
Design of Parallel Algorithms for Super Long Integer Operation Based on Multi-core
CPUs

Shifeng Zhang 1

1 College of Information Engineering, Yangzhou
University, Yang Zhou, China

yjbqzsf@163.com

Shenghui Su 2, 1

2 Laboratory of Trusted Computing, Beijing University
of Technology, Beijing 100124, PRC

reesse@126.com

Abstract— In cryptographic applications, super long integer
operations are often used. However, cryptographic algorithms
generally run on a computer with a single-core CPU, and the
related computing process is a type of serial execution. In this
paper, we investigate how to parallelize the operations of super
long integers in multi-core computer environment. The
significance of this study lies in that along with the promotion
of multi-core computing devices, and the enhancement of
multi-core computing ability, we need to make the basic
arithmetic of super long integers run in paralleling, which
means blocking super long integers, running all data blocks on
multi-core threads respectively, converting original serial
execution into multi-core parallel computation, and storing
multi-thread results after formatting them. According to
experiments we have observed: if scheduling thread time is
longer than computation, parallel algorithms execute faster; on
the contrary, serial algorithms are better. On the whole,
parallel algorithms can utilize the computing ability of multi-
core hardware more efficiently.

Keywords - super long integers, multi-core, parallel
computation, algorithms, multi-thread

I. INTRODUCTION

In public key cryptosystems [1] and digital signature
schemes [2], for example, RSA [3], ECC [4], and
REESSE1+ [5, 6], super long integers arithmetic is a basic
requirement.

There is not a uniform definition of super long integers.
In general, super long integers are those integers whose
lengths are larger than 64 bits, or scopes exceed what is
allowed by a programming language compiler.

The basic operations discussed in this paper include
addition, subtraction, multiplication, division, and
conversion of number systems. We focus on addition and
multiplication, for subtraction and division can be
implemented by addition, multiplication and shift [7]. At the
end of this paper, we will introduce conversion of number
systems briefly.

The realization of parallel computing uses the ability of
multi-core computers, decomposes the existing super long
integers arithmetic process, and the decomposition uses
segmented or fixed interval number of bits, uses multi-
thread mechanism [8], allocates the decomposed data to
corresponding thread, reduces the running time of serial

operations, so that make full use of multi-core processing
ability.

Our algorithms are applicable to any length of super
long integers arithmetic, and have no minimum length limit.
(Because of the programming language, we need to limit the
maximum output length, the maximum bit we tested now is
1500.)

The following shows the meaning of symbols in these
algorithms.

A denotes a super long integer of m bits, namely
a1 …am; B denotes a super long integer of n bits, namely
b1 …bn; Ai denotes i-th block data of super long integer A; N
denotes the number of processor(s) cores; Tx denotes x-th
execution thread; k = ┌n / N┐ means rounding up the result
of n/N, and store in the k; l = ┌m / N┐ means rounding up
the result of m / N, and store in the l; len denotes the length
of the super long integer, namely the number of bits; br
denotes current borrow value; cr denotes current carry value.
Throughout the paper, assume that A >= B and m >= n.

II. REPRESENTATION OF SUPER LONG INTEGERS

A. Samples
In cryptography algorithms [9,10,11], super long

integers cannot be represented directly by data types
allowed by program language compiler, for example, 21024.
And computing the product of two integers
[12345678987654321]10, [456987123654789321]10 is
difficult. Moreover, calculating the module of the product
which is the power of two positive numbers, like 1024100 *
2562048 % 21024, is difficult. So we propose a new method to
achieve the goal directly under the existing computer data
type.

B. Data Storage and Representation
In the paper, we denote structure of super long integers

by C Program Language.
For the convenience of maintenance and expansion, we

predefine variables as follow.
typedef unsigned int un_int;
typedef unsigned long un_long;
Identifier HBigInt represents variable defined by super

long integer structure:

2015 11th International Conference on Computational Intelligence and Security

978-1-4673-8660-9/15 $31.00 © 2015 IEEE

DOI 10.1109/CIS.2015.88

335

2015 11th International Conference on Computational Intelligence and Security

978-1-4673-8660-9/15 $31.00 © 2015 IEEE

DOI 10.1109/CIS.2015.88

335

2015 11th International Conference on Computational Intelligence and Security

978-1-4673-8660-9/15 $31.00 © 2015 IEEE

DOI 10.1109/CIS.2015.88

335

2015 11th International Conference on Computational Intelligence and Security

978-1-4673-8660-9/15 $31.00 © 2015 IEEE

DOI 10.1109/CIS.2015.88

335

2015 11th International Conference on Computational Intelligence and Security

978-1-4673-8660-9/15 $31.00 © 2015 IEEE

DOI 10.1109/CIS.2015.88

335

2015 11th International Conference on Computational Intelligence and Security

978-1-4673-8660-9/15 $31.00 © 2015 IEEE

DOI 10.1109/CIS.2015.88

335

typedef struct {
long length;
int sign;
un_int *pBigInt;

