
Semantically Enhanced Software Traceability
Using Deep Learning Techniques

Jin Guo, Jinghui Cheng and Jane Cleland-Huang
University of Notre Dame

Notre Dame, IN, USA
Email: {jguo3, JinghuiCheng, JaneClelandHuang}@nd.edu

Abstract—In most safety-critical domains the need for trace-
ability is prescribed by certifying bodies. Trace links are generally
created among requirements, design, source code, test cases and
other artifacts; however, creating such links manually is time
consuming and error prone. Automated solutions use information
retrieval and machine learning techniques to generate trace links;
however, current techniques fail to understand semantics of the
software artifacts or to integrate domain knowledge into the
tracing process and therefore tend to deliver imprecise and
inaccurate results. In this paper, we present a solution that
uses deep learning to incorporate requirements artifact semantics
and domain knowledge into the tracing solution. We propose a
tracing network architecture that utilizes Word Embedding and
Recurrent Neural Network (RNN) models to generate trace links.
Word embedding learns word vectors that represent knowledge
of the domain corpus and RNN uses these word vectors to learn
the sentence semantics of requirements artifacts. We trained 360
different configurations of the tracing network using existing
trace links in the Positive Train Control domain and identified the
Bidirectional Gated Recurrent Unit (BI-GRU) as the best model
for the tracing task. BI-GRU significantly out-performed state-
of-the-art tracing methods including the Vector Space Model and
Latent Semantic Indexing.

Keywords-Traceability, Deep Learning, Recurrent Neural Net-
work, Semantic Representation.

I. Introduction

Requirements traceability plays an essential role in the soft-
ware development process. Defined as “the ability to describe
and follow the life of a requirement in both a forwards and
backwards direction through periods of ongoing refinement
and iteration” [26], traceability supports a diverse set of
software engineering activities including change impact anal-
ysis, regression test selection, cost prediction, and compliance
verification [25]. In high-dependability systems, regulatory
standards, such as the US Federal Aviation Authority’s (FAA)
DO178b/c [22], prescribe the need for trace links to be estab-
lished and maintained between hazards, faults, requirements,
design, code, and test cases in order to demonstrate that a
system is safe for use [38], [23]. Unfortunately, the tracing
task is arduous to perform and error-prone [46], even when
industrial tools are used to manually create links or to capture
them as a byproduct of the development process [14]. In
practice, trace links are often incomplete and inaccurate [16],
even in safety-critical systems [45], [56].

To address these problems, researchers have proposed and
developed solutions for automating the task of creating and

maintaining trace links [1], [17], [34]. Solutions have included
information retrieval approaches [17], [18], [5], machine learn-
ing [47], [30], [30], [51], heuristic techniques [64], [28], and
AI swarming algorithms [65]. Other approaches, especially in
the area of feature location [20], require additional information
obtained from runtime execution traces. Results have been
mixed, especially when applied to industrial-sized datasets,
where acceptable recall levels above 90% can often only be
achieved at extremely low levels of precision [43].

One of the primary reasons that automated approaches have
underperformed is the term mismatch that often exists between
pairs of related artifacts [10]. To illustrate this we draw on an
example from the Positive Train Control (PTC) domain. PTC
is a communication-based train control system designed to
ensure that trains follow directives in order to prevent accidents
from occurring [68]. The requirement stating that “The BOS
Administrative Toolset shall allow the Authorized Administra-
tor to view an On-board’s last reported On-board Software
Version, including the associated repository name, MD5, and
whether the fileset is preferred or acceptable.” is associated
with the design artifact stating that “The Operational Data
Panel is used to provide information about the current PTC
operations in a subdivision”. Recognizing and establishing
this link requires non-trivial knowledge of domain concepts –
for example, understanding that BOS Administrative Toolset
contains the Operational Data Panel, each locomotive contains
an On-board unit for PTC operation, and that the Operational
Data Panel displays the information of locomotives such
as the On-board Software Version to the BOS Authorized
Administrator. This link would likely be missed by popular
trace retrieval algorithms such as the Vector Space Model
(VSM), Latent Semantic Indexing (LSI), and Latent Direchlet
Allocation (LDA), which all represent artifacts as bags of
words and therefore lose the artifacts’ embedded semantics. It
would also be missed by techniques that incorporate phrasing
without understanding their conceptual associations [3], [15].
In fact, most current techniques lack the sophistication needed
to reason about semantic associations between artifacts and
therefore fail to establish trace links when there is little
meaningful overlap in use of terms.

In our prior work we developed Domain-Contextualized
Intelligent Traceability (DoCIT) [29] as a proof of concept
solution to investigate the integration of domain knowledge
into the tracing process. We demonstrated that for the domain

of PTC systems DoCIT returned accurate trace links achieving
mean average precision (MAP) of .822 in comparison to
.590 achieved using VSM. However, the cost of setting up
DoCIT for a domain was non-trivial, as it required carefully
handcrafting a domain ontology and manually defining trace
link heuristics capable of reasoning over the semantics of
the artifacts and associated domain knowledge. Furthermore,
DoCIT depended upon a conventional syntactic parser to
analyze the artifacts in order to extract meaningful concepts.
The approach was therefore sensitive to errors in the parser,
terms missing from the ontology, and missing or inadequate
heuristics. As such, DoCIT was effective but fragile, and would
require significant effort to transfer into new project domains.

On the other hand, deep learning techniques have success-
fully been applied to solve many Natural Language Processing
(NLP) tasks including parsing [63], sentiment analysis [66],
question answering [35], and machine translation [6]. Such
techniques abstract problems into multiple layers of nonlinear
processing nodes; they leverage either supervised or unsuper-
vised learning techniques to automatically learn a representa-
tion of the language and then use this representation to perform
complex NLP tasks. The goal of the work described in this
paper is to utilize deep learning to deliver a scalable, portable,
and fully automated solution for bridging the semantic gap that
currently inhibits the success of trace link creation algorithms.
Our solution is designed to automate the capture of domain
knowledge and the artifacts’ textual semantics with the explicit
goal of improving accuracy of the trace link generation task.

The approach we propose includes two primary phases.
First, we learn a set of word embeddings for the domain using
an unsupervised learning approach trained over a large set of
domain documents. The approach generates high dimensional
word vectors that capture distributional semantics and co-
occurrence statistics for each word [53]. Second, we use an
existing training set of validated trace links from the domain
to train a Tracing Network to predict the likelihood of a
trace link existing between two software artifacts. Within the
tracing network, we adopt a Recurrent Neural Network
architecture to learn the representation of artifact semantics.
For each artifact (i.e. each regulation, requirement, or source
code file etc.), each word is replaced by its associated vector
representation learned in the word embedding training phase
and then sequentially fed into the RNN. The final output of
RNN is a vector that represents the semantic information of
the artifact. The tracing network then compares the semantic
vectors of two artifacts and outputs the probability that they
are linked.

Given the need for an initial training set of trace links, our
approach cannot be used in an entirely green field domain.
However, based on requests from our industrial collaborators,
we envision the following primary usage scenarios: (1) Train
the tracing network on an initial set of manually constructed
trace links for a project and then use it to automate the
production of other links as the project proceeds; (2) Train
the tracing network on the complete set of trace links for a
project and then use it to find additional links that may have

been missed during the manual link construction process; and
finally (3) Train the tracing network on the trace links for one
project, or for specific types of artifacts in one project, and
then apply it to other projects and artifact types within the
same domain. In this paper we focus on the first scenario.

We evaluate our approach on a large industrial dataset taken
from the domain of PTC systems to address two research
questions:
RQ1: How should RNN be configured in order to generate
the most accurate trace links?
RQ2: Is RNN able to significantly improve trace link accuracy
in comparison to standard baseline techniques?

