on its final form, after all the needed 
functionality has been manually added. Thus, we were able 
to analyze how the architecture of the system evolved 
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between these two phases as well as the overall impact of our 
monitoring and visualization methods. 

The remainder of this paper is organized as follows: in 
Section II we present our research goals. Section III 
highlights the approach that we have developed. Section IV 
discusses the evaluation of our results. Section V offers an 
overview of related work and Section VI concludes the 
paper. 

II. GOALS 
Considering the aforementioned problems, our main goal 

is to sustain the systematic and meaningful evolution of 
software architectures. The first step in evolving a system is 
to understand it. The architect should thus be able to answer 
the following questions: how does the intended architecture 
description differ from the actual one? How are the various 
building blocks (classes, methods, etc) interacting to deliver 
a certain system functionality? Based on the answers to these 
questions, the architect can specify how the architecture and 
the system should be changed and what architectural rules 
must be obeyed, to accommodate the new requirements. 
Ideally, once the changes have been performed, the architect 
should be able to easily check if the prescribed architecture 
and its rules have been respected. To support the architects 
we have developed an architecture monitoring and 
visualization approach of object-level interactions pursuing 
the following -goals: 

• G1: Support the run-time monitoring of software 
systems. The employed monitoring technique should 
enable the extraction of run-time information, based 
on which the system’s object-level interactions can 
be reconstructed. 

• G2: Support the real-time visualization of the 
object-level interactions. By being able to visualize 
the interactions in real-time, the architect will 
constantly be able to analyze the current behavior of 
the running system, as caused by given stimuli. 

• G3: Develop a minimally intrusive technical 
solution for run-time monitoring and real-time 
visualization. We thus strive to achieve a high-
acceptance of the developed method. Avoiding the 
direct instrumentation of the system’s source code 
and any additional infrastructure-installation burdens 
should positively contribute to this goal.  

• G4: Develop an extendable solution that allows to 
add new architecture visualizations if needed, in 
order to address the information needs of all 
interested stakeholders. Because the same 
information can be visualized using different 
visualization types (e.g. sequence diagrams, 
communication diagrams, textual representations, 
etc), different stakeholders can have different 
preferences. Hence, we aim to offer support for the 
straight-forward addition and configuration of new 
visualization types.  

III. PROPOSED APPROACH 

A. Conceptual overview 
In our previous work [7], we have presented ARAMIS, a 

conceptual approach to monitor software systems on 
different levels of abstraction. Its main components are 
represented in Figure 1. 

ARAMIS collects architectural information of a software 
system during run-time (G1), via an Architectural 
Information Bus (AIB) that further redirects the collected 
information to a central Architectural Information Broker 
(AIBR). Architectural Information Processors (AIP) 
corresponding to the various abstraction levels register to the 
AIBR, which consequently forwards them information 
relevant for their analysis purposes. To visualize interactions 
between building blocks, several Architecture Information 
Viewers (AIV) implementing specific visualization types 
(G3, G4) can be attached to a given AIP. Furthermore, if the 
transfer of architectural information between the AIB, AIBR, 
AIPs and AIVs occurs in real-time, then real-time 
visualizations also become possible (G2).  

In the following we present an implementation of 
ARAMIS that offers a real-time visualization of the system’s 
object-level interactions.  The currently addressed conceptual 
part of ARAMIS has been grayed out in Figure 1.   

 
Figure 1.  ARAMIS – Conceptual Overview ([7]) 

At first we present a technology case study that shortly 
explores and motivates our choices regarding the 
technologies used to implement ARAMIS. Then we 
conclude with describing the actual implementation of the 
run-time monitoring infrastructure together with the 
real-time visualization. 

B. Technology Case Study 
Based on the conceptual overview of ARAMIS presented 

in the previous sub-section, we have performed a case study 
to explore which existing technologies can be employed for 
its implementation. Our case study was based on the 
following assumptions and constraints: 

C1. The monitored systems are written in high-level, 
object-oriented programming languages. More 
precisely, we have limited our approach to Java and 
J2EE systems.  
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C2. The analyzed systems should allow monitoring. The 
employed monitoring technology should be as 
easily-applicable, efficient and unobtrusive as 
possible. 

C3. The monitoring and visualization components should 
base on technologies that allow the real-time data 
transmission, reception and representation of the 
collected information.  

C4. The visualization component should be decoupled 
from the rest of the monitoring infrastructure and 
should base on standard software existing on 
average computers.  

