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Abstract

Most of the anti-phishing solutions are having two major limitations; the first is the need of a fast access time for
a real-time environment and the second is the need of high detection rate. Black-list-based solutions have the fast
access time but they suffer from the low detection rate while other solutions like visual similarity and machine
learning suffer from the fast access time. In this paper, we propose a novel approach to protect against phishing
attacks using auto-updated white-list of legitimate sites accessed by the individual user. Our proposed approach
has both fast access time and high detection rate. When users try to open a website which is not available in the
white-list, the browser warns users not to disclose their sensitive information. Furthermore, our approach checks the
legitimacy of a webpage using hyperlink features. For this, hyperlinks from the source code of a webpage are extracted
and apply to the proposed phishing detection algorithm. Our experimental results show that the proposed approach
is very effective for protecting against phishing attacks as it has 86.02 % true positive rate while less than 1.48 % false
negative rate. Moreover, our proposed system is efficient to detect various other types of phishing attacks (i.e., Domain
Name System (DNS) poisoning, embedded objects, zero-hour attack).
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1 Introduction
Phishing is a cyber security threat which is performed
with the help of social engineering techniques to trick
Internet users into revealing personal and secret infor-
mation [1]. Detection and prevention of phishing attacks
is a big challenge as the attacker performs these attacks
in such a way that it can bypass the existing anti-
phishing techniques [2, 3]. Moreover, sometimes an
educated and experience user may also fall under this
attack [4]. In this attack, the attacker makes a fake
webpage by copying or making a little change in the
legitimate page, so that an internet user will not able to
differentiate between phishing and legitimate webpages.
One of the effective solutions to prevent a phishing at-
tack is to integrate security features with the web
browser which can raise the alerts whenever a phishing
site is accessed by an internet user. Generally, web
browsers provide security against phishing attacks with
the help of list-based solutions. The list-based solutions
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contain either black-list or white-list. These list-based
solutions match the given domain with the domains
present in the black-list or white-list to take the
appropriate decision [5, 6]. The combination of technical
experts and security software verify when a new domain
needs to be added in this list. Security software checks
the various features of a webpage to verify identity [7].
According to the anti-phishing working report in the

second half of 2014, 123,972 unique phishing attacks
were found worldwide between July to December 2014
[8]. E-commerce, banks, and money transfer companies
are the most targeted industries by these attacks.
Seventy-five percent of phishing websites used five top-
level domains namely .com, .tk, .pw, .cf, and .net. The me-
dian uptime of phishing websites in the second half of
2014 increased to 10 h and 6 min (i.e., half of all phishing
attacks stay active for slightly more than 10 h) [8]. Internet
services providers (ISPs) were the most targeted industry
sector during the first three quarters of 2015, surpassing
the banking and financial service sectors coming in
second and third during the 9-month period [9]. The
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attackers targeted Internet services providers because ISP
account contains the identification details of users, credit
card information, and secret information regarding the
domain name [10, 11]. An attacker can also send the spam
mail from the hacked user’s account. One of the major
problems of 2015 is the Business Email Compromise
(BEC) scam [9]. In this scam, the attacker fools industries
into transferring large amounts of money using spear-
phishing techniques.

1.1 Phishing life cycle
A fake webpage generally contains a login form, and
when a user opens the fake webpage and inputs personal
information, this information is accessed by the attacker.
Furthermore, the attackers use this information for some
personal and financial gain [12]. The life cycle of a
phishing attack is shown in Fig. 1. The following steps
are involved in a phishing attack:

Step 1: The attacker copies the content from the
website of a well-known company or a bank and creates
a phishing website. The attacker keeps a visual similar-
ity of the phishing website similar to the corresponding
legitimate website to attract more users.
Step 2: The attacker writes an email and includes the
link of the phishing website and sends it to a large
number of users. In the case of spear phishing, a mail is
sent to only selected targeted users.
Step 3: The user opens the email and visits the
phishing website. The phishing website asks the user to
input personal information, for example, if the attacker
mimics the phishing website of a well-known bank,
then the users of bank are very likely to give up their
credentials to the fake website.
Fig. 1 Phishing life cycle
Step 4: The attacker gets personal information of the
user via the fake website and uses this information of
the user for financial or some other benefits.

