
Engineering Science and Technology, an International Journal 19 (2016) 1465–1472
Contents lists available at ScienceDirect

Engineering Science and Technology,
an International Journal

journal homepage: www.elsevier .com/ locate / jestch
Full Length Article
Real-time fault tolerant full adder design for critical applications
http://dx.doi.org/10.1016/j.jestch.2016.05.001
2215-0986/� 2016 Karabuk University. Publishing services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: pankajkumar_6120011@nitkkr.ac.in (P. Kumar), rksharma@-

nitkkr.ac.in (R.K. Sharma).

Peer review under responsibility of Karabuk University.
Pankaj Kumar ⇑, Rajender Kumar Sharma
National Institute of Technology, Kurukshetra, India

a r t i c l e i n f o a b s t r a c t
Article history:
Received 6 January 2016
Revised 11 April 2016
Accepted 1 May 2016
Available online 9 May 2016

Keywords:
Adder
Single fault
Double fault
Self checking adder
Fault tolerant
Reliability
In the complex computing system, processing units are dealing with devices of smaller size, which are
sensitive to the transient faults. A transient fault occurs in a circuit caused by the electromagnetic noises,
cosmic rays, crosstalk and power supply noise. It is very difficult to detect these faults during offline test-
ing. Hence an area efficient fault tolerant full adder for testing and repairing of transient and permanent
faults occurred in single and multi-net is proposed. Additionally, the proposed architecture can also
detect and repair permanent faults. This design incurs much lower hardware overheads relative to the
traditional hardware architecture. In addition to this, proposed design also provides higher error detec-
tion and correction efficiency when compared to the existing designs.
� 2016 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Now days, fault tolerant system is very crucial in the critical
applications, where the immediate human action is not possible.
Space application, defense surveillance, medical supervisory sys-
tem and other safety related services are the example of such crit-
ical applications. The presence of the faults in such applications can
destroy the functionality of the overall system. The complexity of
integrated circuits is increasing with the advancement of technol-
ogy. Technology advancement results in reducing the size of inte-
grated circuits. This makes the design more compact and sensitive
to the transient faults. The main reason of the presence of transient
fault in the integrated circuit is electromagnetic noises, cosmic
rays, cross-talk and power supply noise. In addition to this, tech-
nology scaling further increases the chances of the presence of per-
manent fault also. The compact design is good for reducing the
noise but it will increase the chance of hardware failure in the
advanced processor [1]. It is very difficult to detect these faults
during offline testing. Therefore, these problems are the challenges
for the researchers working in the field of on-line fault detection
and correction techniques.

Digital Signal Processing is an important unit in electronics
devices. Addition is a most fundamental arithmetic operation per-
formed in many Very Large Scale Integration (VLSI) systems such
as Digital Signal Processors (DSPs) and microprocessors [2–5]. Full
adders are used for variety of operations in a complex arithmetic
circuit like multiplication, division and address calculation [6–
11]. These full adders are the nucleus of any system. In most of
the systems full adders are encountered in critical path and can
significantly influence the performance of any system. The design
criteria for full adder are usually multifold. Transistor count is
the primary concern, which determines the system complexity of
the arithmetic circuits like multiplier and Arithmetic Logic Unit
(ALU) e.t.c. [12,13]. Therefore, to design a fault tolerant full adder
with lesser area overhead is a matter of great importance. Many
researchers have been worked on different types of fault tolerant
full adders [14–17]. Arithmetic residue code is used for designing
the first self checking full adder. This adder can detect the single
fault at a time [18,19]. However, the limitations of arithmetic resi-
due codes are its complex checker circuits and incompatibility
with its self checking memory systems [20]. After this, many of
the self checking approaches used re-execution of instruction for
repairing the fault but it will increase the propagation delay of
the design up to a great extent. However, fault recovery is not pos-
sible in this approach if the faults are permanent [15]. In the liter-
ature, researchers have introduced time based redundancy and
hardware redundancy techniques to detect the faults in the full
adder circuits. These approaches are limited to the single fault
detection at a time and can’t detect the exact location of the fault.
Hence, it makes the other module faulty due to the propagation of
the carry. Therefore, to remove these problems, a new fault toler-
ant full adder is proposed. This design can detect both single and
double fault, in addition to the permanent fault, at a time with

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jestch.2016.05.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jestch.2016.05.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:pankajkumar_6120011@nitkkr.ac.in
mailto:rksharma@nitkkr.ac.in
mailto:rksharma@nitkkr.ac.in
http://dx.doi.org/10.1016/j.jestch.2016.05.001
http://www.sciencedirect.com/science/journal/22150986
http://www.elsevier.com/locate/jestch

1466 P. Kumar, R.K. Sharma / Engineering Science and Technology, an International Journal 19 (2016) 1465–1472
the indication of the exact location of fault. Additionally, this
design can repair all the detected faults with the smaller area over-
head of the repairing unit. Carry select adder (CSA) is considered
for the proposed design because it results the fastest addition
and also has smaller area overheads.