} HBigInt;
length indicates the size of the assigned storage space,

pBigInt points to array which keep the data of a super long
integer, sign is used to distinguish between positive or
negative: 1 denotes non-negative; -1 denotes negative; 0 is
initialized, not been assigned yet.

Especially, each "bit" of super long integers is stored in
index-bit of an integer array.
We store the super long integer number following Big-
Endian, which means store the most significant bit in the
smallest address. This way facilitates programming dynamic
expansion and reduces the length of that.

III. DESIGN OF PARALLEL ALGORITHMS

A. Description of Addition Parallel Algorithm
The main idea of the addition parallel algorithm is to

divide super long integers into pieces, then handles the
addition of corresponding block to a new open thread, as the
thread is allocated to one processor of multi-core processor
by operating system, These multi date blocks compute
simultaneously, saving overall computing time ultimately.
Input: A = a1 …am, B = b1 …bn , Where m, n>1
Output: C
S1: Get N from host.
S2: If N < n , then exit.
S3: B will be divided into N blocks, each block k bits, that

means Bi = bibi+1…bi*k-1, and Ai = aiai+1…ai*k-1, the
remaining bits non-blocking.

S4: Multithreads T run data block, that Tx: Ci = Bi + Ai.
S5: Make that cm-n...cm=am-n…am, then pick up carry from the

low to high so as to merge the results until all threads
finish computation.

S6: If the most significant bit carry, namely cm-1 is
not less than the decimal value, then increase the length
value of the super long integer.

S7: Format the result by cm = cm-1 / RADIX
cm-1 = cm-1 % RADIX final result is C and len = len + 1;
Otherwise the value of len is unchanged.
RADIX denotes custom radix.

B. Description of Subtraction Parallel Algorithm
It should be noted that, due to the result of subtraction

may be negative, we need to convert the negative bit. In
order to reduce this kind of process, we compare two
unsigned super long integers before operating, and determine
the final results of the positive or negative, then get larger as
the minuend.
Input: A = a1 …am, B = b1 …bn , Where m, n>1
Output: C
S1: Get N from host.

S2: If N < n, then exit.
S3: B will be divided into N blocks, each k bits, namely

Bi = bibi+1…bi*k-1; and Ai = aiai+1…ai*k-1, the remaining
bits non-blocking.

S4: Multithreads T run data block, that Tx: Ci = Ai - Bi.
S5: Make that cm-n...cm = am-n…am, then handle borrow from

the low to high in order to merge the results.
S6: If the most significant bit borrow, when the result of

cm-1 = cm-1 - br is zero, reduce the bits of the result.
S7: The ultimate difference is C, len = len - 1;

Otherwise, the value of len is unchange.

C. Description of Multiplication Parallel Algorithm
The sign of the result of multiplication is not affected

by the numerical size of two operands but its initial sign, so
we can know the sign of the result before the operation.
Input: A = a1 …am, B = b1 …bn , Where m, n>1
Output: C
S1: Get N from host.
S2: If N < n, then exit.
S3: Divide B into N blocks, each block of k bits, and divide A

into N blocks, each block of l bits, namely
Bi = bibi+1…bi*k-1 Aj = ajaj+1…aj*l-1.

S4: Multithreads T run data block, that Tx: Ci+j = Aj * Bi.
S5: Until all threads finish computing, pick up carry from

the low to high in order to merge the results.
S6: When the most significant bit of a carry, namely cm*n-1 is

not less than the decimal value, then increase the length
value of the super long integer.

S7: Format the result by cm+n-1 = cm+n-1 % RADIX
cm+n = cm+n-1 / RADIX final result is C and len = m + n;
Otherwise len = m + n - 1.

D. Description of Division Parallel Algorithm
Due to the special nature of the division of super long

integers (discard the fractional part), we use multiplication
and shift to finish the division. To ensure the feasibility of
parallel algorithms, we ignore the loss of precision
generated by the displacement.