1.2 Phishing attack classification
Phishing scams can be carried out using technical subter-
fuge and social engineering [6]. Social engineering strat-
egies use “spoofed” emails to guide users to fraudulent
websites. Phishing URL can also be spread by Internet
Relay Chat (IRC) and instant messaging (IM), forum,
blogs, etc. The phishers send the same email to thousands
of users and asking them to input personal information.
Some of the major phishing attacks to fool an internet
user are explained below:

The zero-hour phishing attack: A zero-hour vulnerabil-
ity refers to a hole in anti-phishing technique that is
unknown to the vendor. This security hole is then
exploited by hackers before the vendor becomes aware
and hurries to fix it.
Embedded objects: A real webpage is downloaded to
build the phishing webpage which appears just similar
to a genuine webpage in appearance. Attackers cover
the address bar by using an image or script which
makes the online user believe that they have input to
the right website. Attackers also use the embedded
objects (flash, images, etc.) instead of HTML codes to
avoid phishing detection techniques.
Domain Name System (DNS) attack: DNS cache
poisoning exploits vulnerabilities in the domain name
system. In this attack, attackers divert Internet traffic
from the legitimate website to the phishing website.
Language dependent: Most of the anti-phishing tech-
niques are based on heuristics, which include the
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keyword frequently appearing in the phishing website
[13, 14]. If these techniques detect the keywords
written in the English language, then they cannot
detect other languages, e.g., Chinese, Hindi, Japanese,
etc.

In this paper, we propose a novel approach against
phishing attacks using auto-updated white-list of legit-
imate sites accessed by the individual user. A white-list
is a set of approved legitimate domains or URLs. A
white-list contains the information of those sites which
are legitimate and the user wishes to access. On the
other hand, a black-list contains the information of those
sites which are fake and the user does not wish to access.
Moreover, the white-list data is small and more accurate
as compared to the black-list. In our proposed solution,
the current domain is matched with predefined legitim-
ate domains called white-list. If the user tries to open
any website which is not available in the white-list, then
our system checks the legitimacy of the website. Further-
more, our approach uses the hyperlink features which
are extracted from the source code of a webpage to
make the decision. After checking the legitimacy of a
webpage using hyperlink features, the system updates
the domain in the white-list. When the user accesses the
same domain next time, the system only matches the
domain name and IP address. Our proposed approach
comprises two major components. (i) First is the domain
and IP address matching module. This module matches
the present domain and IP address in the white-list.
Matching of IP address protects against DNS poisoning
or pharming attacks. We use third-party DNS to match
domain name with IP address. (ii) The second module
runs if the domain is not matched with the white-list.
This module examines the features from the hyperlinks
to take the decision.
To summarize, the major contributions of our paper

are mentioned below:

� A practical and real-time technique is proposed
which can protect a user from phishing attacks on
client site effectively.

� Detect the phishing attack by analysing only one
effective feature (i.e., hyperlinks present in the
webpage).

� Detection of zero-hour phishing attack without
any prior training.

� DNS attack is also detected by matching the IP
address of the suspicious site using Google Public
DNS.

The remainder of this paper is organized as follows.
Section 2 describes the background and previous anti-
phishing approaches, their advantages and drawbacks.
Section 3 presents the overview of our proposed
approach and phishing detection algorithm. Section 4
presents the implementation detail, evaluation metrics,
and results to judge the proposed anti-phishing sys-
tem. We conclude the paper and present future scope
in Section 5.

2 Related work
There have been several techniques given in the
literature to detect phishing attacks. In this section, we
present an overview of detection approaches against
phishing attacks. In general, phishing detection tech-
niques can be classified as either user education or
software-based anti-phishing techniques. Software-based
techniques can be further classified as list-based,
heuristic-based [13–15], and visual similarity-based
techniques [16].
List-based anti-phishing techniques maintain a black-

list, white-list, or combination of both. In black-list-
based anti-phishing approach, a black-list is maintained
which contains suspicious domain names and IP ad-
dresses. Black-lists are frequently updated; however,
most of the black-list-based approaches are not effective
in dealing with zero-hour phishing attacks [17]. Authors
in [17] conclude that 47 % to 83 % of phishing domains
update in the black-list after 12 h. Some of the ap-
proaches making use of black-lists are Google Safe
Browsing API, DNS-based black-lists, and predictive
black-listing. However, maintaining a black-list requires
a great deal of resources for reporting and confirmation
of the suspicious websites. As thousands of phishing
webpages are created every day, updating every phishing
webpage in the black-list is a challenging task. Some of
the anti-phishing solutions given in the literature to pro-
tect user from phishing attacks are mentioned below:
Google provides a service for safe browsing [18] that