The rest of the paper is organized as follows. In Section 2, some
existing approaches used for fault checking and repairing are dis-
cussed. In Section 3, the proposed fault tolerant full adder is
described. The simulation results of the entire referred self check-
ing, self repairing and proposed fault tolerant full adder are pre-
sented in Section 4. The proposed fault tolerant design is
compared with the existing design in the Section 5. In Section 6,
fault tolerant multiplier is implemented. Section 6 draws the
conclusion.
2. Previous self checking and self repairing design approaches

In the literature, many self checking and self repairing
approaches are available. All the approaches have its own advan-
tages and disadvantages. Some of the popular approaches are
described below.

2.1. Time redundancy

Redundancy is required in the self checking system. Time
redundancy approach is proposed to protect the design from the
transient fault. In this approach, similar operation is performed
by the duplicate hardware in addition to the original hardware,
at different interval of time [21]. Delayed clock is used to provide
the difference in time interval of the duplicate hardware as shown
in Fig. 1. Finally, the fault is detected by comparing the two outputs
obtained at different interval of time. If the outputs of both the
hardware are found to be same, it represents fault-free condition.
However, if the outputs of both the hardware are different, it rep-
resents the faulty condition.

Authors in [22] also proposed a fault detectable adder based on
the concept of time redundancy. This design reduces the area over-
head and cost of the design by performing the similar operation at
different interval of time. The results are compared to indicate the
presence of fault. However, the main limitations of this design are
that it does subsequent computation to reduce the propagation
delay before comparing the outputs. Hence, if the first computation
result is faulty and it is used for other computations, also makes
the subsequent modules faulty. Additionally, this design cannot
detect the stuck-at fault.

2.2. Hardware redundancy

Hardware redundancy required more than one hardware to
produce the different outputs. The outputs of the original and
redundant hardware are compared to indicate the faulty and fault
free conditions. Triple modular redundancy and double modular
redundancy are the most commonly used redundancy schemes
[23,24].
Combinatorial
Logic

Original
Module

Duplicate
Module

clk

Clk + α

Output

Fault

Fig. 1. Time redundancy fault detection technique.
2.2.1. Triple-modular redundancy (TMR)
This is the conventional method to detect the single fault. This

approach requires three identical modules in parallel to detect
the fault as shown in Fig. 2. A fault is detected if the outputs of
the modules are different [25]. Therefore, the reliability of this
algorithm is based on majority function and it will not indicate
the exact location of the fault. Therefore, this approach creates
the problem if two single full adder cells become faulty and pro-
duce the faulty output. This is due to the absence of self repairing
circuits. This problem can be removed by increasing the hardware
but the resulting design requires more than 500% hardware. How-
ever, the absence of the self repairing process can increase the
probability of more than one fault.

In addition to this, the major drawbacks of this approach are
that it requires more than 300% area overhead due to the triplica-
tion of the primary module. Secondly, the detection of double fault
at a time is not possible in this approach [26]. The another problem
is that it works on majority function if two modules generate the
faulty output then the correct output of the third module is treated
as faulty [27]. The detection of the double fault is not possible in
this approach
2.2.2. Double-modular redundancy (DMR)
In this approach, the original module is duplicated to perform

the similar operation in parallel as shown in Fig. 3. This approach
can detect the single fault at a time by comparing the outputs of
operation performed in parallel. Hence, this approach becomes
successful to increases the reliability of the design at the minimum
cost [28]. But, fault correction is not possible in this approach
because the voting circuit can not detect the location of the faulty
module [25].

The major drawback of this approach is that it requires more
than 200% area overhead and cannot detect double fault at a time
[22]. The second problem is that fault recovery is not possible
because it is not able to detect the faulty module. In addition to
this, stuck-at faults are not detectable in this approach and a prob-
lem is creates when both the modules experience the fault.
2.3. Operand width aware hardware reuse (OWHR)

This approach is based on Narrowwidth values (NWV) and used
for designing the fault tolerant Arithmetic and logical unit (ALU). In
this approach, most of the data coming into the ALU consists of
NWVs. Hence, the arithmetic and logical operations are divided
into two parts. Normal operations are performed over the first part,
whereas the second part is used for the redundant operation. Con-
sider the case of 64-bit full adder where 32-bit is used for addition
and the remaining 32 bit is unused due to NWV. Thus, this 32 bit is
used for the parallel operation like in duplex. In this way, a duplex
system with minimum hardware cost has been obtained.
Comparator

Module-1 Module-3

Error

Module-2

Fig. 2. Triple modular redundancy fault detection technique.

