ON L^p NORMS AND THE EQUIMEASURABILITY OF FUNCTIONS

KENNETH F. ANDERSEN¹

ABSTRACT. For measurable functions f and g, necessary and sufficient conditions are given for the equality of certain L^p norms of f and g to imply that f and g are equimeasurable.

Two Lebesgue measurable functions f and g defined on I = [0, 1] are said to be *equimeasurable* (or are rearrangements of each other) if they have the same distribution function, that is, if m denotes Lebesgue measure on I and

$$D_f(y) = m\{t : |f(t)| > y\} \qquad (y \ge 0)$$

then $D_f = D_g$. It is very well known that the equimeasurability of f and g ensures that the L^p norms of f and g are equal for every p, $1 \le p \le \infty$. Here, as usual, the L^p norm of f is defined by

$$||f||_{p} = \begin{cases} \left(\int_{0}^{1} |f(t)|^{p} dt \right)^{1/p}, & 1 \leq p < \infty, \\ \underset{0 \leq t \leq 1}{\operatorname{ess sup}} |f(t)|, & p = \infty. \end{cases}$$

In this paper we determine necessary and sufficient conditions in order that the equality of certain L^p norms of f and g will ensure that f and g are equimeasurable. More precisely we have the following results:

THEOREM 1. Suppose f and g are essentially bounded functions on I and let $P=P(f,g)=\{p\geq 1: \|f\|_p=\|g\|_p\}$. If P contains a sequence of distinct points $\{p_n\}$ with the property that $\sum_{1}^{\infty} (1/p_n)=\infty$ then f and g are equimeasurable, and in particular, $P=\{p:p\geq 1\}$. Conversely, given a sequence $\{p_n\}$ with $p_n\geq 1$ and $\sum_{1}^{\infty} (1/p_n)<\infty$, there exist bounded measurable functions f and g on I which are not equimeasurable, but $\|f\|_{p_n}=\|g\|_{p_n}$, $n=1, 2, \cdots$.

COROLLARY. If P has a finite limit point, in particular if P is uncountable, then f and g are equimeasurable.

© American Mathematical Society 1973

Received by the editors December 11, 1972.

AMS (MOS) subject classifications (1970). Primary 46E30; Secondary 44A50, 44A10, 28A40.

¹ Research supported in part by NRC grant A-8185.

[September

THEOREM 2. Suppose f and g are measurable functions on I for which $||f||_p$ and $||g||_p$ are finite if and only if $1 \le p \le p_{\infty} < \infty$. If $P = P(f, g) = \{p: 1 \le p \le p_{\infty}, ||f||_p = ||g||_p\}$ contains a sequence of distinct points $\{p_n\}$ such that $\sum_{1}^{\infty} (p_{\infty} - p_n) = \infty$, then f and g are equimeasurable. Conversely, given $p_{\infty}, 1 < p_{\infty} < \infty$, and a sequence $\{p_n\}, 1 \le p_n \le p_{\infty}$, such that $\sum_{1}^{\infty} (p_{\infty} - p_n) < \infty$, there exist measurable functions f and g defined on I with finite L^p norms if and only if $1 \le p \le p_{\infty}$ which are not equimeasurable but $||f||_p = ||g||_p$ if and only if $p \in \{p_n\}$.

The proof we give of Theorem 1 is an elementary application of the Hahn-Banach Theorem and the Theorem of Müntz. A second proof can be given which follows the line of our proof of Theorem 2, and which yields a slightly stronger conclusion in the "converse" part of Theorem 1, namely, the equality of the L^p norms of f and g if and only if $p \in \{p_n\}$. However, since Theorem 1 appears to be the most useful for applications, it seems desirable to sacrifice the additional strength in favour of a simple proof.

