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Multimedia Hashing and
Networking

M any Internet companies frequently han-

dle heterogeneous, multimedia data.

Well-known social media websites, including

Facebook, Twitter, and YouTube, along with

mobile apps such as Instagram, Snapchat, and

WeChat, all face the same problem—how can

they efficiently and effectively store, index,

search, manage, analyze, and understand multi-

media data? Here, we attempt to address this

problem by studying two popular topics in mul-

timedia: hashing and networking.

Multimedia Hashing
We explore two different methodologies related

to multimedia hashing—shallow-learning-based

hashing and deep-learning-based hashing—

demonstrating state-of-the-art techniques for

enabling efficient multimedia storage, indexing,

and retrieval.

Hashing by Shallow Learning

Hashing1 has attracted considerable attention

from researchers and practitioners in computer

vision, machine learning, data mining, infor-

mation retrieval, and other related areas. A vari-

ety of hashing techniques have been developed

to encode documents, images, videos, or other

types of data into a set of binary codes (used as

hash keys), while preserving certain similarities

among the original data. With such binary

codes, similarity searches can be rapidly per-

formed over massive datasets, thanks to the

high efficiency of pairwise comparison using

the Hamming distance.

Early endeavors in hashing concentrated on

employing random permutations or projections

to construct hash functions. Well-known repre-

sentatives include Min-wise Hashing (Min-

Hash)2 and Locality-Sensitive Hashing (LSH).3

MinHash estimates the Jaccard set similarity,

while LSH accommodates various distance or

similarity metrics—such as the ‘p distance for

p 2 ð0; 2�, cosine similarity, and kernel simi-

larity. Due to randomized hashing, more bits

per hash table are required to achieve high pre-

cision. This typically reduces recall, and multi-

ple hash tables are thus required to achieve

satisfactory accuracy of retrieved nearest neigh-

bors. The overall number of hash bits used

in one application can easily run into the

thousands.

Beyond data-independent randomized hash-

ing schemes, a recent trend in machine learning

is to develop data-dependent hashing techni-

ques that learn a set of compact hash codes

based on a training dataset (a multimedia data-

base, for example). Binary codes have been pop-

ular in this scenario because of their simplicity

and efficiency in computation. The compact

hashing scheme can accomplish almost a con-

stant-time nearest neighbor search, after encod-

ing the entire dataset into short binary codes

and then aggregating them into a hash table.

Additionally, compact hashing is particularly

beneficial for storing massive-scale data. For

example, saving one hundred million samples,

each with 100 binary bits, costs less than 1.5

Gbytes, which can easily fit in memory.

To create effective compact hash codes,

numerous methods have been presented,

including unsupervised and supervised meth-

ods. The state-of-the-art unsupervised hashing

method, Discrete Graph Hashing (DGH),4 lev-

erages the concept of “anchor graphs” to cap-

ture the neighborhood structure inherent in a

given massive dataset, and then formulates a

graph-based hashing model over the entire

dataset. This model hinges on a novel discrete

optimization procedure to achieve nearly bal-

anced and uncorrelated hash bits, where the

binary constraints are explicitly imposed and

handled. The DGH technique has been demon-

strated to outperform the conventional unsu-

pervised hashing methods, such as Iterative

Quantization, Spectral Hashing, and Anchor

Graph Hashing,1 which fail to sufficiently
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capture local neighborhoods of raw data in the

discrete code space.

The state-of-the-art supervised hashing

method, Supervised Discrete Hashing (SDH),5

incorporates supervised label information and

formulates hashing in terms of linear classifica-

tion, where the learned binary codes are ex-

pected to be optimal for classification. SDH

applies a joint optimization procedure that

jointly learns a binary embedding and a linear

classifier. The SDH technique has also been dem-

onstrated to outperform previous supervised

hashing methods.1

There exist many other interesting hashing

techniques, such as document hashing,6 video

hashing,7 structured data hashing,8 and inter-

media hashing.9 Note that all of the techniques

we have mentioned depend on shallow-learn-

ing algorithms. Nonetheless, owing to the high

speed of shallow-learning-based hashing, the

state-of-the-art hashing techniques have been

widely used in high-efficiency multimedia stor-

age, indexing, and retrieval, especially in multi-

media search applications on smartphone

devices. Several well-known startups, such as

Snapchat, Pinterest, SenseTime, and Faceþþ,

use proper hashing techniques to manage and

search through millions or even billions of

images.