Comparator

Module-1 Module-2

Error

Fig. 3. Double modular redundancy fault detection technique.

P. Kumar, R.K. Sharma / Engineering Science and Technology, an International Journal 19 (2016) 1465–1472 1467
The main limitations associated with this approach are that it
increases the computational complexity and associated power
overhead of the design. Secondly, this approach has the problems
of common mode failure and fault propagation due to the carry
propagation. In addition to this, single fault can only be repaired
if both the operands are NWVs. The reliability of the system is also
dependent on NVWs.
2.4. Self -checking CSA

Self checking carry select adder is proposed by Vasudevan et al.
[29]. This design can detect any single fault and single-at fault in
the design online. It requires two adders, 2-pair-2-rail-checker,
self-checking multiplexers and XOR gates to detect the faults
online. The complete self checking design is shown in Fig. 4. The
checker has two outputs Z1 and Z2. The combination of the two
outputs indicates the presence of faults. 00 and 11 indicates the
fault in the full adder cells. However, 01 and 10 indicates that
the full adder cells are fault free.

The limitations of this design are that it can detect single-net
fault and is not capable of identifying the location of faulty adder
cells. Therefore, fault recovery is not possible in this approach
and complete unit needed to be replaced to resolve the problem.
In addition to this, it can’t detect the double fault at a time and also
have a problem of fault propagation through carry. This design also
required very high hardware cost.
Full Adder

Full Adder

0 1

2-pair-

0 1

A1B1

A1B1

S1Cout

Z1

Fig. 4. 2-Bit self checkin
2.5. Self repairing adder

Self repairing adder is proposed by Mohammad ali akbar et at.
[16]. This design can detect faults and also identify the location
of single net and multi-net faults online. It removes the some lim-
itations of the self checking adder proposed in [29]. It requires sin-
gle full adder cell, equivalent tester and two XNOR gates for self
testing the fault while it uses two full adder cells during self repair-
ing of the faults. The XNOR gate (X1) is used for comparing the sum
and carry outputs. It works on the principle that the sum and carry
outputs will be equal when all the input applied are equal and the
sum and carry outputs will be complemented to each other when
any of the three inputs applied is different from remaining inputs.
The XNOR gate (X2) is used to detect the fault in the full adder cell.
The fault is represented in the form of Ef as shown in Fig. 5. The
faults, which are detected during the self checking process, can
be removed by replacing the faulty full adder cell with another
redundant full adder as shown in Fig. 6.

This design requires redundant adder for repairing the single
fault. But it fails when double faults occur at a time. In this case,
the fault indication output (Ef) of this design shows that there is
no fault. Therefore, the fault is not repaired by the self repairing
adder. This shows that this design is less reliable. These are the
major limitations of this design.
3. Proposed design

3.1. Main Idea

The key idea of the proposed fault tolerant design is as follows.

1. The sum and carry bits are tested individually to improve the
efficiency of fault diagnosis.

2. The proposed design does not require two rail checker used in
[29] for detecting the error and redundant full adder used in
[16] for repairing the full adder. This reduces the overall hard-
ware cost of the proposed design.

3. The proposed fault tolerable CSA architecture can detect and
repair transient and permanent faults simultaneously.
Full Adder

Full Adder

2-rail checker

0 1

A0B0

A0B0

S0

Cin = 0

Cin = 1

Cin

Z2

g carry select adder.

Full adder
Sum Cout

[(a’b’c’)+(abc)]’

A B C

Error (Ef)

X1

X2

Fig. 5. Self checking full adder.

M
U

X
-1

M
U

X
-2

Adder-0e
Cout-final

Sum-bit 0

Adder-0

Sum0

Sum0e

Cout0

Cout0e
Adder-0e

Adder-0

Fault

Fig. 6. Self repairing adder.

1

Full adder

Func�onal
unit

5

32

4

Sum Cout

Fs Fc

G1 F1G2 G3

A B Cin

Fig. 7. Proposed self checking full adder design.

1468 P. Kumar, R.K. Sharma / Engineering Science and Technology, an International Journal 19 (2016) 1465–1472
3.2. Proposed self checking adder with fault localization

The output expressions for the sum and carry outputs of the full
adder is shown in Eqs. (1) and (2).