allows the applications to verify the URLs using a list of
suspicious domains which is regularly updated by
Google. It is an experimental API but is used with
Google Chrome and Mozilla Firefox, and it is very easy
to use. The Safe Browsing Lookup API [18] allows the
clients to send the suspicious URLs to Safe Browsing
service which tells whether the URL is legitimate or
malicious. The client API sends the URLs with GET or
POST requests, which are checked using the malware
and phishing lists provided by Google. Some of the
shortcomings of Safe Browsing Lookup API are as fol-
lows: (i) no hashing is performed before sending URL
and (ii) there is no limit on the response time by the
lookup server.
A DNS-based blackhole list (DNSBL) [19] is a zone

that contains resource records for the identification of
hosts present in the black-list and uses the DNS proto-
col. The hosts undergo an IP address or domain name
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transformation to be encoded into DNSBL zones. There
is an A record (for IPv4 address) and TXT record which
gives the reason for black-listing for each entry in the
DNSBL [19]. The standard value of A record contents is
127.0.0.2, but they may have other values too. DNSBLs
can use the same TXT records for all entries or a differ-
ent for each entry. A single DNSBL can have both IPv4
and IPv6 addresses. Domain names are less frequently
used by DNSBLs than the IP addresses. The interpret-
ation of A records and TXT are the same as the inter-
pretation of the IPv4 DNSBLs.
PhishNet [20] examines the black-listed URLs and

used some heuristics to create new variations of that
URL. The author replaced top-level domains (TLD) with
3209 different TLDs resulting into child URLs which are
required to be examined. To generate new URLs, clus-
ters of host equivalence classes having the same IP ad-
dress are maintained, and all combinations of these
hostnames and path are then used to create new URLs.
The URLs with the same directory are grouped together,
and the new URLs are created by exchanging filenames
within that group. If two URLs have the same directory
structure with different query parts, the query part can
be swapped to create new URLs.
The automated individual white-list [21] keeps records

of the legitimate Login User Interfaces (LUIs) of web-
pages. Whenever the user submits their credentials to
LUI, the white-list is checked for it and if it is not on the
list, then a warning is given to the user. AIWL has two
primary components. First is the white-list of legitimate
LUIs. It is used to check whether a URL is familiar or
suspicious so that the warning is suppressed. In the
white-list, each LUI is stored as a vector that comprises
of URL address, webpage feature, DNS-IP mapping. The
second component is the automated white-list main-
tainer: It is a naive Bayes classifier which decides
whether to store an LUI in the white-list. The white-list
maintainer checks the number of logins for a specific
LUI, if it exceeds a certain threshold, then the LUI is
white-listed. We borrow the idea of maintaining the
white-list for individual users from this paper.
Liu et al. [16] proposed an anti-phishing technique

using visual features. This technique compares the visual
similarity between the current site and the stored legit-
imate website. The proposed approach has taken a var-
iety of visual features for comparison. To detect a
phishing website, the system consists of two modules.
The first module runs on the local server to detect sus-
picious URLs and keywords from email. The second
module compares the visual similarity between the sus-
picious webpage and stored genuine webpage.
Liu et al. [22] present an approach which can detect

the zero-hour phishing attack. The system extracts
directly associated webpage and indirectly associated
webpage. Directly associated webpages are extracted
using the hyperlinks present in the source code of a
webpage. Most frequent keywords (using the term
frequency-inverse document frequency (TF-IDF) algo-
rithm) including title word are searched using a reliable
search engine to extract indirectly associated webpages.
After extracting directly and indirectly associated web-
page, the system compares the suspicious webpage with
the associated webpage using link relation, ranking rela-
tion, text similarity, and layout similarity relations.
Zhang et al. [23] proposed a content-based phishing de-

tection technique called CANTINA, which takes feature
set from various fields of a webpage. The proposed tech-
nique calculates TF-IDF of the content of a website and
creates a lexical signature. Then, the top five terms with
highest TF-IDF values are submitted to the search engine.
The top “n” results are used to check the legitimacy of a
website, though the performance of CANTINA is affected
by the language used in the website.
Xiang et al. [7] present CANTINA+, an effective, rich