For the proof we require the following well-known result (see, for example, [1, Lemma 3.3.2, p. 182]):

(1)
$$||f||_p^p = p \int_0^\infty y^{p-1} D_f(y) \, dy \quad (1 \le p < \infty).$$

PROOF OF THEOREM 1. (Sufficiency) By considering, if necessary, cf and cg where c is a constant, we may assume that both f and g are essentially bounded in absolute value by 1. Now if C(I) denotes, as usual, the space of continuous functions on I with the L^{∞} norm, then

$$L(h) = \int_0^1 h(t) (D_f(t) - D_g(t)) dt \qquad (h \in C(I))$$

defines a bounded linear functional on C(I) which by (1) vanishes on the functions $h_p(t)=t^p$, $p \in \{p_n-1\}$. Now by Müntz' theorem (see, for example, [2, p. 305]) the functions h_p , p>0, belong to the closure of the set $\{h_{p_n-1}:n=1, 2, \cdots\}$ and hence L vanishes on h_p , p>0, by continuity of L. But then by the theorem of dominated convergence it follows that

$$L(h_0) = \int_0^1 \lim_{p \to 0+} t^p (D_f - D_g)(t) \, dt = \lim_{p \to 0+} L(h_p) = 0$$

and hence we must have L=0, that is $D_f = D_g$.

(Necessity) Suppose that $\{p_n\}$ is given with $\sum_{1}^{\infty} (1/p_n) < \infty$. Then, again by Müntz' theorem, the set of functions $S = \{h_p: p=0 \text{ or } p=p_n, n=1, 2, \cdots\}$ is not dense in C(I), and hence there is a bounded linear functional $L, ||L|| \leq 1$, on C(I) which vanishes on S but $L(h_{p_0}) \neq 0$ for some $p_0 > 1$. Now, according to the representation theorem for bounded linear functionals on C(I), there exist nonnegative, nonincreasing functions α , β , defined on I such that

$$L(h) = \int_0^1 h(t) d(\alpha - \beta)(t) \qquad (h \in C(I))$$

and $\alpha(1)=\beta(1)=0$. Moreover, we have $\alpha \leq 1$ and $\beta \leq 1$ since $\alpha(0)+\beta(0)=$ Total Variation of $(\alpha-\beta)=||L||\leq 1$. Hence, if we define f and g to be, respectively, the right continuous inverse of α and β , then $D_f=\alpha$, $D_g=\beta$ and if $p\geq 1$ integration by parts yields

$$L(h_p) = \int_0^1 t^p \, d(D_f - D_g) = -p \int_0^1 t^{p-1} (D_f - D_g) \, dt = \|g\|_p^p - \|f\|_p^p$$

so that $||f||_p = ||g||_p$ for $p \in \{p_n : n = 1, 2, \dots\}$ but $||f||_{p_0} \neq ||g||_{p_0}$ and in particular, $D_f \neq D_g$.

The proof of Theorem 2 requires the following lemma:

LEMMA. Let F(s) be an analytic function in the strip $S = \{s: -\infty < a < Re \ s < b < \infty\}$ and suppose F is bounded in \overline{S} . If F has real zeros, $\{p_n\}$ in S, a necessary condition in order that $F \neq 0$ is that $\sum_{1}^{\infty} d(P_n, \partial S) < \infty$ where $d(p_n, \partial S)$ denotes the distance from p_n to the boundary of S. Conversely, given a real sequence $\{p_n\}, p_n \in S$, with $\sum_{1}^{\infty} d(p_n, \partial S) < \infty$, there exists a function which is analytic in S, bounded in \overline{S} and whose zeros in S are precisely $\{p_n\}$.

PROOF. The function defined by

$$s(z) = a + \frac{b-a}{\pi i} \log \left[i \frac{1+z}{1-z} \right]$$

maps the unit disc $U = \{z : |z| < 1\}$ conformally onto S, and if α_n is the zero of f(z) = F(s(z)) corresponding to p_n , we must have

$$|\alpha_n|^2 = \frac{1 - \sin \pi \gamma_n}{1 + \sin \pi \gamma_n} \qquad \left(\gamma_n = \frac{p_n - a}{b - a}\right).$$

Now, since $\sum_{1}^{\infty} (1-|\alpha_n|)$ converges if and only if $\sum_{1}^{\infty} (1-|\alpha_n|^2)$ converges, one readily verifies that $\sum_{1}^{\infty} (1-|\alpha_n|) < \infty$ if and only if $\sum_{1}^{\infty} d(p_n, \partial S) < \infty$ and hence the lemma follows from Theorems 15.21 and 15.23 of [2, pp. 302-303].