Since turning divisor into multiplier is not the focus of
this paper, it is the key that makes the division in parallel, so
we will give an example of the transformation processes in
the concluding remarks.

IV. EXAMPLES

Because of the super long integer data block division,
the segmented data blocks will be handled by independent
running threads, and the results of all the threads are
centralized treated finally.

A. Choose Radix
Decimal storage and calculation cannot meet the ability

of the 32-bit PC, for 32-bit machine, the computing ability in
a clock cycle is 216 size level (taking into account the value
of the multiplication operation number contain two numbers,

336336336336336336

(216 - 1) * (216 - 1) will not cause the overflow of the data
results), thus choose 216 as radix.

B. Resolve Particle
Due to the schedule of the operating system, it will cost

time to generate threads or wait for all child threads ending,
and such scheduling time shows a sharp growth in critical
value with the increase of the number of child threads, the
critical value of the sub-thread 1.5 times the number of CPU
cores. Therefore, the more detailed division of the data does
not mean better, but the more adaptation the better and the
principle is that the current number of threads are equal to
the number of CPU cores. The number of cores can be
fetched when the software is running, thence decomposition
of data is allocated dynamically.

C. Parallel Program
According to the choice of radix and particle size,

decompose the integration of super long integer arithmetic,
there are two alternative ways. One is dividing segment
corresponds to a thread for processing, the size of the
segment depends on the actual number of threads (i.e. the
number of CPU cores [12]); the other is the interval bit
corresponds to a thread to process; the size of the interval bit
is the number of threads (i.e. the number of CPU cores). The
former puts a number of consecutive bits into a block, the
later disperses each bits into mesh. Both of them are
basically the same in the load balance, for using the average
approach [13]. The former has one more step than
calculation, calculating size of "chunks", while the latter has
advantages than former in accessing memory continuity.

D. Examples of Addition Parallel Computing
Calculate [123456789 + 345879] (dual-core for

example):
123456789 is decomposed into 123 456 789, 123 is "extra"
high, is not involved in operations, directly assigned to the
provisional results; and 345879 are decomposed into 345
and 879

Thread 1 computing:
4 5 6

+ 3 4 5
7 9 11

Thread 2 computing:
7 8 9

+ 8 7 9
15 15 18

Temporary results, namely
1 2 3 7 9 11 15 15 18

Then traverse from low to high, and handle the bit
which has carry data (carrying process is abbreviated),
namely

1 2 3 8 0 2 6 6 8
Theoretically save nearly half computing time, because

the thread 1 and 2 are performed simultaneously. By
extension, when using a 4-core, 8-core, computation time
will be the original serial 1/4 and 1/8.

Subtraction is similar to addition, the only difference is
that intermediate results generated by addition may be
greater than the radix (for example greater than 10 when
radix is decimal), and the subtraction may produce a negative.
Calculate [123456789 - 345879], intermediate result is:

1 2 3 1 1 1 -1 1 0
Then traverse from low to high, and handle the bit

which has borrow data (borrowing process is abbreviated),
namely

1 2 3 1 1 0 9 1 0

E. Examples of Multiplication Parallel Computing
Calculate [189 * 34] (dual-core example):
189 is decomposed into 1, 8 and 9, while 34 is

decomposed into 3 and 4
Thread 1 computing:

1 8 9
* 4

7 5 6
Thread 2 computing:

1 8 9
* 3

5 6 7
Temporary results, namely

7 5 6
+ 5 6 7

5 13 12 6
carry bit 6 4 2 6

Finally, traverse from the low to the high, and handle
the bit which has carry data. But there is a difference
compared with addition operations, the generation of
intermediate results have dependency relationship, since the
overlap of portion of the data bits (columns 2 and 3 in thread
1 corresponding to columns 1 and 2 in thread 2 respectively),
we need to do some exclusive treatment during the
cumulative, you can also use an intermediate variable to
circumvent this exclusive phenomenon. So this operation is
also saving half time of computing the bits of theoretical. By
extension, when using a 4-core, 8-core, computation time
will be 1/4 and 1/8 of the original serial.

In summary, the parallel algorithms are feasible and
practical.

V. EFFICIENCY ANALYSIS

A. Experimental Data
The "bits" column in the table below shows the number

of bits involved in computing the super long integers.
For example, [12345678909876543210] represents the

"bits" of 20-bit integer.
The main experimental source code can reference the

appendix.