feature-based machine learning approach to detect
phishing webpages. The rich features are taken from the
various field of a webpage like Document Object Model
(DOM) tree and the URL of a website. They filtered the
website without login forms in the first step to decrease
false positive rate. CANTINA+ achieved a true positive
rate of 92 % and a false positive rate of 0.4 %.
Reddy et al. [24] present an anti-phishing technique

which protects user at client side against phishing at-
tacks. The proposed technique provides facility for the
user to select specific image corresponding to every
website he/she visits. Next time, when a user visits the
same website and if the images do not match, then the
system will alert the user. However, maintaining the
image database required a lot of memory, and matching
the images of suspicious sites with the stored images re-
quired a lot of time.
In a real-time environment, the detection of a phishing

attack should be effective and very fast. Black-list-based
approaches are very fast, but they cannot detect the
zero-hour phishing attack. Visual similarity-based ap-
proaches are time consuming, require a lot of memory,
and fail to detect the zero-hour attack. Heuristic-based
approaches can detect zero-hour attack but their per-
formance depends on the feature set, training data, and
classifier [25, 26]. Therefore, in this paper, we proposed
an approach based on auto-updated white-list to protect
against phishing attacks effectively.

3 Proposed framework
In this section, we will discuss our proposed phishing
detection system.
Phishing webpages always have the same visual designs

as their corresponding real websites because visual style
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is the most important characteristic, which is observed by a
maximum number of users. However, a phishing webpage
does not provide services similar to the corresponding legit-
imate webpage. An attacker can download the real webpage
to build the phishing webpage. The phishing webpage may
contain some links which redirect the users to the corre-
sponding legitimate webpage (i.e., if a user finds any diffi-
culty to access his/her account, he/she click on a help link
then the webpage may redirect to the help section of the
targeted legitimate webpage). To verify the hyperlinks rela-
tion, we have checked over 1120 phishing webpages taken
from PhishTank [27] and found that 410 webpages contain
direct hyperlinks to their legitimate source page.
Figure 2 shows the phishing webpage of Apple which is

a verified phishing webpage taken from PhishTank [27].
The phishing page contains many links which can redirect
the users to apple.com. If the user finds any difficulty in
accessing the login account, then the user clicks on a link
like “Forget your apple id”. Subsequently, the webpage is
redirected to the Apple genuine webpage. When the user
signs in by entering user id and password, the webpage
is then redirected to the genuine apple.com and cre-
dentials are passed to another fake domain.

3.1 System architecture
The architecture of our proposed system is divided into
two modules as shown in Fig. 3. The first module is the
Fig. 2 Phishing webpage of Apple
URL and DNS matching module which contains a
white-list, which is used to increase the running time
and decrease the false negative rate. Our white-list main-
tains two parameters, domain name and corresponding
IP address. Whenever a user accesses a website, then the
system matches the domain name of the current website
with white-list. If the domain of the current website is
matched with the white-list, then the system matches
the IP address to take the decision. When the user ac-
cess a website which is already present in the white-list,
then our system matches the IP address of the corre-
sponding domain to check the DNS poisoning attack.
Our white-list starts with zero; it means that at the be-
ginning, there is no domain in the list and the white-list
starts increasing once a user accesses the new webpages.
When a user accesses a website, then there are two pos-
sibilities, either the user is accessing the website for the
first time or it is already visited by the user. If the user is
accessing the website for the first time, then the domain
of the website will not be present in the white-list. In
that case, our second module starts working. The second
module is the phishing identification module, which
checks whether a webpage is phishing. We extract the
hyperlinks from the webpage and apply our phishing de-
tection algorithm (the phishing detection algorithm is
explained in Section 3.2). Our phishing detection algo-
rithm examines the features from the hyperlinks to take
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the decision. After checking the legitimacy, if the website
is phishing, then the system shows the warning to the
user. Moreover, if the website is legitimate, then the
system updates the domain in the white-list.