Sum ¼ A� B� Cin ð1Þ

Count ¼ ABþ BCin þ CinA ð2Þ
The proposed self checking full adder can detect the faults with the
indication of its exact location. In this design, carry select adder
(CSA) is used, whereas the Ripple Carry Adder (RCA) is simple in
architecture and working. The drawback of RCA is that it requires
more computation time. However, CSA is the fastest adder and also
requires minimum hardware cost compared to other adders except
carry skip adder. In the proposed design, both the sum and carry
outputs of CSA full adder are checked online individually to detect
the fault in both the outputs. The detailed diagram of the proposed
self checking full adder is shown in the Fig. 7.

XNOR gates and equivalent functional unit are used for detect-
ing the fault at the carry output. XNOR gates are design using Dou-
ble Pass transistor Logic (DPL) based logic. The output of the
functional unit (A0B0C + ABC0) and (XNOR-1) are compared using
the (XNOR-5) to detect the fault. The output expressions of
(XNOR-1), functional unit and (XNOR-5) are represented in the
form of (G1), (F1) and Fc and shown in the Eqs. (3)–(5),
respectively.

G1 ¼ Cout � Cin

� �
ð3Þ
F1 ¼ A0B0C þ ABC0
� �

ð4Þ

Fc ¼ G1� F1
� �

ð5Þ

If the output (Fc) indicates 0, it represents the fault free condition.
On the other side, if the output of (Fc) indicates 1, it shows that
the carry output of the full adder is faulty. Similarly, for detecting
the fault in the sum output three XNOR gates are used. The output
of the XNOR-2 and XNOR-3 are compared using the XNOR-4 to
detect the fault. The output expressions of (XNOR-2), (XNOR-3)
and (XNOR-4) are represented in the form of G2, G3 and Fs and
given in Eqs. (6)–(8), respectively.

G2 ¼ ðA� BÞ ð6Þ

G3 ¼ Sum� Cin

� �
ð7Þ

Fs ¼ G2� G3
� �

ð8Þ

If the output (FS) is 0, it represents the fault free condition. On the
other hand, if the output (Fs) is 1, it shows the fault in sum output.
In this way, the proposed design can detect the single and double
faults occurred at a time. Finally, the faults, detected at the sum
and carry output are represents in the form of Fs and Fc, respec-
tively. If any one or both of these signals indicate high, it represents
the fault in the corresponding outputs. In case of no fault, both the
signals indicate low.

3.3. Proposed self repairing adder

The proposed self repairing adder is used for repairing the faults
detected during the self checking approach of the carry select
adder. This design guarantees to repair all the faults (transient
and permanent) and makes the adder completely fault free. The
proposed self repairing design does not need any standby adder
cell to replace the faulty adder as used in the previous self repair-
ing full adder [16]. In this approach, faults are repaired by using an
inverter in place of the standby full adder cell. Therefore, the pro-
posed self repairing approach requires a negligible area compared
to existing self repairing approach [16].This approach is based on
the principle given below.

Table 1
Comparison of area overhead.

Designs Individual
transistor count

Total number of
transistors

Area
overhead
(lm2)

Proposed fault
tolerant design

1-Adder 28
5-XNOR 30
1-Fun. Unit 12 82 192.85%
2-Mux 08
2-Inverter 04

Self repairing adder 2-Adder 56
4-XNOR 24 112 300%
2-Eqt 24
2-Mux 08

P. Kumar, R.K. Sharma / Engineering Science and Technology, an International Journal 19 (2016) 1465–1472 1469
1. The sum and carry outputs will be either 1 or 0 depending on
the input combination applied to the full adder cell.

2. If the signal Fs indicates the fault in sum output and the
inverted sum output is selected by the multiplexer under the
control of Fs.

3. If the signal Fc indicates the fault in carry output, inverted carry
output is selected by the multiplexer under the control of Fc.

The operation of the proposed design is based on the control
signals (Fs and Fc) provided by the self checking full adder. If the
control signal Fs is 0, it shows that there is no fault in the sum out-
put and the sum output coming from the full adder cell will be
selected by the multiplexer to generate the final sum. Multiplexers
are designed using transmission gates. On the other hand, If the
control signal is Fs 1, it shows that there is a fault in the sum out-
put. The faulty sum output coming from the full adder cell is
repaired by using the inverter. The inverted sum output is further
selected by the multiplexer to generate the final sum as shown in
Fig. 8. Similarly, if the control signal Fc is 0, it shows that there is no
fault in the carry output, and the carry output coming from the full
adder cell will be selected by the multiplexer to generate the final
carry. On the other hand, If the control signal is Fc 1, it shows that
carry output is faulty. The faulty carry output is repaired by using
the inverter. The inverted carry output is further selected by the
multiplexer to generate the final carry as shown in Fig. 8. In this
way, the faulty adder cell is repaired and converted into the fault
free adder. Therefore, this approach can repair single and double
fault occurs at the sum and carry outputs at the cost of minimum
hardware.
Fig. 9. Comparison of transistor count and area overhead of proposed and self
repairing adder [16].
3.4. Simulation results and comparison

The proposed fault tolerant full adder and some popularly
known self checking and self repairing full adder architectures
have been implemented using UMC 55-nm standard cell library
in cadence virtuoso tool. The hardware overhead of the proposed
design is found better in comparison to the existing self repairing
design [16] and shown in Table 1.