TABLE I. THE EXECUTION TIME OF ADDITION

bits/(ms) Serial Dual-Core Quad-Core

337337337337337337

70 0.003352 0.360660 0.375574

150 0.004531 0.378718 0.383751

300 0.008095 0.382632 0.391063

600 0.015419 0.395561 0.397107

1500 0.038750 0.413783 0.406129

TABLE II. THE EXECUTION TIME OF MULTIPLICATION

bits/(ms) Serial Dual-Core Quad-Core

70 0.123479 0.470730 0.495437

150 1.285638 0.992584 0.913955

300 4.692521 3.376838 2.075612

600 13.785123 5.938657 4.156538

1500 30.618759 11.798465 9.369179

� Dual-Core PC configuration: Windows XP + Intel
T2250 1.73GH + 1GB

� Quad-Core PC configuration: Windows XP + Intel
i3-3240 3.40GH + 2GB

B. Result Analysis
From the time of parallel and serial computation above,

we can see that, with the increasing of bits of super long
integer, the time of serial execution grow linearly. However,
The time of parallel execution is less than that of serial
execution, while The time of parallel execution is less than
the increment of linear growth. In addition for example,
compared with the serial execution approximately 100-fold
in 70 bits parallel execution reduced to 10-fold in 1500 bits;
then take multiplication for example, compared with the
serial execution approximately 4 times in 70 bits parallel
execution reduced to 1/3 times in 1500 bits.

Analysis time-consuming of algorithms:
The execution time of "one-bit" calculation is A, the

cycle execution time is C, the rest definition of variables and
formatting functions are essentially changeless, so the total
time can be defined as D, then the "n-bit" super long integer
serial execution time can be expressed as:

Tserial = (A + C) * n + D.
Due to "n-bit" will be decomposed, such formal

expression is incomplete in the parallel environment,
assume that the number of cores is N, then the actual
parallel operation time is: Tparallel = (A + C) * n / N + D. If
the expression is established, then why the actual time of
addition implementation is even longer than the parallel
computing? The reason is that ignoring a new thread
generated before the parallel computing, and the time that
thread is waiting to be released.

Considering the precise millisecond level
(Microsecond, Nanosecond), this neglect is fatal. Because
the cost of time that an operating system schedules a thread
is three tenths of milliseconds or so, of course, not increase
in linear growth with the increase of thread-number. In

practice it shows that when the number of threads does not
exceed the threshold, the scheduling time of the operating
system is basically unchanged, maintaining the level of
three tenths of milliseconds or so, when the scheduled time
exceeds the threshold, it will increase to milliseconds level.
Therefore, we need to modify the expression of parallel
algorithms for the computation time: Tserial = (A + C) * n +
D + K. Where K is the time that operating system
scheduling thread required.

Due to different hardware environment (affected by
CPU clock speed, register read and write rates, Cache size,
etc.), the required time of "one-bit" operation is different, we
use a uniform symbol A, and similarly, represent the cycle
time by C.

Compare the required time of Tserial and Tparallel.
Let S = Tparallel - Tserial

= [(A + C) * n](1 / N - 1) + K
= K - [(A + C) * n](1 – 1 / N)

As seen from the comparison result, with the increasing
of N value (i.e. CPU cores), the result approximates K - [(A
+ C) * n] (N is large enough, for example, N = 8), that is the
difference value between the operating system scheduler
threads require and actual computing time cost. In other
words: If the time of scheduling threads is longer than the
computing time, the implementation of parallel algorithms
will be faster; on the contrary, the executing time of the
serial algorithms is faster.

From the above data conversion, the complexity of
serial computation is:

O((A + C) * n + D) = O((A + C) * n) + O(D) ≈ O(n).
Since A+C is a constant, D is also a constant, so the

time complexity of serial computing is about O(n).
From the above data conversion, the complexity of

muti-core parallel computation is O((A + C) * n / N + D + K)
= O((A + C) * n / N) + O(D + K) ≈ O(n / N).

Since A+C is a constant, D+K is also a constant, so the
time complexity of parallel computing is about O(n / N).

Note: The time given in conclusions is the execution
time of the costing by serial computing.

VI. CONCLUSIONS

With the enhanced hardware integration of PC and
mobile clients, parallel algorithms can make best use of
hardware resources constantly, and get excellent quality and
reasonable price. As the time of addition showed, parallel
algorithms cannot be used blindly, in super long integers
(currently only authenticate to 1500 integer) bits operation,
the serial algorithms still has a great advantage, even with
the increase of bits gap continued narrow. And this
advantage will be enhanced with the promotion of hardware
capabilities, because the promotion of hardware capabilities
is shortened.