3.2 Phishing detection algorithm
Our proposed phishing detection algorithm takes the de-
cision on the basis of hyperlink information extracted
from the page source of the suspicious webpage. The
phishing detection algorithm is shown in Algorithm 1.
The motivation behind the hyperlink extraction is that
the phishing webpage copies the page content from the
targeted legitimate webpage and it may contain many
hyperlinks in the mimicked fake webpage which gener-
ally point to the corresponding legitimate webpage such
as help and forget user id or password. Sometimes
phishing webpage also contains the logo of the targeted
legitimate webpage. Hyperlinks are extracted from the
DOM object’s properties, which include href, src, and alt
attributes of anchor, image, script, and link tags. There
may be chances that some of the hyperlinks extracted
come out to be relative links; in that case, we replaced
those links by their hierarchically known absolute links.
Many of the hyperlinks present in the phishing webpage
may redirect to the corresponding legitimate website,
but if the webpage is genuine, then it never points to a
phishing webpage. Our phishing detection algorithm
takes the decision based on three parameters of hyper-
links. These parameters are webpage that does not con-
tain hyperlinks, null links present in the source code,
and foreign links present in source code. We discuss all
three parameters in following subsections.
3.2.1 Webpage that does not contain any hyperlinks
Writing the source code in HTML is easily traceable,
and anti-phishing techniques can easily extract features
from the page source code. Therefore, to trick the anti-
phishing techniques, an attacker can design a webpage
in such a way that he/she will be able to bypass the



<a href="#" onClick="location.href=unescape (‘http://www.example1.
org%01@example2.org’);" onMouseOver="window.status='example1.
org';return true;" onMouse Out="window.status='';return false;">This is
the hyperlink Text </a>
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phishing or malware detection system. An attacker uses
server site script (as mentioned below) to hide the web-
page source content.
<a href="serversite.php?id=1234">server site</a>
serversite.php is a script on the server that knows that
id=1234 refers to www.xyz.com and could redirect the
browser to it. The script would only work if it is called
from the server (otherwise, someone could simply copy
the source code and modify the path to serversite.php).
Hackers also use the frameset (as mentioned below) to
hide the source code of a webpage, and they give the
reference of php file stored on the server site.
<frameset rows="0,* border="0">
<frame src="UntitledFrame-1" name="header" scrolling="no" noresize
target="main">
<frame name="main" src="cadastro.php">
<noframes>
</frameset>
From our analysis, we have seen that if the website is le-
gitimate, we can extract at least one hyperlink. In addition,
if the total links extracted from the page source are zero,
then it shows that the website is a phishing site. Therefore,
our phishing detection algorithm declares the webpage as
phishing if no hyperlink is extracted from the page source.
3.2.2 Webpage that contains null pointer
Null pointer or null link means the hyperlink is not
pointing to any other document or webpage. Null
pointer in href tag is denoted by <a href="#">. The use
of null pointer is to back on the same webpage after
clicking on the hyperlink. Attackers create null pointer
in the fake webpage for the following two reasons:

1- The first reason is to create the live hyperlink which
goes nowhere. A genuine website contains lots of
webpages, but a fake website contains very limited
webpages. Therefore, to pretend like the legitimate
webpage, the attacker creates a fake webpage and put
the null values in hyperlinks. When the user scrolls the
mouse over the null links, it seems that they are active.

2- Hackers use the javascript with null links to exploit the
vulnerability of a web browser. An attacker creates a
hyperlink in such a way that when a user scrolls the
mouse over it, it shows something else rather than the
actual one. In the example (as shown below), the link
looks like www. example1.org, but actually, the real
domain is http://example2.org. By using href="#", the
link is activated and pointing the same, so the onClick
attribute is able to activate.
Therefore, our phishing detection algorithm can de-
clare the webpage as phishing if most of the hyperlinks
(greater then threshold) extracted from the page source
are NULL.

3.2.3 Number of links pointing to own domain and foreign
domain
After checking the no link and null link attributes, our
algorithm can take the decision based on the extracted
hyperlink set. In the legitimate webpage, most of the hy-
perlinks point to the same domain but in the phishing
webpage, most of the hyperlinks point to its targeted do-
main (corresponding legitimate site) or some another
foreign domain. Our algorithm calculates the ratio of the
total number of links pointing to a foreign domain and
the total links extracted from the source code of the
webpage. We choose the appropriate threshold value to
take the decision using various experiments. The
phishing detection algorithm takes decision based on the
following equation.