The remainder of the paper is structured as follows. We
first introduce deep learning techniques related to the tracing
network in Section II. The architecture of the tracing network
is described in Section III. Sections IV and V describe the pro-
cess used to configure the tracing network, our experimental
design, and the results achieved. Finally, in Sections VI to VIII
we discuss related work, threats to validity, and conclusions.

II. Deep Learning for Natural Language Processing

Many modern deep learning models and associated training
methods originated from research in artificial neural networks
(ANN). Inspired by advances in neuroscience, ANNs were
designed to approximate complex functions of the human
brain by connecting a large number of simple computational
units in a multi-layered structure. Based on ANNs, Deep
Learning models feature more complex network connections
in a larger number of layers. A benefit gained from a more
complex structure is the ability to represent data features with
multiple levels of abstraction; this is usually preferable to
more traditional machine learning techniques, in which human
expertise is needed to select features of data for training. Back-
propagation [58] is widely recognized as an effective method
for training deep neural networks; it indicates how the network
should adapt its internal parameters to better compute the
representation in each layer. Before presenting our approach,
we describe fundamental concepts of deep learning techniques,
especially as related to NLP tasks. Furthermore, as our interest
lies in comparatively evaluating different models for purposes
of trace link creation, we describe these various techniques in
some depth.

A. Word Embedding

Conventional NLP and information retrieval techniques treat
unique words as atomic symbols and therefore do not take
associations among words into account. To address this limi-
tation, word embedding learns the representation of each word
from a corpus as a continuous high dimensional vector, such
that similar words are close together in the vector space. In
addition, the embedded word vectors encode syntactic and
semantic relationships between words as linear relationships
between word vectors [48]. The use of learned word vectors
is considered one of the primary reasons for the success of
recent deep learning models for NLP tasks [21].

Skip-gram with negative sampling [48], [50] and GloVe
[53] are the most popular word embedding models due to the
notable improvement they bring to word analogy tasks over
more traditional approaches such as Latent Semantic Analysis
[48], [53]. Word embedding models are trained using unla-
beled natural language text by utilizing co-occurrence statistics
of words in the corpus. The Skip-gram model scans context
windows across the entire training text to train prediction
models [48]. Given the center word in the window of size
T , this model maximizes the probability that the targeted
word appears around the center word, while minimizing the
probability that a random word appears around the center
word. The GloVe model uses matrix factorization; however we
do not discuss it further because its performance is equivalent
to the Skip-gram with negative sampling approach while it is
less robust and utilizes more system resources [41].

B. Neural Network Structures

Deep learning for NLP tasks are typically addressed us-
ing neural network techniques. Feedforward networks, also
referred to as multi-layer perceptrons (MLPs), represent a
traditional neural network structure and lay the foundation
for many other structures [32]. However, the number of
parameters in a fully connected MLP can grow extremely
large as the width and depth of the network increases. To
address this limitation, researchers have proposed various
neural network structures targeting different types of practical
problems. For example, convolutional neural networks (CNNs)
are especially well suited for image recognition and video
analysis tasks [40]. For NLP tasks, Recurrent neural networks
(RNNs) are widely used and are recognized as a good fit to
the unique needs of NLP [58]. In particular, RNN and its
variants have produced significant breakthroughs in many NLP
tasks including language modeling [49], machine translation
[6], and semantic entailment [66]. In the following sections,
we first introduce background about RNN and then discuss
several RNN variants that were evaluated in this study.

C. Standard Recurrent Neural Networks (RNN)

RNNs are particularly well suited for processing sequential
data such as text and audio. They connect computational units
of the network in a directed cycle such that at each time step
t, a unit in the RNN not only takes input of the current step
(i.e., the next word embedding), but also the hidden state of
the same unit from the previous time step t−1. This feedback
mechanism simulates a “memory”, so that a RNN’s output is
determined by both its current and prior inputs. Furthermore,
because RNNs use the same unit (with the same parameters)
across all time steps, they are able to process sequential data
of arbitrary length. This is illustrated in Figure 1. At a given
time step t with input vector xt and its previous hidden output
vector ht−1, a standard RNN unit calculates its output as

ht = tanh(Wxt + Uht−1 + b) (1)

where W, U and b are the affine transformation parameters,
and tanh is the hyperbolic tangent function: tanh(z) = (ez −

e−z)/(ez + e−z).

tanh	tanh	

+	

tanh	

ht-1	 ht	

xt	
ht	~	ct	~	ht-1	

ct-1	

ht	

ct	

xt	

f

o
i

r

u

tanh	ht-2	 ht-1	

xt-1	

tanh	 ht	

xt	

tanh	 ht+1	

xt+1	…	

…	…	

…	

tanh	

xt	

ht	

Unfold	

Fig. 1: Standard RNN model (left) and its unfolded architec-
ture through time (right). The black square in the left figure
indicates a one time step delay.

A prominent drawback of the standard RNN model is that
the network degrades when long dependencies exist in the
sequence due to the phenomenon of exploding or vanishing
gradients during back-propagation [9]. This makes a standard
RNN model difficult to train. The exploding gradients problem
can be effectively addressed by scaling down the gradient
when its norm is bigger than a preset value (i.e. Gradient
Clipping) [9]. To address the vanishing gradients problem of
the standard RNN model, researchers have proposed several
variants with mechanics to preserve long-term dependencies;
these variants included Long Short Term Memory (LSTM) and
the Gated Recurrent Unit (GRU).

D. Long Short Term Memory (LSTM)

LSTM networks include a memory cell vector in the re-
current unit to preserve long term dependencies[33]. LSTM
also introduces a gating mechanism to control when and how
to read or write information to the memory cell. A gate in
LSTM usually uses a sigmoid function σ(z) = 1/(1 + e−z)
and controls information throughput using a point-wise multi-
plication operation �. Specifically, when the sigmoid function
outputs 0, the gate forbids any information from passing, while
all information is allowed to pass when the sigmoid function
output is 1. Each LSTM unit contains an input gate (it), a
forget gate (ft), and an output gate (ot). The state of each gate
is decided by xt and ht−1 such that:

it = σ(W ixt + U iht−1 + bi)

ft = σ(W f xt + U f ht−1 + b f)
ot = σ(Woxt + Uoht−1 + bo)

(2)

To update the information in the memory cell, a memory
candidate vector c̃t is first calculated using the tanh function.
This memory candidate passes through the input gate, which
controls how much each dimension in the candidate vector
should be “remembered”. At the same time, the forget gate
controls how much each dimension in the previous memory
cell state ct−1 should be retained. The actual memory cell state
ct is then updated using the sum of these two parts.

c̃t = tanh(Wcxt + Ucht−1 + bc)
ct = it � c̃t + ft � ct−1

(3)

Finally, the LSTM unit calculates its output ht with an output
gate as follows:

ht = ot � tanh(ct) (4)

Figure 2 (a) illustrates a typical LSTM unit. Using retained
memory cell state and the gating mechanism, the LSTM unit
“remembers” information until it is erased by the forget gate;

tanh	tanh	

+	

tanh	

ht-1	 ht	

xt	
ht	~	ct	~	ht-1	

ct-1	

ht	

ct	

xt	

f

o
i

r

u

tanh	ht-1	 ht	

xt	

(a) LSTM

tanh	tanh	

+	

tanh	

ht-1	 ht	

xt	
ht	~	ct	~	ht-1	

ct-1	

ht	

ct	

xt	

f

o
i

r

u

tanh	ht-1	 ht	

xt	

(b) GRU

Fig. 2: Comparison between single units from LSTM and GRU
networks. In (2a), i, f and o are the input, forget and output
gates respectively; c is the memory cell vector. In (2b), r is
the reset gate and u is the update gate [13].

as such, LSTM handles long-term dependencies more effec-
tively. LSTM has been repeatedly applied to solve semantic
relatedness tasks and has achieved convincing performance
[66], [57]. These advances motivated us to adopt LSTM for
reasoning semantics in the tracing task.