The hardware overhead is computed on the basis of the transis-
tor count. The proposed fault tolerant full adder requires only one
self checking full adder cell and an inverter in place of redundant
full adder, which is used in the previous design. The hardware cost
of the proposed and self repairing adder can be calculated and
compared using the Eq. (9) [30].

Areaoverhead ¼ AreawithFT � AreawithoutFT

AreawithoutFT
� 100% ð9Þ

The graph shown in Fig. 9, shows the comparison of the proposed
design and self repairing adder on the basis of transistor count
and area overhead.
M
U

X
-1

M
U

X
-2

Proposed
self-checking

full adder
Sum

Carry

Fc

Fs

Proposed
self-checking

full adder

Carry-final

Sum bit 0

Fig. 8. Proposed self repairing full adder design.
3.5. Fault coverage and repairing

In the proposed fault tolerant design, faults in sum and carry
outputs are indicated in the form of Fs and Fc respectively. The
logic high of Fs will indicate a fault in the sum output while logic
high of Fc will indicate a fault in the carry output. The proposed
design has guaranteed to detect and repair the faults (transient
and permanent) online even if the double fault occurs at the same
time. The faulty and fault free conditions are described below.

3.6. Faulty conditions

Faults are shown in the form of Fs and Fc. If there is any fault at
the carry in or other input signals applied to the full adder cell, it
will change the value of the sum and carry output. After compar-
ison, we found both the signals Fs and Fc. If any one of them will
be logic high, this condition is known as faulty output. All the
faulty conditions of the proposed and existing designs, which are
responsible for the fault generation are given in Table 2 with the
status of fault repairing.

3.7. Fault-free conditions

If the fault tolerance full adder does not detect any permanent
and transient fault at the input and output terminals, the sum
and carry output will not modify and the output will be fault free.
In this case, both Fs and Fc will be at logic low and the actual sum
and carry outputs of the full adder cell will be selected by the

Table 2
Comparison of fault coverage and repairing.

Designs Fault coverage Conditions Fault repairing

Proposed Single-net

Multi-net

Single fault

Double fault

Stuck-at fault

Fs ¼ 0
Fc ¼ 0

�
Fault-free

Fs ¼ 1
Fc ¼ 0

�
Fault in sum

Fs ¼ 0
Fc ¼ 1

�
Fault in carry

Fs ¼ 1
Fc ¼ 1

�
Fault in both

Self repairing is possible in all the faulty cases

Self repairing [16] Single-net

Multi-net

Single fault

Eqt ¼ 0
Sum ¼ cout

�
Fault -free

Eqt ¼ 1
Sum ¼ cout0

�
Fault-free

Eqt ¼ 0
Sum–Cout

�
Faulty

Eqt ¼ 0
Sum–Cout0

�
Faulty

Self repairing is not possible when double faults occur at a time

DMR Single-net Ecom ¼ 0g Fault-free
Ecom ¼ 1g Faulty

Self repairing is not possible

TMR Single-net Ecom ¼ 0g Fault-free
Ecom ¼ 1g Faulty

Self repairing is possible with 500% hardware cost

Table 3
Comparison of fault recovery and reliability.

Fazeli et. al.[31] TMR Self-repairing [16] Proposed

Fault recovery Fault recovery is
possible if
1. Both the operands

should be NWV
2. Only one module is

faulty

Fault Tolerance is possible if only
one module goes faulty at a time

Fault Recovery is possible if double
fault does not occur simultaneously

Fault recovery is possible even if
double fault occur simultaneously

Output reliability on
single fault

56% 100% 100% 100%

4-Bit adder output
reliability on second
fault

27% 27% 85.82% 100%

1470 P. Kumar, R.K. Sharma / Engineering Science and Technology, an International Journal 19 (2016) 1465–1472
multiplexer to generate the final sum and carry. This condition is
known as faulty-free output and all the fault free condition of
the proposed and existing designs are given in Table 2.
Fig. 10. Comparison of fault recovery and reliability of the proposed and existing
designs.
3.8. Reliability comparison

In case of fault tolerant approach proposed by Fazeli et al. [31],
fault recovery is possible with the adoption of the TMR approach
and when all the input bits are NVW. The resulting calculation
based on ARM processor showed that this approach is 56% reliable
when single fault occur in a full adder module. However, the reli-
ability decreases with the increase of number of faults at a time,
which are shown in Table 3.