Ratio ¼
X

L−NDiX
L

ð1Þ

where NDi is the total number of links pointing to the
own domain and ∑L is the total number of links ex-
tracted from the page source of the suspicious webpage.

3.3 Records in the white-list
In the proposed approach, two records are kept in the
white-list. First is the domain name and another is the IP
address of the corresponding domain name. Whenever a
user accesses the webpage for first time, the identity of the
webpage is checked by the hyperlink relationship to make
the decision. After making the decision, if the website is
legitimate, then the system stores the detail in the white-
list. Next time, when the user accesses the same domain
name, the system extracts the IP address corresponding to
that and matching is performed. We extract the IP address
from the third party to protect the user from the DNS
poisoning attack.

3.4 Third-party services
DNS cache poisoning exploits vulnerabilities in the do-
main name system. In this attack, hackers divert Internet
traffic from the legitimate website to the phishing web-
site. DNS is a distributed database because it becomes
complex when all the Internet information is stored in a
single place. To speed up the performance, one server



Table 1 Database uses to test system

S. number Database Number of URLs Phishing/legitimate URL of dataset

1 PhishTank [27] 1120 Phishing https://www.phishtank.com

2 Alexa [31] 200 Legitimate http://www.alexa.com/topsites

3 Stuffgate [32] 150 Legitimate http://stuffgate.com/stuff/website/top-sites

5 Online payment service provider 55 Legitimate http://en.wikipedia.org/wiki/List_of_online_
payment_service_providers

Table 2 Ratio of hyperlinks pointing to a foreign domain versus
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caches the recently queried data from another server.
ISP, home router, and user’s personal computer also
maintain the DNS cache, so they can also solve the DNS
query rather than refer to DNS server again and again
for the same information. Whenever the user’s computer
contacts to a domain name like “paypal.com,” a DNS
resolver contacts to the nearest DNS server. The DNS
server responds with an IP address. The user’s computer
then connects directly to that numerical IP address cor-
responding to paypal.com. An attacker can change the
information in the DNS cache and makes it poisoned. If
the attacker gets control over DNS server and change
some information, e.g., an attacker changed the IP ad-
dress corresponding to paypal.com and put its own web-
site IP address which is a phishing website, then the
attacker gets all the information input by the user. In
this attack, an Internet user always sees the correct URL
in the web browser. Our phishing detection system com-
pares the IP address of a suspicious site after matching
the domain name. We retrieve the target’s IP address by
performing DNS lookup. The purpose of using DNS
lookup is to resolve the issue of DNS poisoning as some-
times the attacker changes the entry in DNS cache.
Attempting to match these two IP addresses will reduce
the false negative rate.

4 Implementation and results
In this section, we will discuss implementation details
and experimental results of our proposed phishing de-
tection system. Our proposed system can provide the
personal protection for Internet users as a browser plug-
0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12

N
u

m
b

er
 o

f 
R

ec
o

rd
 U

p
d

at
ed

Day

Fig. 4 Growth of white-list
in for accessing the websites at the client side. When the
user input any URL in the web browser, our phishing de-
tection system declares the URL as either phishing or
legitimate.

4.1 Tool used
Our phishing detection system is implemented in Java
platform standard edition 7 (JDK 1.7). It takes the URL
of the suspicious webpage as an input to checks its legit-
imacy. The parent domain of the input URL is checked
with the white-list. If the suspicious webpage comes out
as a phishing one, the system gives warning to the user.
The hyperlinks present in the webpage are extracted
using Jsoup [28] by parsing the HTML file of the web-
page, and a pattern matching scheme is used to obtain
the links from the webpages which are not well formed.
We have used Guava libraries [29] to find out the parent
domains of the hyperlinks. The IP addresses of the par-
ent domains of the suspicious webpages are found using
Google Public DNS [30]. Then, the legitimacy of the sus-
picious webpage is verified by comparing both stored
and extracted IP addresses. If Google Public does not
find any IP address corresponding to the domain, then
we can declare the webpage as phishing.