As for the shift operation, it will need to convert super
long integer between decimal and binary, so we give brief
introduction of radix conversion. In this paper, 216 is chosen
as the "one-bit" radix, in the radix conversion directly from

338338338338338338

"one-bit" store number corresponding to the sixteen bits
binary number, for example:
[8589869055]10 = [1 65534 65535]2

16

= [1 1111,1111,1111,1110 1111, 1111, 1111, 1111]2
On the other hand the process of binary to decimal is as
follows:
[1 1111,1111,1111,1110 1111,1111,1111,1111]2
= [1 65534 65535] 2

16 = [8589869055]10
It can be seen that the storage number "every-bit" is

unrelated to each other when doing a conversion, in line with
data decomposition characteristics of independence, so
parallel algorithms described in this article is also supported
by the conversion operations.

Finally, introduce the process of division by
multiplication and shift simply. Assume a is the dividend, b
is the divisor, and b > 1. We know that a / b= (1 / b) * a,
since b > 1, so 1 / b is less than 1, and can only handle
integer CPU general purpose registers, so we must find a
way to 1 / b increased to 2 ^ e times, is left e bits position,
and the results obtained e bits in the right place to get
business, namely: a / b = ((2 ^ e / b) * a) / 2 ^ e , where e is
an integer greater than 0, specifically determined by the b.

For example: a = Dividend, b = 0xAAAAAAAB; (i.e.,
b = (2 ^ 33 + 1) / 3) r = (a * b) >> 33, r is the quotient of a/3;
similarly, b = 0x24924925; r = (a * b) >> 32, r is the
quotient of a/7.

ACKNOWLEDGMENT

The authors also would like to thank the Professors
Shuwang Lü and Xinchun Yin for their important
suggestions and corrections.

REFERENCES

[1] W. Diffie and M. E. Hellman, “New Directions in Cryptography”,
IEEE Transactions on Information Thery, v22(6), 1976, pp. 644-654.

[2] T. ElGamal. A Public-key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms[C]. Advances in Cryptology. Springer
Berlin Heidelberg, 1985, pp. 10-18.

[3] R. Rivest, A. Shamir, L. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems[J]. Communications of the
ACM, v2(21), 1978, pp. 120-126.

[4] I. F. Blake, G. Seroussi and N. Smart. Elliptic Curves in
Cryptography[M], Cambridge University Press, Cambridge,UK, 1999.

[5] S. Su, S. Lu and J. Cai. Lightweight digital signature method an ultra-
based logarithm problem of State Intellectual Property,
201110297654. 1, 2011. 10

[6] S. Su and S. Lu. A Public Key Cryptosystem Based on Three New
Provable Problems. Theoretical Computer Science, v426-427, Apr.
2012, pp. 91-117.

[7] Su, S. Lü, and X. Fan. Asymptotic Granularity Reduction and Its
Application. Theoretical Computer Science, vol. 412(39), 2011, pp.
5374-5386

[8] WU Jianyu, PENG Manman. Private LLC Optimization of Chip
Multi-processors Oriented toMulti-threaded Application[J]. Computer
Engineering, 2015, 41(1): 316-321.

[9] YongJe Choi, HoWon KIm, MooSeop Kim, YoungSoo Park, Kyoil
Chung, "Design of Elliptic Curve Cryptographic Coprocessor over
Binary Fields for the IC Card", ITC-CSCC, July, 2001, pp.299-302.

[10] A Kumar, N Rajpal, Application of Genetic Algorithm in the Field of
Steganography, in Journal of Information Technology, Vol. 2, No. 1,
Jul-Dec. 2004, pg 12-15.

[11] Sania Jawaid and Adeeba Jamal, “Generating the Best Fit Key in
Cryptography using Genetic Algorithm”, International Journal of
Computer Applications (0975 – 8887)Volume 98 – No. 20, July 2014.

[12] Carlsson, N. and M. Arlitt, 2011. Towards more effective utilization
of computer systems. SIGSOFT Softw. Eng. Notes, 36(5): 235-246.

[13] Yuping Wang, Chuangyin Dang An Evolutionary Algorithm for
Global Optimization Based on Level-Set Evolution and Latin
Squares IEEE Trans. Evolutionary Computation, 11(5), 579-595,
2007.

339339339339339339