Hashing by Deep Learning

Since 2006, deep learning,10 also known as deep

neural networks, has drawn enormous attention

and research efforts in a variety of artificial intel-

ligence areas, including speech recognition,

computer vision, machine learning, and text

mining. Deep learning aims to learn robust and

powerful feature representations for complexly

shaped data, so it’s natural to leverage deep

learning for pursuing compact hash codes,

which can be regarded as binarized representa-

tions of data. Here, we briefly introduce two

recently developed hashing techniques related

to deep learning: Convolutional Neural Network

Hashing (CNNHash) and Deep Neural Network

Hashing (DNNHash).

Previous hashing techniques, relying on deep

neural networks, took a vector of hand-crafted

visual features extracted from an image as input.

The quality of the generated hash codes thus

heavily depended on the quality of the hand-

crafted features. To remove this barrier, the

CNNHash approach was recently developed to

integrate image-feature learning and hash-code

learning into a joint learning model.11 This

model consists of a stage of learning approxi-

mate hash codes given pairwise supervised

information and a stage of training a deep

Convolutional Neural Network (CNN).12 Bene-

fiting from the power of CNNs, the latter stage

of the joint model can simultaneously learn

image features and hash codes, directly working

on raw image pixels. The deployed CNN com-

prises three convolution-pooling layers, a stand-

ard fully connected layer, and an output layer

with softmax functions. The final hash codes are

then produced by quantizing the softmax acti-

vations of the output layer.

While the CNNHash approach11 requires sep-

arately learning approximate hash codes to guide

the subsequent learning of image representation

and finer hash codes, a more recent approach,

DNNHash, goes further.13 With DNNHash,

image representation and hash codes are learned

in one stage so that representation learning and

hash learning are tightly coupled to benefit each

other. The DNNHash approach incorporates list-

wise supervised information to train a deep

CNN, leading to a currently deepest architecture

for supervised hashing. The pipeline of the deep

hashing architecture includes three building

blocks:

� a triplet of images, which are fed to the

CNN and upon which a triplet ranking loss

is designed to characterize the listwise

supervised information;

� a shared subnetwork, with a stack of eight

convolution layers to generate the inter-

mediate image features; and

� a divide-and-encode module to divide the

intermediate image features into multiple

channels, each of which is encoded into a

single hash bit.

Within the divide-and-encode module, there

is one fully connected layer and one hash layer.

Eventually, the hash code of an image is yielded

by thresholding the output of the hash layer.

The DNNHash has been shown to outperform

CNNHash and several shallow-learning-based

supervised hashing approaches in terms of

image search accuracy.13

However, for both CNNHash and DNNHash,

note that researchers have not yet investigated

or reported on the time required for hash code

generation. In real-world search scenarios, the

speed for generating hashes should be substan-

tially fast. There might be concern about theIE
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hashing speed of these deep-neural-network

driven approaches, especially those involving

image feature learning, because it might take

longer to hash an image with deep learning

compared to with shallow-learning-driven

approaches.

Multimedia Networking
Here, we introduce the latest Multimedia Infor-

mation Networks (MINets). As an example of

leveraging MINets, we present the cross-media

coreference, which incorporates both visual

and textual information to reach a sensible

event coreference resolution.

Multimedia Information Networks

Recent developments in Web technology—

especially in fast connection and large-scale

storage systems—have enabled social and news

media to publish more in-depth content in a

timely manner. However, such developments

also raise some issues, such as overwhelming

social media information and distracting news

media content. In many emergent scenarios,

such as encountering a natural disaster (for

example, Hurricane Irene in 2011 or Hurricane

Sandy in 2012), tweets and news are often

repeatedly spread and forwarded in certain

circles, so the corresponding content is overlap-

ping. Browsing these messages and pages is

unpleasant and inefficient, so an automatic

summarization of tweets and news is desired,

among which ranking is the most intuitive way

to inform users of highly relevant content.

A passive (and common) solution is to prompt

users to add more keywords when typing search

queries. However, without prior knowledge, and

given word limits, it’s never trivial to establish a

satisfying ranking list for the topics that attract

the most public attention. Recent changes in the

Google search engine have integrated the image

search component and adopted some heteroge-

neous content analysis. Nevertheless, the con-

nections between images and relevant keywords

are still arbitrarily determined by users, so the

current search quality is far from optimal.