The output reliability of TMR is 100% if only one module goes
faulty at a time. The problem is arising when two modules become
faulty at a time. This reduces the reliability and the TMR fails to
provide the reliable output as shown in Table 3. This happens
due to the absence of the self repairing module. However, if a mod-
ule is added for self repairing it will require a hardware cost of
more than 500%. The probability of the fault recovery can be com-
puted by using the expression given below.

ProbabilityðTMRÞ ¼
n

r

� �
� 3

N

r

� � ð10Þ
where N indicates the total number of full adder and r introducing
the random fault. n is the total number of full adder present in all
the modules.

+

a1 b0

+

a2 b0

a1 b1

+

a3 b0
a2 b1 a0 b1

a0 b0

++

a1 b2

+

a2 b2 a0 b2

++

a1 b3

+

a2 b3 a0 b3

+ ++

P3 P2 P1P5 P4P6 P0

a3 b3

a3 b2

P7

a3 b1

Fig. 11. Fault tolerant multiplier design using 1-bit proposed self repairing full adder.

Table 4
Power, delay and PDP behavior of the 4-bit and 8-bit proposed fault tolerant
multiplier designs.

Designs Power (lW) Delay (pS) PDP (aJ)

4-Bit proposed fault tolerant
multiplier design

94.38 598.3 56467.554

8-Bit proposed fault tolerant
multiplier design

712 1326 944,112

Fig. 12. Power, delay and PDP of 4-bit and 8-bit proposed fault tolerant multiplier.

P. Kumar, R.K. Sharma / Engineering Science and Technology, an International Journal 19 (2016) 1465–1472 1471
The output reliability of the self repairing full adder is 100% if a
single fault occurs at a time. The output reliability of this design
can be calculated with the expression given below.

Probabilityðself -repairingÞ ¼ 1�
N � 2
r � 2

� �
� n

N

r

� �
0
BBB@

1
CCCA ð11Þ

where n indicate the number of full adders in a single module. N
represents the total number of full adders in all modules and r
shows the total number of faults. In case of double fault occur at
a time, reliability decreases to 85.82% as shown in Table 3. This hap-
pens due to the in-capability of self repairing adder [16] to detect
and repair the double fault occurred at a time. The proposed fault
tolerant full adder is capable in repairing both single and double
faults occur at a time. Hence, the proposed design has 100% reliabil-
ity, if the single and double faults occur. The graph of Fig. 10, shows
the comparison of fault recovery and reliability of the proposed and
existing designs. It shows that the proposed design is highly reliable
than the existing designs given in the literature.

4. Comparison with existing fault tolerant full adder designs

1. The proposed design is capable of detecting and repairing the
transient and stuck-at faults occur in single and multi-net.
However, the design proposed in [29], TMR and DMR
approaches can’t detect the stuck-at fault.

2. The fault detection capability of the DMR-based adder is 100% for
the single fault at a time. However, error correction capability of
TMR-based adder is less than 100% because error occurs in voter
circuit is not corrected. But it is limited to the single error. The
proposed circuit is more reliable than the DMR and TMR-based
adder against single and double fault detection and correction.

3. The proposed fault tolerant full adder can detect single and
double fault at a time. Hence, the proposed design is free from
the problem of fault propagation through carry. However the
TMR, DMR, self checking [29] and self repairing full adders
[16] have the problem of fault propagation through carry.

4. The proposed fault tolerant full adder does not require redun-
dant full adder for repairing the faults. However, the self repair-
ing design [16] requires the redundant adder for repairing the
fault. Hence the area acquired by the proposed design is less.
5. The proposed design requires an inverter to repair the faults
occur in sum and carry outputs. However, design in [16]
requires the redundant adder to repair the faults occur in sum
and carry outputs. Therefore, the proposed design has mini-
mum chances of common mode failure than the existing
designs.

5. Performance of proposed fault tolerant multiplier design

A fault tolerant multiplier shown in Fig. 11, is implemented as
an application of the proposed fault tolerant full adder. The full

1472 P. Kumar, R.K. Sharma / Engineering Science and Technology, an International Journal 19 (2016) 1465–1472
adder shown in Fig. 11, is the proposed self repairing full adder
shown in Fig. 8. Simulation results show that the fault tolerant
multiplier produces the correct output even if the any type of fault
(single or double) occur in the full adder cells. The performance of
the proposed 4-bit and 8-bit fault tolerant multiplier is computed
at 100 MHz and 1.0 V using UMC 55-nm technology. The Cadence
spectre simulator tool is used to estimate the power consumption
and propagation delay. Table 4 shows the power consumption,
propagation delay and PDP behavior of the proposed multiplier
design. The graphical representation of the fault tolerant multipli-
ers are shown in Fig. 12.