E. Gated Recurrent Unit (GRU)

Finally, the recently proposed Gated Recurrent Unit (GRU)
model also uses a gating mechanism to control the information
flow within a unit; but it has a simplified unit structure and
does not have a dedicated memory cell vector [12]. It contains
only a reset gate rt and an update gate ut:

rt = σ(Wr xt + Urht−1 + br)
ut = σ(Wuxt + Uuht−1 + bu)

(5)

In GRU networks, the previous hidden output ht−1 goes
through the reset gate rt and is sent back to the unit. An
output candidate h̃t is then calculated using the gated ht−1 and
the unit’s current input xt as follows:

h̃t = tanh(Whxt + Uh(rt � ht−1) + bh) (6)

The actual output of a unit ht is a linear interpolation between
the previous output ht−1 and the candidate output h̃t, controlled
by the update gate ut. As such, the update gate balances how
much of the current output is updated using h̃t and ht−1.

ht = (1 − ut) � ht−1 + ut � h̃t (7)

Consequently, a GRU unit embeds long-term information
directly into the hidden output vectors. Figure 2 compares the
unit structures of LSTM and GRU networks. Despite having a
simpler structure, GRU has achieved competitive results with
LSTM for many NLP tasks [6], [13], and as such no decisive
conclusion has been drawn about which model is better. In
this work, we compare the performance of LSTM and GRU
in order to identify the most suitable model for addressing the
tracing problem.

F. Other RNN Variables

In addition to modifying the structure within a single RNN
unit, the structure of the overall RNN network can be varied.
For instance, multi-layered RNNs [52] stack more than one
RNN unit at each time step [59] with the aim of extracting
more abstract features from the input sequence. In contrast, bi-
directional RNNs [60] process sequential data in both forward

and backward directions at the same time; this enables the
output to be influenced by both past and future data in the
sequence. In this study, we also explored the use of two-
layered RNNs and bidirectional RNNs for generating trace
links.

III. The Tracing Network

The tracing process comprises several steps: first, the hu-
man analyst initiates a trace for a source artifact; second,
the similarity between the source artifact and each of the
potentially linked target artifacts is computed; third, a list of
ranked candidate links are returned; and finally the human
evaluates the links and accepts the ones deemed to be correct.
The process is repeated for all source artifacts [34]. Out study
investigates the effectiveness of various deep learning models
and methods for calculating similarities between source and
target artifact pairs, with the goal of generating accurate trace
links. This is essentially a textual comparison task in which
the tracing network needs to leverage domain knowledge to
understand the semantics of two individual artifacts and then to
evaluate their semantic relatedness for tracing purposes. Valid
associations need to be established between related artifacts
even when no common words are present. Based on our
initial analysis of the strengths and weaknesses of current
techniques, we decided to adopt word embeddings and RNN
techniques to achieve this goal. Therefore, we first need to
learn word embeddings from a domain corpus in order to
effectively encode word relations, and then utilize such word
embeddings in the tracing network structure to extract and
compare their semantics. In this section, we describe our
approach for designing and training such a tracing network.

t1	 tn	t2	

RNN	
Unit		

RNN	
Unit		

RNN	
Unit		

…	

Vector	
Direc.on	

Comparison	

Vector	
Distance	
Calcula.on	

Integra.on	
	Layer	

(Sigmoid)	

Probability	
Genera.on	

Layer		
(SoAmax)	

Seman.c	Rela.on	
Evalua.on	Layers	

Target		
Seman.c				
Vector	

Plink	

…	

Word	Embedding	Mapping	

s1	 sm	s2	 …	

RNN	
Unit		

RNN	
Unit		

RNN	
Unit		

…	

Word	Embedding	Mapping	

Source		
Seman.c				
Vector	

Fig. 3: The architecture of the tracing network. The software
artifacts are first mapped into sequences of embedded word
vectors and go through RNN layers to generate the semantic
vectors, which are then fed into the Semantic Relation Evalu-
ation layers to predict the probability that they are linked.

A. Network Architecture

The design of the neural network architecture is shown in
Figure 3. Given the textual content of a source artifact As and
a target artifact At, each word in As and At is first mapped onto
its vector representation through the Word Embedding layer.
Such mappings are trained from the domain corpus using the
Skip-gram model introduced in Section II-A. The vectors of

words in source artifact s1, s2, . . . , sm are then sent to the RNN
layers sequentially and output as a single vector vs representing
its semantic information. In the case of the bidirectional-RNN,
the word vectors are also sent in reverse order as sm, sm−1, . . . ,
s1. The target semantic vector vt is generated in the same way
using RNN layers. Finally, these two vectors are compared in
the Semantic Relation Evaluation layers.

The Semantic Relation Evaluation layers in our tracing
network adopt the structure proposed by Tai et al. [66],
targeted to perform semantic entailment classification tasks
for sentence pairs. The overall calculation of this part of the
network can be represented as:

rpmul = vs � vt

rsub = |vs − vt |

r = σ(Wrrpmul + Urrsub + br)
ptracelink = so f tmax(W pr + bp)

(8)

where

so f tmax(z) j = ez j/

K∑
k=1

ezk , f or j = 1, . . . ,K (9)

Here, � is the point-wise multiplication operator used to
compare the direction of source and target vectors on each
dimension. The absolute vector subtraction result, rsub, repre-
sents the distance between the two vectors in each dimension.
The network then uses a hidden sigmoid layer to integrate rpmul

and rsub and output a single vector to represent their semantic
similarity. Finally, the output softmax layer uses the result to
produce the probability that a valid trace link exists; the result
of a softmax function is a K-dimensional vector of real values
in the range (0, 1) that add up to 1 (K=2 in this case).

A concrete tracing network is built upon this architecture
and is further configured by a set of network settings. Those
settings specify the type of RNN unit (i.e. GRU or LSTM), the
number of hidden dimensions in RNN units and the Semantic
Relation Evaluation layers, and other RNN variables such as
the number of RNN layers and whether to use bidirectional
RNN. To address our first research question (RQ1) we ex-
plored several different configurations. We describe how we
optimized network settings in Section IV-B. The tracing net-
work is implemented on the Torch framework (http://torch.ch),
and the source code is available at https://github.com/jin-
guo/TraceNN.

B. Training the Tracing Network
A powerful network is only useful when it can be properly

trained using existing data and when it is generalizable to
unseen data. To train the tracing network, we use the regular-
ized negative log likelihood as our objective loss function to
be minimized. This objective function is commonly used in
categorical prediction models [7] and can be written as:

J(θ) = −
1
N

N∑
i=1

logP(Y = yi|xi, θ) +
λ

2
‖θ‖22 (10)

where θ indicates the network parameters that need to be
trained, N is the total number of examples in the training
data, xi is the input of the ith training example, yi is the

actual category of that example (i.e. link or non-link); as a
result, P(Y = yi|xi, θ) represents the network’s prediction on the
correct category given the current input and parameters. The
second part of the loss function represents a L2 parameter regu-
larization that prevents overfitting, where ‖θ‖2 is the Euclidean
norm of θ, and λ controls the strength of the regularization.