4.2 Dataset used
To evaluate the performance of the proposed approach,
we have taken the dataset of 1525 (1120 phishing and
405 legitimate) webpages. Our dataset consists of both
total hyperlinks

Threshold (%) Phishing webpages (%) Legitimate webpages (%)

10 77.92 31.11

20 75.64 19.75

30 73.05 6.91

36 71.42 1.48

40 68.99 1.48

50 62.01 0.98

60 49.02 0.49

70 40.90 0.25

80 31.98 0

90 20.12 0

https://www.phishtank.com/
http://www.alexa.com/topsites
http://stuffgate.com/stuff/website/top-sites
http://en.wikipedia.org/wiki/List_of_online_payment_service_providers
http://en.wikipedia.org/wiki/List_of_online_payment_service_providers


Table 3 Details of the hyperlink features

Webpages Total
instances

No. of
webpages
that contain
no hyperlinks

No. of
webpages
that contain
null links

No. of webpages
pointing to a
foreign domain
(≥ threshold)

Phishing 1120 279 245 440

Legitimate 405 0 0 7
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phishing and legitimate webpages. The phishing web-
pages are collected from the PhishTank [27] which is a
benchmark dataset of verified phishing URLs. We have
collected the phishing URLs during the period of
6 months (June 2015 to November 2015). The life of a
phishing site is very short; therefore, we took phishing
sites in our experiment when they are live. Legitimate
webpages are taken from three different sources as
shown in Table 1. Legitimate datasets consist of the
variety of webpages like payment gateway, banking sites,
e-commerce, blogs, forum, and social network websites.
4.3 Evolution metrics
We have calculated the true positive rate, false positive
rate, true negative rate, false negative rate, and accuracy of
our phishing detection system. These are the standard
metrics to judge any phishing detection system. Let NL de-
note the total number of legitimate websites and NP de-
note the total number of phishing websites. Now, NL→L

are the legitimate websites classified as legitimate, and
NL→P are the legitimate websites misclassified as phishing.
NP→P are the phishing websites classified as phishing and
NP→L are the phishing websites misclassified as legitimate.
Performance of a phishing webpage detection system can
be evaluated in the following manner:
True positive rate (TPR): true positive rate is the rate

of phishing websites classified as phishing out of the
total phishing websites.

TPR ¼ NP→P

NP
� 100 ð2Þ

False positive rate (FPR): false positive rate is the rate
of phishing websites classified as legitimate out of the
total phishing websites.
Table 4 Results of our anti-phishing system

Total
phishing

Total
legitimate

Phishing website
classified as
phishing

Phishing website
classified as
legitimate

Legitim
classifie
legitim

1120 405 964 156 398
FPR ¼ NP→L

NP
� 100 ð3Þ

False negative rate (FNR): false negative rate is the rate
of legitimate websites classified as phishing out of the
total legitimate websites.

FNR ¼ NL→P

NL
� 100 ð4Þ

True negative rate (TNR): true negative rate is the rate
of legitimate websites classified as legitimate out of the
total legitimate websites.

TNR ¼ NL→L

NL
� 100 ð5Þ

Accuracy (A) measures the rate of phishing and legit-
imate websites which are identified correctly with re-
spect to all the websites.

Accuracy ¼ NL→L þ NP→P

NL þ NP
� 100 ð6Þ

4.4 Experiment results and discussion
Various experiments are performed to evaluate the per-
formance of our proposed phishing detection system.
We also compared our proposed system with other
popular and standard anti-phishing approaches. Our sys-
tem can detect the phishing webpage based on hyper-
links information. The overall true positive rate of the
system is 86.02 % and false negative rate is 1.48 %.
The growth of the white-list: Our approach has used

the white-list to detect the phishing URLs. Therefore, we
have designed the white-list-based solution which con-
structed a list of legitimate sites accessed by an indi-
vidual user. From our experiments, we have analyzed
that a particular user do access very limited websites in
a day. After verifying the webpage, the system updates
the domain in the white-list. Figure 4 shows the average
number of records updated day by day in the list by an
individual user. Initially, our white-list is empty, and the
system needs to verify each webpage accessed by a user.
After verification of the webpage using the phishing
detection algorithm, the system updates the webpage in
the white-list. The system only needs to verify a very few
webpages after some days for a particular individual
user. Our white-list is used to increase the running time
ate website
d as
ate

Legitimate website
classified as
phishing

True
positive
rate

False
negative
rate

Accuracy

6 86.07 % 1.48 % 89.38 %



Table 5 Comparison between anti-phishing solutions

Approach/attack Zero-hour protection Embedded objects DNS attack Language independent