6. Conclusion

In this paper, a new technique for self checking and self repair-
able carry save adder with minimal area overhead has been pro-
posed. The proposed design can detect and repair both single and
double faults at a time online. Hence, this design is free from the
problem of fault propagation through carry. The proposed fault tol-
erant full adder is compared in terms of single and multi-net error
detection and correction possibility with the DMR-based, TMR-
based, self testing and self repairing full adder designs. The com-
parison results of the proposed designs are found better that
ensure its superior performance capability. The proposed design
is extendable up to a desirable level. A 8-bit fault tolerant multi-
plier is also implemented using the proposed design. It works effi-
ciently when cascaded and can handle single and multi-net faults
successfully.

References

[1] A. Pellegrini, R. Smolinski, X. Chen, X. Fu, S.K.S. Hari, J. Jiang, S.V. Adve, T.
Austin, V. Bertacco, CrashTest’ing SWAT: accurate, gate-level evaluation of
symptom-based resiliency solutions, in: International Conference on Design,
Automation and Test, Europe, 2012.

[2] K. Navi, V. Foroutan, M. RahimiAzghad, M. Maeen, Ebrahimpour, M. Kaveh, O.
Kavehei, A novel low-power full-adder cell with new technique in designing
logical gates based on static CMOS inverter, Microelectron. J. 40 (10) (2009)
1441–1448.

[3] I. Brzozowski, A. Kos, Designing of low-power data oriented adders,
Microelectron. J. 45 (9) (2014) 1177–1186.

[4] M.H. Moaiyeri, M. Nasiri, N. Khastoo, An efficient ternary serial adder based on
carbon nanotube FETs, Eng. Sci. Technol. Int. J. 19 (2015) 271–278.

[5] M. Shoba, R. Nakkeeran, GDI based full adders for energy efficient arithmetic
applications, Eng. Sci. Technol. Int. J. 19 (01) (2016) 485–496.

[6] C.-K. Tung, Y.C. Hung, S.H. Shieh, G.S. Huang, A low-power high-speed hybrid
CMOS full adder for embedded system, in: International Conference on Design
and Diagnostics of Electronic Circuits and Systems, 2007.

[7] H.T. Bui, Y. Wang, Y. Jiang, Design and analysis of low-power 10-transistor full
adders using novel XOR–XNOR gates, IEEE Trans. Circuits Syst. II: Analog
Digital Signal Process. 49 (1) (2002) 25–30.
[8] M. Alioto, G. Palumbo, Analysis and comparison on full adder block in
submicron technology, IEEE Trans. Very Large Scale Integr. VLSI Syst. 10 (6)
(2002) 806–823.

[9] K. Navi, Keivan Navi, O. Kavehei, M. Rouholamini, A. Sahafi, S. Mehrabi, N.
Dadkhahi, Low-power and high-performance 1-bit CMOS full-adder cell, J.
Comput. 3 (2) (2008) 48–54.

[10] M.R. Azghadi, O. Kavehie, K. Navi, A novel design for quantum-dot cellular
automata cells and full adders. arXiv preprint arXiv:1204.2048, 2012.

[11] M.H. Ghadiry, A.K. A’ain, M. Nadi, Design and analysis of a novel low PDP full
adder cell, J. Circuits Syst. Comput. 20 (03) (2011) 439–445.

[12] P. Kumar, R.K. Sharma, Low voltage high performance hybrid full adder, Eng.
Sci. Technol. Int. J. 19 (01) (2016) 559–565.

[13] M. Jhamb, H. Lohani, Design, implementation and performance comparison of
multiplier topologies in power-delay space, Eng. Sci. Technol. Int. J. 19 (01)
(2016) 355–363.

[14] S. Ghosh, K. Roy, Novel low overhead post-silicon self-correction technique for
parallel prefix adders using selective redundancy and adaptive clocking, IEEE
Trans. Very Large Scale Integr. VLSI Syst. 19 (8) (2011) 1504–1507.

[15] M.H. Hajkazemi, A. Baniasadi, H. Asadi, FARHAD: a fault-tolerant power-aware
hybrid adder for add intensive applications, International Conference on
Application-Specific Systems, Architectures and Processors (ASAP), 2013.