Based on this loss function, we used a stochastic gradient
descent method [67] to update the network parameters. Ac-
cording to this method, a typical training process is comprised
of a number of epochs. Each epoch iterates through all of the
training data one time to train the network; as such, the overall
training process uses all the training data several times until the
objective loss is sufficiently small or fails to decrease further.
In each epoch, the training data is further randomly divided
into a number of “mini batches;” each contains one or more
training datapoints. After each batch is processed, a gradient
of parameters is calculated based on the loss function. The
network then updates its parameters based on this gradient and
a “learning rate” that specifies how fast the parameters move
along the gradient direction. During training, we adopted an
adaptive learning rate procedure [67] to adjust the learning
rate based on the current training performance. To help the
network converge, we also decreased the learning rate after
each epoch until epoch τ, such that the learning rate at epoch
k is determined by:

εk = (1 − α)ε0 + αετ (11)

where ε0 is initial learning rate, α = k/τ. In our experiment,
ετ is set to ε0/100, and τ set to 500.

Based on these general methods, a tracing network training
process is further determined by a set of predefined hyper-
parameters that help steer the learning behavior. Common
hyper-parameters include the initial learning rate, gradient clip
value, regulation strength (λ), the number of datapoints in a
mini batch (i.e. mini batch size), and the number of epochs
included in the training process. The techniques for selecting
hyper-parameters are described in Section IV-B.

IV. Experiment Setup
In this section, we explain the methods used to (1) prepare

data, (2) systematically tune the configuration (i.e. network
settings and hyper-parameters) of the tracing network, and
(3) compare the performance of the best configuration against
other popular trace evaluation methods.

A. Data Preparation
To train the word embeddings, we used a corpus from

the PTC domain that is comprised of 52.7MB of clean text
extracted from related domain documents and software arti-
facts. The original corpus of domain documents was collected
from the Internet by our industrial collaborators as part of
their initial domain analysis process. We also added the
latest Wikipedia dump containing about 19.92GB of clean
text to the corpus and used it for one variant of the word
embedding configuration. All documents were preprocessed by
transforming characters to lower-case and removing all non-
alpha-numeric characters except for underscores and hyphens.

To train and evaluate other parts of the tracing network,
we used PTC project data provided by our industrial col-
laborators. The dataset contains 1,651 Software Subsystem
Requirements (SSRS) as source artifacts and 466 Software
Subsystem Design Descriptions (SSDD) as target artifacts.
Each source artifact contained an average of 33 tokens and
described a functional requirement of the Back Office Server
(BOS) subsystem. Each target artifact contained an average
of 99 tokens and specified design details. There were 1,387
trace links between SSRS and SSDD artifacts, all of which
were constructed and validated by our industrial collaborators.
This dataset is considerably larger than those used in most
previous studies on requirements traceability [5], [44], [34]
and the task of creating links across such a large dataset
represents a challenging industrial-strength tracing problem.
We randomly selected 45% of the 769,366 artifact pairs from
the PTC project dataset (i.e. 1,651 × 466) for inclusion in a
training set, 10% for a development set, and 45% as a testing
set. Given a fixed tracing network configuration, the training
set was used to update the network parameters (i.e. the weight
and bias for affine transformation in each layer) in order to
minimize the objective loss function. The development set
was used to select the best general model during an initial
training process to ensure that the model was not overtrained.
The test data was set aside and only used for evaluating the
performance of the final network model.

Software project data exhibits special characteristics that
impact the training of a neural network [30]. In particular,
the number of actual trace links is usually very small for a
given set of source and target artifacts compared to the total
number of artifact pairs. In our dataset, among all 769,366
artifact pairs, only 0.18% are valid links. Training a neural
network using such an unbalanced dataset is very challenging.
A common and relatively simple approach for handling unbal-
anced datasets is to weight the minority class (i.e. the linked
artifacts) higher than the majority class (i.e. the non-linked
ones). However, in the gradient descent method, a larger loss
weighting could improperly amplify the gradient update for the
minority class making the training unstable and causing failure
to converge. Another common way to handle unbalanced data
is to downsample the majority case in order to produce a fixed
and balanced training set. Based on initial experimentation we
found that this approach did not yield good results because the
examples of non-links used for training the network tended to
randomly exclude artifact pairs that lay at the frontier at which
links and non-links are differentiated. Furthermore, based on
initial experimentation, we also ruled out the upsampling
method because this considerably increased the size of the
training set, excessively prolonging the training time.

Based on further experimentation we adopted a strategy
that dynamically constructed balanced training sets using sub-
datasets. In each epoch, a balanced training set was constructed
by including all valid links from the original training set as
well as a randomly selected equal number of non-links form
the training set. The selection of non-links was updated at
the start of each epoch. This approach ensured that over time

TABLE I: Tracing Network Configuration Search Space

Word Embedding Source PTC docs – 50 dim,
PTC docs + Wikipedia dump – 300 dim

RNN Unit Type GRU, LSTM, BI-GRU, BI-LSTM,
(AveVect as baseline)

RNN Layer 1, 2
Hidden Dimension RNN30 + Intg10, RNN60 + Intg20
Init Learning Rate (lr) 1e-03, 1e-02, 1e-01
Gradient Clip Value (gc) 10, 100
Regularization Strength λ 1e-04, 1e-03
Mini Batch Size 1
Epoch 60

the sampled non-links used for training were representative
and preserved an equal contribution of links and non-links
during each epoch. Our initial experimental results showed
this technique to be effective for training our tracing network.

B. Model Selection and Hyper-Parameters Optimization

Finding suitable network settings and a good set of hyper-
parameters is crucial to the success of applying deep learn-
ing methods to practical problems [54]. However, given the
running time required for training, the search space of all
the possible combinations of different configurations was too
large to provide full coverage. We therefore first identified
several configurations that were expected to produce good
performance. This was accomplished by manually observing
how training loss changed during early epochs and following
heuristics suggested in [8]. We then created a network config-
uration search space centered around these manually identified
configurations; our search space is summarized in table I. We
conducted a grid search and trained all the combinations of
each configuration in Table I using the training set and then
compared their performance on the development set to find
the best configuration. We describe our search space below.

For learning the word embeddings, we used the Skip-gram
model provided by the Word2vec tool [48]. We trained the
word vectors with two settings: 50-dimension vectors using
the PTC corpus only and 300-dimension using both PTC and
Wikipedia dump. The number of dimensions are set differently
because the PTC corpus (38,771 tokens) contains considerably
less tokens than the PTC + Wikipedia dump (8,025,288
tokens). While a smaller vector dimension would result in
faster training, a larger dimension is needed to effectively
represent the semantics of all tokens in the latter corpus.

To compare which variation of RNN best suits the tracing
network, we evaluated GRU, LSTM, bi-directional GRU (BI-
GRU), bi-directional LSTM (BI-LSTM) with both 1 and 2
layers introduced in Section II-C. The hidden dimensions in
each RNN unit were set to either 30 or 60, while the hidden
dimensions for the Integration layer were set to 10 or 20
correspondingly. As a baseline method, we also replaced the
RNN layers with a bag-of-word method in which the semantic
vector of an artifact is simply set to be the average of all word
vectors contained in the artifact (“AveVect” in Table I). We
also summarize the search space for other hyper-parameters
of the tracing network in Table I.