CANTINA [24] Yes No No No

CANTINA+ [29] Yes No No No

PhishNet: predictive black-listing [20] Yes No No Yes

DNS-based black-list (DNSBL) [19] No No No Yes

Automated individual white-list [21] Yes Yes No Yes

Visual signature [16] No Yes No Yes

Automatic detection of phishing target [22] Yes No No No

Our approach Yes Yes Yes Yes
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Fig. 5 Hyperlink threshold versus percent of webpages pointing to
a foreign domain
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and decrease the false negative rate. We have conducted
the experiments with 10 participants in which three
were faculty members, three were Ph.D. students, and
four were graduate students. After installing the white-
list in the system, the rate of the number of records
updated in the white-list was maximum on the first day;
gradually, it decreases with time and after few days, no
new record was updated in the white-list.
Our algorithm analyzed the three parameters of a hyper-

link namely no hyperlink, null hyperlinks, and ratio of hy-
perlinks pointing to a foreign domain out of the total
hyperlink present in the webpage. To bypass the anti-
phishing technique, 24.91 % (279 out of 1120) of phishing
webpages contain no hyperlinks in their source code as
we have discussed in Section 3 that an attacker uses server
site scripting to fool anti-phishing techniques. 21.87 %
(245 out of 1120) phishing webpages contain most of the
null hyperlinks in the source code to pretend the active
links in the webpage or the attacker uses vulnerable java
script with the null links. After checking the no link and
null link attributes, our algorithm computes the ratio of
links pointing to a foreign domain versus the total links.
Hyperlinks in more than 70 % of the remaining phishing
webpages (excluding the webpages which contain the no
link and null link in the source code) have pointed to an-
other domain (threshold is 36 %) while hyperlinks in only
1.48 % of legitimate webpages pointed to the foreign do-
main. We have taken the threshold value of Eq. 1 experi-
mentally as shown in Table 2, e.g., threshold 20 % means
20 % or more than 20 % of hyperlinks present in the web-
page have pointed to the foreign domain. Details of hyper-
link features in legitimate and phishing webpages are
shown in Table 3.
Selection of the appropriate threshold to detect more

number of phishing websites is a challenging task. Our
aim is to design a system in which true positive rate
should be high and false negative rate should be as mini-
mum as possible. If a threshold increases, then the false
negative rate decreases but at the same time, the true
positive rate also decreases. Moreover, if we decrease the
threshold, then the true positive rate increases but the
false negative rate also increases. A good anti-phishing
system requires both low false negative rate and high
true positive rate. We checked it manually and adjusted
the threshold to 36 %.
We have calculated the true positive rate, false nega-

tive rate, and accuracy for our anti-phishing system as
shown in Table 4. The comparison of our approach with
other anti-phishing approaches is shown in Table 5.
Hyperlink threshold versus percent of webpages pointing
to the foreign domain is shown in Fig. 5.
Although our proposed approach is very effective in

dealing with the verity of phishing attacks, however,
some of the recommendations are mentioned below
which can be explored in the future to enhance the per-
formance of the system.
Our phishing detection algorithm works on hyperlink

features. Accuracy of detection can be improved by
adding certain more features. However, extracting other
features from the page source will increase the running
time complexity of the system. Moreover, some features
(e.g., age of domain) also required the third-party ser-
vices which are not reliable. Secondly, the accuracy of de-
tection may improve by using the machine learning to
train hyperlink features instead of the phishing detection
algorithm. However, using the machine learning algorithm,
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reliable labeled dataset is required and performance of the
system depends on the learning algorithm.

5 Conclusions
In this paper, we proposed a novel approach to protect
against phishing attack using auto-updated white-list of
legitimate sites accessed by the individual user. Further-
more, our approach is able to check the legitimacy of a
webpage using hyperlink features. Our experimental re-
sults showed that the proposed approach is very effective
in protecting against phishing attacks as it has 86.02 %
true positive rate with a very less false positive rate of
1.48 %. Moreover, our proposed system is efficient to
detect various other types of phishing attacks (i.e., DNS
poisoning, embedded objects, zero-hour attack). More-
over, our approach is suitable for a real-time environment.
In the future, the performance of the proposed system can
be improved by taking the other features along with the
hyperlinks; however, extracting other features will increase
the running time complexity of the system.
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