PROOF OF THEOREM 2. Let

$$F(s) = \int_0^\infty t^{s-1} (D_f - D_g)(t) dt \qquad (\frac{1}{2} \leq \operatorname{Re} s \leq p_\infty).$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Then F(s) is the Mellin transform of $D_f - D_g$ which is analytic in $\frac{1}{2} < \operatorname{Re} s < p_{\infty}$, and since

$$|F(s)| \leq \left(\int_{0}^{1} + \int_{1}^{\infty}\right) t^{\operatorname{Re} s - 1} (D_{f} + D_{g})(t) dt$$
$$\leq \int_{0}^{1} t^{-1/2} \cdot 2 \cdot dt + \int_{0}^{\infty} t^{p_{\infty} - 1} (D_{f} + D_{g})(t) dt$$
$$\leq 4 + \|f\|_{p_{\infty}}^{p_{\infty}} + \|g\|_{p_{\infty}}^{p_{\infty}}$$

for $\frac{1}{2} \leq \text{Re } s \leq p_{\infty}$, F is bounded in the closed strip. Hence, by the lemma, $\sum_{1}^{\infty} (p_{\infty} - p_{n}) = \infty$ implies $F \equiv 0$ and hence $D_{f} - D_{g} = 0$ by the well-known inversion theorem for the Mellin transform (see [3, Theorem 9a, pp. 246-247]).

Conversely, given $1 \leq p_n \leq p_\infty < \infty$ such that $\sum_{1}^{\infty} (p_\infty - p_n) < \infty$, the lemma implies the existence of an analytic function $F(s) \neq 0$ for which $|F(s)| \leq M < \infty$, $-1 \leq \text{Re } s \leq p_\infty$, and the zeros of F are precisely the real numbers p_n , $n=1, 2, \cdots$. Define

$$G(s) = e^{s^2} F(s), \qquad -1 \leq \operatorname{Re} s \leq p_{\infty}.$$

Then with $s = \sigma + it$, G(s) tends to zero uniformly in $-1 \leq \sigma \leq p_{\infty}$ as $|t| \rightarrow \infty$, and

$$\int_{-\infty}^{\infty} |G(\sigma + it)| dt \leq M \sqrt{\pi} e^{\sigma^2}.$$

Hence, according to Theorem 19a of [3, p. 265],

$$G(s) = \int_{-\infty}^{\infty} e^{-sx} \phi(x) \, dx$$

where

(2)
$$\phi(x) = \frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} G(s) e^{xs} \, ds$$

provided $-1 < \sigma < p_{\infty}$, $-\infty < x < \infty$; moreover (2) does not depend on σ . For x > 0, we put $\psi(x) = \phi(-\log x)$. Then

$$|\psi'(x)| \leq \frac{1}{2\pi} M e^{\sigma^2} \int_0^\infty (\sigma^2 + t^2)^{1/2} e^{-t^2} x^{-(\sigma+1)} dt \leq A x^{-(\sigma+1)}$$

where A is a constant independent of σ , $-1 \leq \sigma \leq p_{\infty}$, and since ψ is independent of σ , we must have

$$|\psi'(x)| \leq A \min_{-1/2 \leq \sigma \leq 1} \{x^{-(\sigma+1)}\}$$

so that $\int_0^\infty |\psi'(x)| dx < \infty$ which shows that ψ is of bounded variation on $(0, \infty)$. Let $\psi = \psi_1 - \psi_2$ where ψ_i are nonnegative and nonincreasing.

Define f and g to be, respectively, the right continuous inverse of the functions ψ_1/c and ψ_2/c where $c = \sup |\psi(x)| > 0$. Then $D_f = \psi_1/c$, $D_g = \psi_2/c$ and, if $1 \le p \le p_{\infty}$,

$$\frac{1}{c}G(p) = \int_0^\infty t^{p-1} \left(\frac{\psi_1}{c} - \frac{\psi_2}{c}\right)(t) dt = \frac{1}{p} \left(\|f\|_p^p - \|g\|_p^p\right)$$

and since G has zeros precisely at p_n , $n=1, 2, \cdots$, we have $||f||_p = ||g||_p$ if and only if $p \in \{p_n\}$.

References

1. P. L. Butzer and H. Berens, *Semi-groups of operators and approximation*, Die Grundlehren der math. Wissenschaften, Band 145, Springer-Verlag, New York, 1967. MR 37 #5588.

2. W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966. MR 35 #1420.

3. D. V. Widder, *The Laplace transform*, Princeton Math. Series, vol. 6, Princeton Univ. Press, Princeton, N.J., 1941. MR 3, 232.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA, CANADA