C. Comparison of Tracing Methods

In practical requirements tracing settings, a tracing method
returns a list of candidate links between a source artifact,
serving the role of user query, and a set of target artifacts. An
effective algorithm would return all valid links close to the top
of the list. The effectiveness of a tracing algorithm is therefore
often measured using Mean Average Precision (MAP). To
calculate MAP, we first calculate the Average Precision (AP)
for each individual query as:

AP =

∑|Retrieved|
i=1 (Precision(i) × relevant(i))

|RelevantLinks|
(12)

where |RetrievedLinks| is the number of retrieved links, i is the
rank in the sequence of retrieved candidates links, relevant(i)
is a binary function assigned 1 if the link is valid and 0
otherwise, and Precision(i) is the precision computed after
truncating the list immediately below i. Then, Mean Average
Precision (MAP) is computed as the mean AP across all
queries. In typical information retrieval settings, MAP is com-
puted for the top N returned links; however, for traceability
purposes we compute it when returning all valid links as
specified in the trace matrix. This means that our version of
MAP is computed for recall of 100%.

We computed MAP using the test dataset only, and com-
pared the performance of our tracing network with other
popular tracing methods, i.e. Vector Space Model (VSM) and
Latent Semantic Indexing (LSI). To make a fair comparison,
we also optimized the configurations for the VSM and the
LSI methods using a Genetic Algorithm to search through an
extensive configuration space of preprocessors and parameters
[43]. Finally, we configured VSM to use a local Inverse Docu-
ment Frequency (IDF) weighting scheme when calculating the
cosine similarity [34]. LSI was reduced to 75% dimensions.
For both VSM and LSI we preprocessed the text to remove
non alpha-numeric characters, remove stop words, and to stem
each word using Porter’s stemming algorithm.

We also evaluated the results by plotting a precision vs.
recall curve. The graph depicts recall and precision scores at
different similarity or probability values. The Precision-Recall
Curve thus shows trade-offs between precision and recall and
provides insights into where each method performs best – for
example, whether a technique improves precision at higher or
lower levels of recall [11]. A curve that is farther away from
the origin indicates better performance.

V. Results and Discussion

In this section, we report (1) the best configurations found
in our network configuration search space, (2) the performance
of the tracing network with the best configuration compared
against VSM and LSI, and (3) the performance of the tracing
network when trained with a larger training set of data.

A. What is the best configuration for the tracing network?

This experiment aims to address the first research question
(RQ1). When optimizing the network configuration of the
tracing network, we first selected the best configuration for

each RNN unit type; Table II summarizes these results. We
found that the best configurations for all four RNN unit types
were very similar: one layer RNN model with 30 hidden
dimensions and an Integration layer of 10 hidden dimensions,
learning rate of 1e-02, gradient clip value of 10, and λ of
1e-04. Performance varies for different RNN unit types.

TABLE II: Best Configuration for Each RNN Unit Type

RNN
Unit

Dev.
Loss

Word
Emb. L Dr Ds lr gc λ

BI-GRU .1045 PTC 1 30 10 .01 10 .0001
GRU .1301 PTC 1 30 10 .01 10 .0001
BI-LSTM .1434 PTC 1 30 10 .01 100 .0001
LSTM .2041 PTC+Wiki 1 30 10 .01 10 .0001
L – number of layers in the RNN model, Dr – hidden dimension in RNN
unit, Ds – hidden dimension in Integration layer, lr – initial learning rate,
gc – gradient clipping value, λ – regularization strength

Figure 4 illustrates the learning curves on the training
dataset of the four configurations. All four RNN unit types
outperformed the Average Vector method. This supports our
hypothesis that word order plays an important role when
comparing the semantics of sentences. Both GRU and BI-
GRU achieved faster convergence and more desirable (smaller)
loss than LSTM and BI-LSTM. Although quite similar, the
bidirectional models performed slightly better than the unidi-
rectional models for both GRU and LSTM on the training set;
the bidirectional models also achieved better results on the
development dataset compared to their unidirectional counter-
parts. As a result, the overall best performance was achieved
using BI-GRU configured as shown in Table II.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

Epoch	 5	 10	 15	 20	 25	 30	 35	 40	 45	 50	 55	

Tr
ai
ni
ng
	L
os
s	

GRU	

BI-GRU	

AveVect	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

Epoch	 5	 10	 15	 20	 25	 30	 35	 40	 45	 50	 55	

LSTM	
BI-LSTM	
AveVect	

Fig. 4: Comparison of learning curves for RNN variants using
their best configurations. GRU and BI-GRU (left) converged
faster and achieved smaller loss than LSTM and BI-LSTM
(right). They all outperformed the baseline.

We also found that in three of the four best configurations,
the word embedding vectors were trained using the PTC
corpus alone. We speculate that one reason the PTC-trained
word vectors performed better than the PTC+Wiki-trained
vectors is due to differences in content of the two corpora.
The PTC+Wiki corpus contains significantly more words that
are used in diverse contexts because the majority of articles
in the Wiki corpus are not related to the PTC domain. In
the case of words that appear commonly in Wiki articles but
convey specific meanings in the PTC domain (e.g. message,
administrator, field, etc.), their context in more general articles

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Pr
ec
is
io
n	

Recall	

Tracing	Network	
VSM	
LSI	

Fig. 5: Precision-Recall Curve on test set – 45% total data

is likely to negatively affect the reasoning task on domain
specific semantics when there is insufficient training data to
disambiguate their usage. We also tested the tracing network
performance using 300-dimension word embedding trained by
the PTC corpus. The result is similar to the best configuration
found in Table II. These findings suggest that using only the
domain corpus to train word vectors with a reasonable size is
more computationally economical and can yield better results.

B. Does the tracing network outperform leading trace re-
trieval algorithms?

We now evaluate whether the best configuration of the trac-
ing network (i.e. BI-GRU with configuration shown in Table
II) outperforms leading trace retrieval algorithms. Links were
therefore generated for each source and target artifact pair in
the test set (45% total data) and for each source artifact ranked
by descending probability scores. Average Precision (AP) was
calculated using Equation 12. We then compared the APs for
our tracing network against those generated using the best
performing VSM and LSI configurations. Our tracing network
was able to achieve a MAP of .598; this value is 41% higher
than that achieved using VSM (MAP = .423) and 32% higher
than LSI (MAP = .451). We conducted a Friedman test and
found a statistically significant difference among the AP values
associated with the three methods (X2(2) = 89.40, p < .001).
We then conducted three pairwise Wilcoxon signed ranks tests
with Bonferroni p-value adjustments. Results indicated that
the APs associated with our tracing network were significantly
higher (M = .598, SD = .370) than those achieved using VSM
(M = .423, SD = .391; p < .001) and LSI (M = .451, SD =

.400; p < .001); in contrast, there was no significant difference
when comparing APs for VSM versus those for LSI.

When comparing the Precision-Recall Curves for the three
methods (Figure 5), we observed that the tracing network out-
performed VSM and LSI at higher levels of recall. Given the
goal to achieve close to 100% recall when performing tracing
tasks, this is an important achievement. Precision improved
notably when recall was above 0.2. This improvement can
be attributed to the fact that the tracing network is able to
extract semantic information from artifacts and to reason over
associations between them.

While it is almost impossible to completely decipher
how GRU extracts a semantic vector from natural lan-

GRU	

1	
…	
12	
…	
24	
…	
30	

Word	
Emb.	