A1. An up-to-date internet browser is available to 
display the visualizations.  

According to our case study, there are several options 
available for monitoring the execution of Java and J2EE 
systems (C1), all of them capable of retrieving information 
based on which object-level interactions can be 
reconstructed. To ensure the technology-independence of 
the collected information, we have defined a simple JSON 
schema to which all the object-level interaction descriptions 
must adhere. The schema can be found at [27] but it is yet to 
be adapted, as ARAMIS will evolve to support monitoring of 
systems written in non-object oriented programming 
languages. Table 1 contains an overview of 4 considered 
techniques, with their advantages and disadvantages. Taking 
into account the numerous advantages of aspect orientation 
and its relatively few disadvantages and considering that 
architecture monitoring can indeed be considered a cross-
cutting concern of any system, we have decided to choose 
this technique (C2).  Furthermore, the use of aspect 
orientation also eliminates the source code tagging step 
mentioned in our previous work [7]. However, when 
analyses on higher abstraction levels will be included, 
mappings of the class-level information to architectural units 
will still be necessary.   

For the real-time transmission of data we needed to take 
into account that the visualization components should be 
decoupled from the rest of the infrastructure and are not 
necessarily Java-based. We have thus excluded from our 
consideration Java-specific solutions, like e.g. the Java 
Messaging Service [8], because their choice would have 
limited us to employing just Java-based visualizations. 
XMPP (Extensible Messaging and Presence Protocol) is a 
mature and open standard XML-based communication 
protocol for real-time communication [9]. Since its 
introduction, XMPP has proved itself to be very efficient in 
various real-time communication scenarios and has been 
applied in numerous real-time collaboration, instant 
messaging, light-weight middleware and content syndication 
contexts [9] (C3). Also, XMPP APIs are available for most 
modern programming languages (Java, C++, C#, JavaScript, 
Python, etc), thus allowing real-time communication 
between decoupled (C4) and heterogeneous systems. 
Because XMPP is a relatively light-weight solution to 
transfer data between communicating entities and it fulfils 
our assumptions and constraints, we have decided to use it 
for sending the data from the monitored systems to the 
visualization components.  

Regarding the representation of the monitored data (C3), 
we have focused our search on libraries supporting the 
creation of sequence diagrams, because this diagram type 
intuitively depicts important information about the object 
interactions: the order in which they interact, the called 
methods’ name, their parameter types and values, caller and 
callee objects. jsUML2 [10] is a third-party open-source 
“light-weight HTML5/JavaScript library for UML2 
diagramming”.  Because jsUML2 offers a straight-forward 
possibility to represent sequence diagrams directly in the 
browser (A1), we have chosen jsUML2 to build our 
visualization components. 

Java/J2EE 
Monitoring 
Technique

Advantages Disadvantages 

Run in  
Debugging 
Mode 

• The architect can freely 
choose  where to start the 
monitoring  from 

• The flow can be steered in 
a very flexible fashion 

• Easy to set up for trivial 
systems 

• Does not require any 
modification of the 
monitored system's source 
code 

• The architect might not 
know where to set up 
breakpoints  

• The architect must 
manually steer the 
debugging process 

• It is time-consuming 
• It is complicated to set-up 

for distributed systems 
• Not suitable for 

employing on production 
systems 

• There is no established 
method, to automatically 
document the debugging 
traces 

Insert  
Log 
Messages  
in the Code 

• The architect can freely 
choose where the logs 
should be inserted and 
what they should contain. 

• It is very easy to use 

• The architect might not be 
aware of where the 
messages or logs should 
be inserted 

• It requires the direct 
modification of the 
monitored system's code 

• The system must be 
recompiled  

Use  
Run-time 
Profiling 

• It does not require the 
modification of the 
monitored system's source 
code 

• It provides filtering 
techniques, to filter out 
uninteresting information 

• Profilers make use of 
sampling techniques to 
measure the performance 
of the analyzed system, 
determine bottlenecks, 
etc. They are not 
optimized for analyzing 
traces. 

• Profiling tools still have a 
steep learning curve 

Employ  
Aspect  
Orientation 

• Does not require the direct 
modification of the 
monitored system's source 
code. The introduced code 
is isolated from the rest of 
the system. 