[16] M.A. Akbar, J.-A. Lee, Self-repairing adder using fault localization,
Microelectron. Reliab. 54 (6) (2014) 1443–1451.

[17] C.D. Martinez, L.D. Bollepalli, D.H. Hoe, A fault tolerant parallel-prefix adder for
VLSI and FPGA design, IEEE Southeastern Symposium on System Theory (SSST)
, 2012.

[18] W. Peterson, On checking an adder, IBM J. Res. Dev. 2 (2) (1958) 166–168.
[19] W.W. Peterson, E.J. Weldon, Error-correcting Codes, MIT press, 1972.
[20] M. Nicolaidis, Carry checking/parity prediction adders and ALUs, IEEE Trans.

Very Large Scale Integr. VLSI Syst. 11 (1) (2003) 121–128.
[21] M. Nicolaidis, Time redundancy based soft-error tolerance to rescue

nanometer technologies, in: IEEE VLSI Test Symposium, 1999.
[22] C. Khedhiri, M. Karmani, B. Hamdi, Ka Lok Man, Concurrent error detection

adder based on two paths output computation, in: IEEE International
Symposium on parallel and Distributed Processing with Applications
Workshops (ISPAW), 2011.

[23] J. Von Neumann, Probabilistic logics and the synthesis of reliable organisms
from unreliable components, Automata Stud. 34 (1956) 43–98.

[24] D. Siewiorek, R. Swarz, Reliable Computer Systems: Design and Evaluation,
Digital Press, 2014.

[25] P. Reviriego, C.J. Bleakley, J.A. Maestro, Diverse double modular redundancy: a
new direction for soft-error detection and correction, IEEE Des. Test. 30 (2)
(2013) 87–95.

[26] M. Valinataj, A novel self-checking carry lookahead adder with multiple error
detection/correction, Microprocess. Microsyst. 38 (8) (2014) 1072–1081.

[27] A. Majumdar, S. Nayyar, J.S Sengar, Fault tolerant ALU system, IEEE
International Conference on Computing Sciences (ICCS), 2012.

[28] A. Ziv, J. Bruck, Performance optimization of checkpointing schemes with task
duplication, IEEE Trans. Comput. 46 (12) (1997) 1381–1386.

[29] D.P. Vasudevan, P.K. Lala, J.P. Parkerson, Self-checking carry-select adder
design based on two-rail encoding, IEEE Trans. Circuits Syst. I Regul. Pap. 54
(12) (2007) 2696–2705.

[30] A. Mukherjee, A.S. Dhar, Real-time fault-tolerance with hot-standby topology
for conditional sum adder, Microelectron. Reliab. 55 (3) (2015) 704–712.

[31] M. Fazeli, A. Namazi, S.G. Miremadi, A. Haghdoost, Operand width aware
hardwarereuse: a low cost fault-tolerant approach to ALU design in embedded
processors, Microelectron. Reliab. 51 (12) (2011) 2374–2387.

http://refhub.elsevier.com/S2215-0986(16)30018-0/h0005
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0005
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0005
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0005
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0005
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0010
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0010
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0010
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0010
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0015
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0015
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0020
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0020
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0025
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0025
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0030
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0030
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0030
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0030
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0035
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0035
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0035
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0040
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0040
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0040
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0045
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0045
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0045
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0055
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0055
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0060
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0060
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0065
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0065
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0065
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0070
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0070
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0070
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0075
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0075
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0075
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0075
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0080
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0080
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0085
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0085
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0085
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0090
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0095
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0095
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0100
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0100
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0115
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0115
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0120
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0120
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0120
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0125
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0125
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0125
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0130
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0130
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0135
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0135
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0135
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0140
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0140
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0145
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0145
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0145
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0150
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0150
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0155
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0155
http://refhub.elsevier.com/S2215-0986(16)30018-0/h0155

	Real-time fault tolerant full adder design for critical applications
	1 Introduction
	2 Previous self checking and self repairing design approaches
	2.1 Time redundancy
	2.2 Hardware redundancy
	2.2.1 Triple-modular redundancy (TMR)
	2.2.2 Double-modular redundancy (DMR)

	2.3 Operand width aware hardware reuse (OWHR)
	2.4 Self -checking CSA
	2.5 Self repairing adder

	3 Proposed design
	3.1 Main Idea
	3.2 Proposed self checking adder with fault localization
	3.3 Proposed self repairing adder
	3.4 Simulation results and comparison
	3.5 Fault coverage and repairing
	3.6 Faulty conditions
	3.7 Fault-free conditions
	3.8 Reliability comparison

	4 Comparison with existing fault tolerant full adder designs
	5 Performance of proposed fault tolerant multiplier design
	6 Conclusion
	References