Word	
Token	

Sentence		
Seman/c		
Vector	

(a) GRU output at one time step

-1	

-0.8	

-0.6	

-0.4	

-0.2	

0	

0.2	

0.4	

0.6	

0.8	

1	
24th	Dimension	Reset	Gate	

Update	Gate	
Output	

-1	

-0.8	

-0.6	

-0.4	

-0.2	

0	

0.2	

0.4	

0.6	

0.8	

1	
12th	Dimension	Reset	Gate	

Update	Gate	
Output	

(b) GRU gate behavior

Fig. 6: The reset gate and update gate behavior in GRU and
their corresponding output on the 24th and 12th dimension of
sentence semantic vector. The x-axis indicates the sequential
input of words while the y-axis is the value of reset gate,
update gate and output after taking each word.

guage [37], observing gate behavior when GRU processes
a sentence can provide some insights into how GRU
performs this task so well. As an example, we exam-
ine the gate behavior when our best performing GRU
processes the following artifact text: “Exceptions: If the
SA FileTransferConfiguration datapoint indicates that the
BOS is not configured for file transfer, the File Transfer
Manager sends an 01105 FileTransferUnavailable message
to the Onboard.”. The gate behavior varies among dimensions
in the sentence semantic vector. In Figure 6, we show the
levels of the reset and the update gates and the change of the
output values on two of the 30 dimensions after GRU takes
each word from this artifact. Unlike LSTM, the GRU does not
have an explicit memory cell; however, the unit output itself
can be considered as a persisting memory, whereas the output
candidate in Equation 6 acts as a temporary memory. Recall
that the reset gate controls how much previous output adds
to the current input when determining the output candidate
(i.e. temporary memory); in contrast, the update gate balances
the contributions of this temporary memory and the previous
output (i.e. persisting memory) to the actual current output.
From Figure 6b, we observe that for the 24th dimension, the
reset gate is constantly small. This means that the temporary
memory is mostly decided by the current input word. The

update gate for this dimension was also small for most of
the input words until the words datapoint, transfer and to
came. Those spikes indicate moments when the temporary
memory was integrated into the persisting memory. As such,
we can speculate that this semantic vector dimension functions
to accumulate information from specific keywords across the
entire sentence. Conversely, for the 12th dimension, the reset
gate was constantly high, indicating that the information stored
in the temporary memory was based on both previous output
and current input. Therefore, the actual output is more sensitive
to local context rather than a single keyword. This is confirmed
by the fluctuating shape of the actual output shown in the fig-
ure. For example, the output value remained in the same range
until the topic was changed from “datapoint indication” to
“message transfer”. We believe that this versatile behavior of
the gating mechanism might enable GRU to encode complex
semantic information from a sentence into a vector to support
trace link generation and other challenging NLP tasks.

From Figure 5, we also notice that the tracing network
hits a glass ceiling for improving precision above 0.27. We
consider this to be caused by its inability to rule out some false
positive links that contain valid associations. For example, the
tracing network assigns a 97.27% probability of a valid link
between artifact “The BOS administrative toolset shall allow
an authorized administrator to view internal errors generated
by the BOS” and the artifact “The MessagesEvents panel
provides the functionality to view message and event logs. The
panel provides searching and filtering capabilities where the
user can search by a number of parameters depending on
the type of data the user wants to view”. There are direct
associations between these artifacts: MessagesEvents panel is
part of the BOS administrative toolset for viewing message and
event log, administrator is a system user and internal errors
generated by the BOS is an event. But this is not a valid
link because MessagesEvents panel only displays messages
and events related to external Railroad Systems rather than to
internal events. It is likely that the tracing network fails to
exclude this link because it has not been exposed to sufficient
similar negative examples in the training data. As we described
in Section IV-A, every positive example is used while negative
examples (i.e. non-links) are randomly selected during each
epoch. We plan to explore more adequate methods for handling
unbalanced data problems caused by characteristics of the
tracing data in our future work.

C. How does the tracing network react to more training data?

The number of trace links tends to increase as a software
project evolves. To explore the potential impact of folding
them into the training set, we increased the training dataset to
80%. We randomly selected part of the test data and moved
it into the training set to reach 80%, while retaining the
remaining data in the testing set. Using the same configuration
as described in Section IV-B, we then retrained the tracing
network. Because the size of the test set decreased to 10%,
we could not make direct comparisons to our previous results.
Instead we used both of the trained tracing networks (i.e.

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

0.45	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Pr
ec
is
io
n	

Recall	

Tracing	Network	trained	by	45%	data	

Tracing	Network	trained	by	80%	data	

VSM	

LSI	

Fig. 7: Precision-Recall Curve on test set – 10% total data.

trained with 45% and 80% of the data respectively) to generate
trace links against the same small test set (sized at 10%). To
reduce the effect of random data selection, we repeated this
process five times and report the average results.

With a larger training set, the MAP was .834 compared to
.803 for the smaller training set. Results are depicted in the
Precision-Recall Curve in Figure 7. With increased training
data, the network can better differentiate links and non-links,
and therefore improve both precision and recall. Improvements
were observed especially at low levels of recall.

The performance of the tracing network trained using 80%
of data was again compared against VSM and LSI for this
larger training set. A Friedman test identified a statistically
significant difference among the APs associated with the
three methods on this new dataset division (X2(2) = 141.11,
p < .001). Using pairwise Wilcoxon signed ranks tests with
Bonferroni p-value adjustments, we found that our tracing
network performed significantly better (MAP = .834) than
VSM (MAP = .625; p < .001) and LSI (MAP = .637;
p < .001). As such, we address RQ2 and conclude that in
general our tracing network improved trace link accuracy in
comparison to both VSM and LSI, and that improvements
were more marked as the size of the training set increased. We
expect additional improvements by reconfiguring the tracing
network for use with a larger training set [8]. However, we
also observed that when using the original training set (i.e.
45% of data), our tracing network only outperformed LSI at
higher levels of recall as shown in Figure 5 and Figure 7. In
future work, we plan to explore the trade-offs between these
two methods for specific data features, and to further improve
the performance of the tracing network.

VI. RelatedWork

In this section we focus on prior work that has integrated on-
tology, semantics, or NLP into the tracing process. Researchers
have attempted to improve bag-of-word approaches such as
the Vector Space Model (VSM) [34] by integrating matching
terms, project glossaries, and other forms of thesauri [34].

Basic enhancements have included user feedback techniques
such as Rocchio [34] or Direct Query manipulation (DQM)
[61] to increase or decrease term weights. However, these
approaches fail to leverage semantic information.

Other techniques identify terms for briding the term mis-
match between source and target artifacts. Dietrich et al.
utilized validated trace links to identify frequent item sets
of terms occurring across pairs of source and target artifacts,
and then used these to augment the text in the trace query
[19]. Gibiec et al. [24] approached trace query augmentation
by acquiring related documents from the Internet, and then
extracting domain related terms. Researchers have also used
phrase detection and chunking to search for requirements
impacted by change requests [2] or to improve the trace
retrieval process [70]. None of these techniques attempted to
understand semantics of the artifacts.

Researchers have also explored the use of knowledge bases
to create and utilize semantically aware associations in the
trace creation process – where a knowledge base include basic
domain terms and sentences that describe the relationships be-
tween those terms [36],[27],[62]. Data is typically represented
as an ontology in which relationships are represented using
AND, OR, implication, and negation operators [36]. Trace-
ability researchers have proposed the idea of using ontology
to connect source and target artifacts [31], [4]. Approaches
have been proposed for weighting the evidence for a trace
link according to distance between concepts in the ontology
[42]. Unfortunately, building domain-specific ontologies is
time consuming and ontologies are generally not available for
technical software engineering domains.

Finally, while researchers have proposed techniques that
more closely mimic the way human analysts reason about trace
links and perform tracing tasks [28], [46], there is very limited
work in this area. Our prior work with DoCIT, described in
Section I, is one exception [28]. DoCIT utilizes both ontology
and heuristics to reason over concepts in the domain in order to
deliver accurate trace links. However, as previously explained,
DoCIT requires non-trivial setup costs to build a customized
ontology and heuristics for each domain, and is sensitive to
flaws in syntactic parsing. In contrast, the RNN approach
described in this paper requires only a corpus of domain
documents and a training set of validated trace links.