• Due to the availability of 
sophisticated filtering 
techniques, the architect 
must not manually define 
all the point- cuts  

• Lean learning curve 
• Good overall performance 
• A vast majority of 

programming languages 
have AOP support (e.g. 
Java, C, Cobol, 
JavaScript, etc)  

• Additional code needs to 
be added (even if it is 
isolated)  

• Imposes recompilation of 
the system 

• AOP is not generally used 
in the industry 

Table 1. Monitoring Techniques ([11], [12], [13]) 
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C. Technical Implementation 
Given the results of our technology case study we have 

decided to apply aspect-oriented programming and the 
XMPP protocol to implement an instance of ARAMIS that 
offers real-time visualizations of run-time object-level 
interactions.  

Our approach, as represented in Figure 2, consists of 
three main steps that aim together to accomplish the major 
goals formulated in the previous section:  

• Step 1: instrumentation of the considered system(s)  
• Step 2: real-time data transfer 
• Step 3: real-time data visualization 
In the first step the system to be monitored is 

instrumented. This corresponds to building the AIB 
(information bus that collects run-time data), as this will 
enable to capture architectural information during run-time.  
Technically, we have used the well-known AspectJ 
framework [14]. The analyzed system was modified by just 
adding a new package called “monitoring” which contains a 
new aspect class, offering methods that should be called 
“before” and “after” each method-call in the analyzed 
system. Within the “before” and “after” aspect-methods, one 
can easily access information regarding the caller and callee 
of the intercepted methods, passed argument types and 
values as well as possibly fired exceptions and/or returned 
results. No other changes to the system’s source code are 
necessary. Furthermore, by using build tools like Apache 
Maven [15], one can determine via build plug-ins at the 
configuration level whether the defined aspect should be 
compiled or not, thus deciding on whether the system will be 
monitored or not.  

 
Figure 2.  ARAMIS - Implementation Overview 

The second step addresses the real-time data transfer of 
the information collected through the instrumentation of the 
system. This corresponds to building the AIBR (component 
responsible with the distribution of the monitored data). To 
sustain the transmission of the XMPP messages to the 
visualization clients we have used a cross-platform, open-
source Openfire Xmpp Server ([16]), which is responsible to 
establish the necessary connections and to real-time route the 

data. As represented in Figure 3, in our scenario the 
communication partners (XMPP clients) are the various 
systems to be monitored (left side of Figure 3) and the 
corresponding visualization components (right side of Figure 
3). To receive monitoring data from some given monitored 
system(s), the visualization component must be associated 
with the monitored system(s) in the configuration of the 
Openfire server.  

 
Figure 3.  Resulted XMPP Network 

The third step addresses the visualization of the received 
data. Our main goal was to depict the object interactions in 
an intuitive fashion that preferably does not require the 
installation of any specialized infrastructure. The jsUML2 
library [10] identified in our previous case-study meets these 
requirements, enabling the construction of sequence 
diagrams in a web browser environment.  However, the 
XMPP-based architecture of our solution is very flexible and 
allows to easily add other visualization methods at any time 
(including during the monitoring itself).   

The AIP (component responsible with processing the 
transmitted messages) has been written in JavaScript and its 
main responsibility is to receive the data transmitted over 
XMPP, parse it and hand it in to a jsUML2 wrapper (written 
by us), which keeps track of the currently defined lifelines 
and checks how and where should the currently received 
interaction description be placed in the overall diagram. 
Then, the data is forwarded to the AIV (the visualization 
component), in this case represented by the jsUML2 library, 
which eventually displays it graphically in a sequence 
diagram. 

IV. EVALUATION 
We have applied this implementation of ARAMIS in two 

evolution phases of a J2EE based software system. The 
purpose of the evaluation was to explore if our method is 
useful to determine how a software system has evolved and 
to check if the goals that we have stated in Section II have 
been fulfilled.  

 The evaluation scenario resembles a real-world situation, 
in which a software system first adheres to a given software 
architecture description and then it progressively degrades 
and violates the previously established architecture rules. 
The initial version of the system has been generated with an 
EJB-code generator, based on a class-diagram depicting the 
system’s business entities and their relations. Being 
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generated, it was ensured that the system has initially 
adhered to a predefined architecture description. The 
generated software system was the first version of a 
prototype in the context of the MoSaIC PhD Project [17]. 
During the first phase of our evaluation we have applied 
ARAMIS on this initial, generated version of the system and 
documented its interactions. Since the code generator could 
only generate the basic CRUD (create, retrieve, update, 
delete) functionality of the system, later the core business 
functions were implemented manually.  This was done by a 
master-thesis student whose task was to manually enhance 
the generated system based on further requirements. 
Previous to any development tasks, the architecture of the 
developed software system as well as the architecture rules 
that needed to be obeyed have been presented to the student. 
Upon completion of the development, the resulting second 
version of the system was analyzed again in the second 
phase of our evaluation. By comparing the results obtained 
during the first and the second phase, we were able to 
identify how was the system evolved and whether or not the 
predefined architecture rules have been violated. 