Active solutions that attempt to summarize

information only concentrate on single data

modalities. Researchers have developed a con-

text-sensitive topical PageRank method to extract

topical key phrases from Twitter as a way to sum-

marize twitter contents.14 From a new perspec-

tive, the Latent Dirichlet Allocation (LDA)15

model was employed to annotate images,16 but

this doesn’t firmly integrate the information

across different data modalities. Researchers have

also developed a tweet ranking approach,17 but it

only focuses on a single data modality (text).

Other conventional solutions for analyzing

the relationships or links between data instan-

ces include PageRank and VisualRank.18 The

former has been extensively used in heteroge-

neous networks (webpages and resources), but

it mainly concerns linkage. VisualRank, which

extends PageRank to the image domain, is a

content-based linkage method, but it’s con-

fined to homogeneous networks.

A novel MINets19 representation was recently

proposed to create a basic ontology of a powerful

ranking system, which aims to integrate cross-

media inference and create the linkage among

the multimodal information extracted from het-

erogeneous data. Beyond traditional ranking

approaches, designed for homogeneous net-

works or simple heterogeneous networks, many

researchers are developing a series of novel rank-

ing approaches to exploit the properties of

MINets, leading to startups such as Toutiao and

Tumblr.

Cross-Media Coreference

However, such information networks, where

each node represents one event, can suffer from

redundant events and low efficiency due to the

repeated nodes, because the same stories are

often reported by multiple newscast agents.

Moreover, to strengthen the impact on audien-

ces and readers, the same stories and events are

reported multiple times, especially on TV and

in radio broadcasts.

These properties call for automatic methods

that can cluster information and remove redun-

dancy. A method has been proposed20 that not

only deals with information from both visual

(video contents) and textual (enclosed captions)

channels but also analyzes event coreferences.

The connections between

images and relevant

keywords are still

arbitrarily determined by

users.
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Thus this method can fully exploit TV news (or

newscasts) containing audio and videos.

A good starting point for cross-media corefer-

ence is the processing of closed captions (CCs)

that accompany videos in a newscast. Such CCs

are either generated by automatic speech recog-

nition (ASR) systems or transcribed by a human

stenotype operator who inputs phonetics,

which are instantly and automatically translated

into texts from which events can be extracted.

Different from written news, a newscast is often

limited in time due to fixed TV program sched-

ules, so anchors and journalists are trained and

expected to organize reports that are compre-

hensively informative with complementary vis-

ual and CC descriptions within a short time.

These two descriptions have minimal overlap,

even though they’re interdependent. For exam-

ple, anchors and reporters introduce back-

ground stories that aren’t presented in the

videos, so the events extracted from the CCs

often lack key information about participants.

Another challenge comes from the mistakes

that reside in CCs, caused by errors made by

human operators or ASR systems. For example,

in two similar newscasts, where the death of

Jordanian pilot was reported, the closed caption

in one cast was mistakenly printed as “It’s not

clear when it was killed,” where “it” should

have been “he,” referring to the Jordanian

pilot.20 The other newscast had another flawed

CC: “Jordan just executed two ISIS prisoners,

direct retaliation for the capture of the killing

Jordanian pilot” (instead of “capture of the Jor-

danian pilot”). It’s impossible for any existing

text-based coreference resolution approach to

cluster the two Life.Die event mentions into

the same event, because in most natural lan-

guage processing systems, “it” must not be

linked to “Jordanian pilot.” Fortunately, videos

often illustrate brief descriptions with vivid vis-

ual content, and both newscasts adopted the

video frames demonstrating the capture of the

Jordanian pilot, so these two event mentions

can be considered as the same one.

In fact, diverse anchors, reporters, and TV

channels tend to use similar or even identical

video content to describe the same story, even

though they usually use different words and

phrases. Therefore, the challenges in corefer-

ence resolution methods relying on text infor-

mation can be addressed by incorporating

visual similarity.

Similar work has explored methods for link-

ing visual cues with texts.21–23 However, these

methods mainly focus on connecting image

concepts with entities in text mentions, and

some didn’t clearly distinguish entity from

event in the documents, because the defini-

tions of visual concepts often require both. In

addition, the work21–23 is mostly dedicated to

improving visual content recognition by intro-

ducing textual features, while the more recent

work20 takes the opposite route by leveraging

visual information to improve event corefer-

ence resolution.

I n the future, we expect to apply the techni-

ques discussed here to make deep learning

practical in realistic multimedia applications.

For example, we plan to develop deep neural

network compressing techniques to endow

deep-learning-driven hashing methods with

the real-time hashing speed. We also plan to

introduce end-to-end memory networks to

understand visual and textual information

more thoroughly, leading to stronger cross-

media event coreference methods. MM
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