On the other hand, deep learning has been successfully
applied to many software engineering tasks. For example,
Lam et al. combined deep neural networks with information
retrieval techniques to identify buggy files in bug reports [39].
Wang et al. utilized a deep belief network to extract semantic
features from source code for the purpose of defect prediction
[69]. Raychev et al. adopted RNN and N-gram to build the
language model for the task of synthesizing code completions
[55]. We were not able to find work that applied deep learning
techniques to traceability tasks in our literature review.

VII. Threats to Validity

Two primary threats to validity potentially impact our work.
First, due to the challenge of obtaining large industrial datasets

including artifacts and trace links, and the time needed to
experiment with different algorithms for learning word em-
beddings and generating trace links, our work focused on a
single domain of Positive Train Control. As a result, we cannot
claim generalizability. However, the PTC dataset included
text taken from external regulations, and written by multiple
requirements engineers, systems engineers, and developers.
The threat to validity arises primarily from the possibility
that characteristics of our specific dataset may have impacted
results of our experiment. For example, the size of the overall
dataset, the characteristics of the vocabulary used, and/or the
nature of each individual artifact, may make our approach
more or less effective. In the next phase of our work we will
evaluate our approach on additional datasets.

Second, we cannot guarantee that the trace matrix used
for evaluation is 100% correct. However, it was provided by
our industrial collaborators and used throughout their project
to demonstrate coverage or regulatory codes. The metrics
we used (i.e. MAP, Recall, and Precision) are all accepted
research standards for evaluating trace results [34]. To avoid
comparison against a weak baseline, we report comparisons
against two standard baselines: VSM and LSI and configured
them using a Genetic Algorithm.

VIII. Conclusions

In this paper, we have proposed a neural network archi-
tecture that utilizes word embedding and RNN techniques to
automatically generate trace links. The Bidirectional Recurrent
Gated Unit effectively constructed semantic associations be-
tween artifacts, and delivered significantly higher MAP scores
than either VSM or LSI when evaluated on our large industrial
dataset. It also notably increased both precision and recall.
Given an initial training set of trace links, our tracing network
is fully automated and highly scalable. In future work, we
will focus on improving precision of the tracing network
by identifying and including more representative negative
examples in the training set.

The tracing network is currently trained to process natural
language text. In future work, we will investigate techniques
for applying it to other types of artifacts such as source code
or formatted data. Finally, given the difficulty and limitations
of acquiring large corpora of data we will investigate hybrid
approaches that combine human knowledge with the neural
network. In summary, the findings we have presented in this
paper have demonstrated that deep learning techniques can be
effectively applied to the tracing process. We see this as a
non-trivial advance in our goal of automating the creation of
accurate trace links in industrial-strength datasets.

IX. Acknowledgments

The work in this paper was partially funded by the US
National Science Foundation Grant CCF-1319680.

References

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo.
Recovering traceability links between code and documentation. IEEE
Trans. Softw. Eng., 28(10):970–983, 2002.

[2] C. Arora, M. Sabetzadeh, L. C. Briand, F. Zimmer, and R. Gnaga.
Automatic checking of conformance to requirement boilerplates via text
chunking: An industrial case study. In 2013 ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement, Bal-
timore, Maryland, USA, October 10-11, 2013, pages 35–44, 2013.

[3] C. Arora, M. Sabetzadeh, A. Goknil, L. C. Briand, and F. Zimmer.
Change impact analysis for natural language requirements: An NLP
approach. In 23rd IEEE International Requirements Engineering Con-
ference, RE 2015, Ottawa, ON, Canada, August 24-28, 2015, pages
6–15, 2015.

[4] N. Assawamekin, T. Sunetnanta, and C. Pluempitiwiriyawej. Ontology-
based multiperspective requirements traceability framework. Knowl. Inf.
Syst., 25(3):493–522, 2010.

[5] H. U. Asuncion, A. Asuncion, and R. N. Taylor. Software traceability
with topic modeling. In 32nd ACM/IEEE International Conference on
Software Engineering (ICSE), pages 95–104, 2010.

[6] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by
jointly learning to align and translate. CoRR, abs/1409.0473, 2014.

[7] I. G. Y. Bengio and A. Courville. Deep learning. Book in preparation
for MIT Press, 2016.

[8] Y. Bengio. Practical recommendations for gradient-based training of
deep architectures. In Neural Networks: Tricks of the Trade, pages 437–
478. Springer, 2012.

[9] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies
with gradient descent is difficult. IEEE transactions on neural networks,
5(2):157–166, 1994.

[10] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster. Program
understanding and the concept assignment problem. Communications
of the ACM, 37(5):72–82, 1994.

[11] M. Buckland and F. Gey. The relationship between recall and precision.
Journal of the American society for information science, 45(1):12, 1994.

[12] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the
properties of neural machine translation: Encoder-decoder approaches.
arXiv preprint arXiv:1409.1259, 2014.

[13] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[14] J. Cleland-Huang, O. Gotel, J. H. Hayes, P. Mäder, and A. Zisman.
Software traceability: trends and future directions. In Proceedings of
the on Future of Software Engineering, FOSE 2014, Hyderabad, India,
May 31 - June 7, 2014, pages 55–69, 2014.

[15] J. Cleland-Huang and J. Guo. Towards more intelligent trace retrieval
algorithms. In (RAISE) Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering, 2014.

[16] J. Cleland-Huang, M. Rahimi, and P. Mäder. Achieving lightweight
trustworthy traceability. In Proceedings of the 22nd ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, (FSE-
22), Hong Kong, China, November 16 - 22, 2014, pages 849–852, 2014.

[17] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Enhancing an artefact
management system with traceability recovery features. In International
Conference on Software Maintenance, pages 306–315, Washington, DC,
USA, 2004. IEEE Computer Society.

[18] A. Dekhtyar, J. Huffman Hayes, S. K. Sundaram, E. A. Holbrook, and
O. Dekhtyar. Technique integration for requirements assessment. In 15th
IEEE International Requirements Engineering Conference (RE), pages
141–150, 2007.

[19] T. Dietrich, J. Cleland-Huang, and Y. Shin. Learning effective query
transformations for enhanced requirements trace retrieval. In 2013 28th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013, pages
586–591, 2013.

[20] B. Dit, M. Revelle, and D. Poshyvanyk. Integrating information retrieval,
execution and link analysis analysis algorithms to improve feature
location in software. Empirical Software Engineering, 18(2):277–309,
2013.

[21] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and
S. Bengio. Why does unsupervised pre-training help deep learning?
Journal of Machine Learning Research, 11(Feb):625–660, 2010.

[22] Federal Aviation Authority (FAA). DO-178B: Software Considerations
in Airborne Systems and Equipment Certification.

[23] Food and Drug Administration. Guidance for the Content of Premarket
Submissions for Software Contained in Medical Devices, 2005.

[24] M. Gibiec, A. Czauderna, and J. Cleland-Huang. Towards mining
replacement queries for hard-to-retrieve traces. In ASE ’10: Proceed-
ings of the IEEE/ACM international conference on Automated software
engineering, pages 245–254, New York, NY, USA, 2010. ACM.

[25] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman, A. Egyed,
P. Grünbacher, A. Dekhtyar, G. Antoniol, J. I. Maletic, and P. Mäder.
Traceability fundamentals. In Software and Systems Traceability., pages
3–22. Springer, 2012.

[26] O. C. Z. Gotel and A. Finkelstein. An analysis of the requirements
traceability problem. In Proceedings of the First IEEE International
Conference on Requirements Engineering, ICRE ’94, Colorado Springs,
Colorado, USA, April 18-21, 1994, pages 94–101, 1994.