The rest of this section is structured as follows: 
Subsection A gives an overview of the overall evaluation 
setup. It describes the general technical setup needed to 
employ ARAMIS in the two mentioned evolution phases of 
the considered software system. Subsection B gives an 
overview of the first evaluation phase. First, the 
architecture description of the generated software system is 
shortly explained. Next, an overview of the sequence 
diagrams retrieved by employing ARAMIS on the generated 
system and their connection to the previously mentioned 
architecture description is given.  Subsection C approaches 
the second evaluation phase. First, the architecture rules 
that had to be respected during further development are 
given. Lastly, a snippet of a sequence diagram retrieved by 
employing ARAMIS on the final version of the system is 
given and discussed. Subsection D analyses the achievement 
of our goals, as previously described in Section II.  

A. Evaluation Setup 
We have performed our case study as depicted in Figure 

4. The grey component represents the monitored EJB 
system. Using a very basic web-based user interface, we 
have called some of the most important methods published in 
the system’s façade. The resulted interactions were 
monitored at run-time, as the EJB system was previously 
instrumented using aspect-orientation. The resulted 
architectural information was then pushed to the Openfire 
XMPP server, installed on a separate computer (Physical 
Machine II). In turn, the XMPP server further pushed the 
received information to a web-based HTML5/Ajax 
application running on a web-browser from yet another 
computer (Physical Machine III). This web-application 
builds the resulted sequence diagrams in real-time, upon 
receiving the architectural information from the Openfire 
Server.  

 
Figure 4. 

 
ARAMIS Deployment Diagram 

By using 3 different physical machines for our setup, we 
wanted to demonstrate the low coupling of the various 
components and the minimally intrusiveness of our 
approach. The web-application that constructs the sequence-
diagram visualization only needs the address of the XMPP 
Server it should connect to. The needed JavaScript libraries 
required are downloaded during application load and this is 
completely transparent for the end-user interested in the 
visualization. Also, the XMPP server does not necessarily 
need to be installed on the same computer as the one on 
which the application server is residing. The monitoring code 
merely needs the address to which the collected architectural 
information needs to be sent. 

B. First Evaluation Phase 

 
Figure 5.  Generated System’s Architecture ([18]) 

The architecture of the first generated version of the 
monitored system consists of the business and the data layer 
and is depicted in Figure 5. To sustain the explanation of the 
architecture diagrams that we have recovered and that will be 
presented in the next paragraphs, a short incurs in the 
architectural details of the generated system is necessary:   
The business layer functionality is accessible to the clients 
through the façade, which is technically a local EJB interface 
implemented by a stateless EJB bean. The façade delegates 
the calls to corresponding controller components. The 
controller components implement the actual business 
functionality of the system. To access the business entities, 
the controllers use data managers that are responsible to 
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retrieve the entities from the database via a JPA entity 
manager. The used code generator generates a corresponding 
controller and data manager component for each defined 
entity which are aggregated together in the higher level 
“Controllers” and “Data Managers” components, as shown 
in Figure 5. As in the case of the façade, the controller and 
data managers are accessible via local interfaces and 
implemented by EJB stateless beans.  

To demonstrate and document the adherence of the 
generated system to the above mentioned architecture 
description we have employed ARAMIS.  

A snapshot of a generated sequence diagram depicting 
the behavior of the system, upon calling the method 
createReferenceModel(), which in this case creates a 
new “Reference Model” object called “COBIT” is shown in 
Figure 6. The represented interactions clearly correspond to 
the architecture description given earlier.  

The generated sequence diagrams are rather lengthy and 
the visualization soon becomes cumbersome, even 
considering the availability of both horizontal and vertical 
scrollbars. However, despite these limitations, we consider 
that the diagrams are very suitable for explaining and 
clarifying the interactions of the system upon given stimuli. 

C. Second Evaluation Phase 
Based on the generated first version of the system the 

missing business functions were implemented manually. The 
following architecture rules should be obeyed: 

• The system’s façade should only access controller
components

• Controllers should only access data-manager
components, entities and their factories. The
controllers should not directly access the Entity
Manager or the Application Façade components

• The entities should only contain mutator and
accessor methods

When calling the method createReference-
Model() on the final system again, we observed – by 
manually comparing the new obtained sequence diagram 
with the one obtained in the first phase – that while the 
general sequence flow has mostly remained unchanged, a 
new method determineUnqualifiedName() has been 

called, as represented in Figure 7 in the grayed-out 
rectangular zone. This clearly contradicts to the third rule 
listed above. 

Figure 7.  Final System - Sequence Diagram Excerpt  
The first two rules were not violated in any of the other 

scenarios that we have monitored. While this cannot 
guarantee that these rules have never been violated 
throughout, it does confirm that the most important scenarios 
are architecture-conformant. 

D. Goals Achievement 
The evaluation shows that our approach can be 

successfully applied to demonstrate, exemplify and 
understand the behavior of a monitored system. The architect 
can simply demonstrate a user-story on the system and the 
system’s interactions are immediately available for analysis. 
Also, by comparing the behavior of the system during 
various evolution phases, architecture violations can be 
identified.  

Related to the first stated goal in Section II (G1), we have 
successfully employed aspect-oriented programming 
techniques to enable the run-time monitoring of the 
considered systems. 

With respect to G2, ARAMIS can be applied to create 
sequence diagrams depicting the behavior of the system at an 
object-level. The XMPP protocol enables the real-time data 
transfer and reception of the monitored information. The 
visualization is also constructed dynamically, as soon as the 
architectural information is received. However, the 
constructed sequence diagrams soon become very extensive 
and, as we have previously mentioned, work still needs to be 
invested to also achieve meaningful visualizations on higher 
levels of abstraction.  

Furthermore, the developed XMPP-based infrastructure 
permits to easily add new visualizations (G4). The 
visualizations can be applied in parallel and can be added 
and removed at any time, without requiring any restart or 
redeployment of the XMPP server or of the monitored 
system respectively. To demonstrate our approach, we have 
integrated an HTML 5 library for UML2 diagramming that 
displays the data using sequence diagrams format and a Java-
based chat client for displaying the data in a textual format. 
Any other customization of the visualization is possible, 
provided that it builds on top of XMPP-supporting 
technologies (Java, JavaScript, Python, etc). 

With respect to G3, this implementation of ARAMIS 
does not impose the installation of any additional software or 
infrastructure at the visualization sites. Furthermore, as 
demonstrated in our evaluation setup, the XMPP server and 

Figure 6.  ARAMIS Sequence Diagram 
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the visualization software can reside on different physical 
machines as the monitored system leading to a low coupled 
infrastructure. Regarding the minimal intrusiveness with 
respect to the source code of the monitored system, the 
use of aspect-oriented techniques for extracting monitoring-
relevant data ensures that the impact on the source-code is 
kept at a minimum. The aspect-weaving of the system can be 
decided at configuration level and no additional source-code 
modifications are necessary. However, given that the running 
system is eventually instrumented, we have also performed a 
small case study, to analyze the intrusiveness of ARAMIS 
with respect to the response-time of the studied system. 

To achieve this, we have used ten Arqullian test cases 
developed in the context of the final system. We have run 
these test cases in three phases:  

• Phase 1: Before the instrumentation of the system
• Phase 2: After the instrumentation with aspect-

oriented techniques, which extract the required run-
time architectural information, but before employing
the sending of messages via XMPP.

• Phase 3: After the complete aspect- and XMPP-
based instrumentation, which enables the sending of
the information collected using aspect-oriented
techniques to XMPP clients that provide
visualization

The presented measures show that the overhead 
introduced by the aspect- and XMPP-based instrumentation 
is rather high, on average leading to execution times that are 
approximately 50% longer. Furthermore, the results show 
that the aspect-based instrumentation itself is comparatively 
not as severe, worsening the execution time with only 9% on 
average. Therefore, we can deduce that the biggest impact on 
the execution time is caused by the XMPP-based 
instrumentation.  
            test-case #

          phase
tc
1

tc
2

tc
3

tc
4

tc
5

tc
6

tc
7

tc
8

tc
9

tc
10

average

Phase 1
(miliseconds)

9 24 214 59 103 131 23 200 172 137 107,18

Phase 2
(miliseconds)

10 24 223 65 114 167 25 209 173 144 115,4

Phase-2
  overhead

11% 3% 4% 10% 11% 27% 10% 4% 1% 5% 9%

Phase 3
(miliseconds)

13 32 322 81 162 232 37 278 264 211 163,14

Phase 3-
 overhead 42% 36% 50% 36% 57% 77% 62% 39% 54% 54% 51%

Figure 8.  Performance Evaluation results 
However, the introduced overhead of our approach does 

not invalidate its applicability. For analyses purposes the 
overhead is acceptable. Currently we apply ARAMIS in a 
sandbox-like environment before a system is deployed in the 
actual production environment. 