[27] T. Gruber. Ontology. In Encyclopedia of Database Systems, pages
1963–1965. Springer US, 2009.

[28] J. Guo, J. Cleland-Huang, and B. Berenbach. Foundations for an
expert system in domain-specific traceability. In 21st IEEE International
Requirements Engineering Conference, RE 2013, Rio de Janeiro-RJ,
Brazil, July 15-19, 2013, pages 42–51, 2013.

[29] J. Guo, N. Monaikul, C. Plepel, and J. Cleland-Huang. Towards
an intelligent domain-specific traceability solution. In Proceedings of
the 29th ACM/IEEE international conference on Automated software
engineering, pages 755–766. ACM, 2014.

[30] J. Guo, M. Rahimi, J. Cleland-Huang, A. Rasin, J. H. Hayes, and
M. Vierhauser. Cold-start software analytics. In Proceedings of the
13th International Conference on Mining Software Repositories, MSR
2016, Austin, TX, USA, May 14-22, 2016, pages 142–153, 2016.

[31] S. Hayashi, T. Yoshikawa, and M. Saeki. Sentence-to-code traceability
recovery with domain ontologies. In J. Han and T. D. Thu, editors,
APSEC, pages 385–394. IEEE Computer Society, 2010.

[32] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 1994.

[33] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[34] J. Huffman Hayes, A. Dekhtyar, and S. K. Sundaram. Advancing can-
didate link generation for requirements tracing: The study of methods.
IEEE Transactions on Software Engineering, 32(1):4–19, 2006.

[35] M. Iyyer, J. L. Boyd-Graber, L. M. B. Claudino, R. Socher, and
H. Daumé III. A neural network for factoid question answering over
paragraphs. In EMNLP, pages 633–644, 2014.

[36] P. Jackson. Introduction To Expert Systems (3 ed.). Addison Wesley,
1998.

[37] A. Karpathy, J. Johnson, and F. Li. Visualizing and understanding
recurrent networks. CoRR, abs/1506.02078, 2015.

[38] J. C. Knight. Safety critical systems: challenges and directions. In 24th
International Conf. on Software Engineering, ICSE 2002, 19-25 May
2002, Orlando, Florida, USA, pages 547–550, 2002.

[39] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. Combining
deep learning with information retrieval to localize buggy files for bug
reports (n). In Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on, pages 476–481. IEEE, 2015.

[40] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten
zip code recognition. Neural computation, 1(4):541–551, 1989.

[41] O. Levy, Y. Goldberg, and I. Dagan. Improving distributional similarity
with lessons learned from word embeddings. Transactions of the
Association for Computational Linguistics, 3:211–225, 2015.

[42] Y. Li and J. Cleland-Huang. Ontology-based trace retrieval. In
Traceability in Emerging Forms of Software Engineering (TEFSE2013,
San Francisco, USA, May 2009.

[43] S. Lohar, S. Amornborvornwong, A. Zisman, and J. Cleland-Huang.
Improving trace accuracy through data-driven configuration and com-
position of tracing features. In 9th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE), pages 378–388, 2013.

[44] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora. Recovering trace-
ability links in software artifact management systems using information
retrieval methods. ACM Transactions on Software Engineering and
Methodology (TOSEM), 16(4):13, 2007.

[45] P. Mäder, P. L. Jones, Y. Zhang, and J. Cleland-Huang. Strategic
traceability for safety-critical projects. IEEE Software, 30(3):58–66,
2013.

[46] A. Mahmoud, N. Niu, and S. Xu. A semantic relatedness approach for
traceability link recovery. In IEEE 20th International Conference on
Program Comprehension, ICPC 2012, Passau, Germany, June 11-13,
2012, pages 183–192, 2012.

[47] A. Mahmoud and G. Williams. Detecting, classifying, and tracing non-
functional software requirements. Requir. Eng., 21(3):357–381, 2016.

[48] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781, 2013.

[49] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur.
Recurrent neural network based language model. In Interspeech,
volume 2, page 3, 2010.

[50] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. CoRR,
abs/1310.4546, 2013.

[51] N. Niu and A. Mahmoud. Enhancing candidate link generation for re-
quirements tracing: The cluster hypothesis revisited. In 2012 20th IEEE
International Requirements Engineering Conference (RE), Chicago, IL,
USA, September 24-28, 2012, pages 81–90, 2012.

[52] R. Pascanu, Ç. Gülçehre, K. Cho, and Y. Bengio. How to construct deep
recurrent neural networks. CoRR, abs/1312.6026, 2013.

[53] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors
for word representation. In Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, 2014.

[54] N. Pinto, D. Doukhan, J. J. DiCarlo, and D. D. Cox. A high-throughput
screening approach to discovering good forms of biologically inspired
visual representation. PLoS Comput Biol, 5(11):e1000579, 2009.

[55] V. Raychev, M. Vechev, and E. Yahav. Code completion with statistical
language models. In ACM SIGPLAN Notices, volume 49, pages 419–
428. ACM, 2014.

[56] P. Rempel, P. Mäder, T. Kuschke, and J. Cleland-Huang. Traceabil-
ity gap analysis for assessing the conformance of software traceabil-
ity to relevant guidelines. In Software Engineering & Management
2015, Multikonferenz der GI-Fachbereiche Softwaretechnik (SWT) und
Wirtschaftsinformatik (WI), FA WI-MAW, 17. März - 20. März 2015,
Dresden, Germany, pages 120–121, 2015.

[57] T. Rocktäschel, E. Grefenstette, K. M. Hermann, T. Kociský, and
P. Blunsom. Reasoning about entailment with neural attention. CoRR,
abs/1509.06664, 2015.

[58] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning represen-
tations by back-propagating errors. Nature, 323(6088):533–536, 1986.

[59] J. Schmidhuber. Learning complex, extended sequences using the
principle of history compression. Neural Computation, 4(2):234–242,
1992.

[60] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997.

[61] Y. Shin and J. Cleland-Huang. A comparative evaluation of two user
feedback techniques for requirements trace retrieval. In SAC, pages
1069–1074, 2012.

[62] P. Shvaiko and J. Euzenat. Ontology matching: State of the art and future
challenges. IEEE Trans. Knowl. Data Eng., 25(1):158–176, 2013.

[63] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng. Parsing natural scenes
and natural language with recursive neural networks. In Proceedings
of the 28th international conference on machine learning (ICML-11),
pages 129–136, 2011.

[64] G. Spanoudakis, A. Zisman, E. Pérez-Miñana, and P. Krause. Rule-based
generation of requirements traceability relations. Journal of Systems and
Software, 72(2):105–127, 2004.

[65] H. Sultanov, J. Huffman Hayes, and W.-K. Kong. Application of
swarm techniques to requirements tracing. Requirements Engineering,
16(3):209–226, 2011.

[66] K. S. Tai, R. Socher, and C. D. Manning. Improved semantic represen-
tations from tree-structured long short-term memory networks. arXiv
preprint arXiv:1503.00075, 2015.

[67] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude. COURSERA: Neural
Networks for Machine Learning, 4(2), 2012.

[68] US Department of Railroads. Federal Railroad Administration,PTC Sys-
tem Information, https://www.fra.dot.gov/Page/P0358, Year = Accessed:
2016-08-26.

[69] S. Wang, T. Liu, and L. Tan. Automatically learning semantic features
for defect prediction. In Proceedings of the 38th International Confer-
ence on Software Engineering, pages 297–308. ACM, 2016.

[70] X. Zou, R. Settimi, and J. Cleland-Huang. Improving automated re-
quirements trace retrieval: a study of term-based enhancement methods.
Empirical Software Engineering, 15(2):119–146, 2010.