In conclusion, our evaluation has shown that the goals 
that we have set in Section II have been achieved to a great 
extent by our implementation of ARAMIS.   

V. RELATED WORK 
The idea of extracting up-to-date software architecture 

descriptions from the source code of software systems is not 
new. The already existing approaches basically focus on the 

extraction of either static or dynamic views of the 
architecture. To the best of our knowledge, there is currently 
no available approach that combines the extraction of 
dynamic views with the real-time visualization of the 
monitoring results. 

Pioneer tools (e.g., DALI [4], Alborz [19], etc.) statically 
analyzed the source code to recover static architecture views. 
Human experts could then correct and/or refine the thus 
obtained results according to their knowledge. In [20] 
viewpoints are also applied post-mortem on the recovered 
models, to produce desired architectural views. Other 
approaches, such as SAVE [2] and Sotoarc [21], allow the 
specification of models and rules against which architecture 
conformance can be automatically checked. In [22] the 
authors also discuss the necessity of developing appropriate 
software architecture monitoring methods, but just as the 
proposals mentioned previously, only the static view is 
considered.  

Based on priory specified naming conventions, 
DiscoTect [23] analyses the system’s run-time traces to 
extract architectural information (method calls, calling 
objects, etc). The run-time monitoring is achieved via 
logging. The logged messages are then also parsed according 
to specified rules producing post-mortem dynamic views of 
the analyzed system. 

SoftArch [24] presents dynamic information based on 
modified “copies of the recovered static views” of the 
system. Dedicated behavior-related views (e.g., sequence 
diagrams) are not offered.  

Kieker [25] is “an extensible framework for monitoring 
and analyzing the run-time behavior of concurrent and 
distributed software systems” that also applies aspect-
oriented techniques to extract various visualizations (e.g., 
sequence diagrams, dynamic call trees, etc) of the dynamic 
view of the studied system. Lastly, Kieker requires the 
Graphviz visualization software, which needs to be 
downloaded and installed by the users in order to construct 
the visualizations, and is therefore not as light-weight as our 
solution. Furthermore, Kieker does not support the real-time 
visualization of the interactions and its main focus is to study 
the performance of the analyzed systems, rather than 
supporting visualizations on more abstraction levels and 
checking architectural rules violations. 

In [26] the authors present an architecture meta-model 
for software-intensive systems. Architecture view-points are 
also extracted based on the analysis of the system’s logs. 
This approach also doesn’t support the real-time 
visualization of architecture views and the monitoring is 
based on logged information analysis unlike aspect-
orientation instrumentation, as in our case. 

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an infrastructure for the 
real-time visualization of architectural information extracted 
via run-time monitoring of Java and J2EE-based software 
systems.  Using aspect-oriented techniques, relevant run-time 
information is extracted from the monitored system and then 
sent via the XMPP communication protocol to registered 
listeners that are responsible for constructing proper 
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visualizations. For demonstration purposes, we have 
developed an HTML5-based visualization client that 
constructs sequence-diagrams while receiving real-time 
messages from the monitored system. We have evaluated our 
work on an EJB-based system, which was initially generated 
and then subsequently manually modified to include all the 
required business functionality. Our evaluation has shown 
that the developed ARAMIS infrastructure can easily be 
used to demonstrate the behavior of the monitored system. 
Also, analyses on the evolution of a certain behavior are 
possible, including the identification of architecture rules’ 
violations. 

In our future work we plan to construct visualizations on 
more abstraction levels of the architecture (layers 
interactions, components interactions, etc.). Furthermore, 
methods for the automatic detection of architecture-
violations will be defined and employed and effort will be 
invested in increasing the overall performance of the 
monitoring infrastructure. Security-based concerns will also 
be considered and extensively explored, in order to ensure 
the method’s applicability on production systems Last but 
not least, the proposed method and infrastructure will be 
evaluated in more case studies, to further explore its 
acceptance and feasibility. 
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