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ON V  NORMS  AND  THE  EQUIMEASURABILITY

OF FUNCTIONS

KENNETH  F.   ANDERSEN1

Abstract. For measurable functions f and g, necessary and

sufficient conditions are given for the equality of certain Lv norms

of/and^ to imply that/' and g are equimeasurable.

Two Lebesgue measurable functions / and g defined on /=[0, 1] are

said to be equimeasurable (or are rearrangements of each other) if they

have the same distribution function, that is, if m denotes Lebesgue measure

on / and

Df(y) = m{t: \f(t)\ > y}        (y ^ 0)

then Df=Dg. It is very well known that the equimeasurability off and g

ensures that the Lp norms of/and g are equal for every/?, l-^p-^co. Here,

as usual, the W norm off is defined by

(j\f(t)\»dtj\        l^p<oo,

ess sup |/(r)|, p = oo.
OSíÉl

In this paper we determine necessary and sufficient conditions in order that

the equality of certain V norms of/and g will ensure that /and g are

equimeasurable. More precisely we have the following results:

Theorem 1. Suppose fand g are essentially bounded functions on I and

let P=P(fg) = {p^l:\\f\\v=\\g\\^. If P contains a sequence of distinct

points {pn} with the property that 2i° (llPn)—^ then f and g are equi-

measurable, and in particular, P={p:p^.l}. Conversely, given a sequence

{pn} with Pn = \ ond 2í° ( I //>„)< °°> there exist bounded measurable

functions f and g on I which are not equimeasurable, but ||/||p =llgll„„>

n=l,2,--- .

Corollary. IfP has a finite limit point, in particular ifP is uncountable,

then f and g are equimeasurable.

Received by the editors December 11, 1972.

AMS (MOS) subject classifications (1970). Primary 46E30; Secondary 44A50,

44A10, 28A40.
1 Research supported in part by NRC grant A-8185.

© American Mathematical Society 1973

1/11,=

149
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



150 K.   F.   ANDERSEN [September

Theorem 2. Suppose f and g are measurable functions on I for which

11/11 „ and \\g\\,p are finite if and only if l^p^pœ<<x>. If P=P(f, g)=
{p: 1 ̂ p^p^, 11/11,,= ||g||„} contains a sequence of distinct points {pn} such

that 2î° (Poo—Pn)=00> then f and g are equimeasurable. Conversely, given

Po=, l<px<co, and a sequence {pn}, \^pn< px, such that 2Î (/>»-/>»)<

oo, there exist measurable fund ions fand g defined on I with finite Lv norms

if and only ifl^p^px which are not equimeasurable but ||/|| „= \\g\\p if and

only ifp E {pj.

The proof we give of Theorem 1 is an elementary application of the

Hahn-Banach Theorem and the Theorem of Miintz. A second proof can

be given which follows the line of our proof of Theorem 2, and which yields

a slightly stronger conclusion in the "converse" part of Theorem 1,

namely, the equality of the V norms of/ and g if and only if p e {/?„}.

However, since Theorem 1 appears to be the most useful for applications,

it seems desirable to sacrifice the additional strength in favour of a simple

proof.

For the proof we require the following well-known result (see, for

example, [1, Lemma 3.3.2, p. 182]):

(1) \f\\ = P fV^/OO dy       (1 . £ p < oo).

Proof of Theorem 1. (Sufficiency) By considering, if necessary, cf

and eg where c is a constant, we may assume that both/and g are essen-

tially bounded in absolute value by 1. Now if C(I) denotes, as usual, the

space of continuous functions on I with the Lx norm, then

L(h) =j\(t)(Df(t) - Dg(t)) dt       (h e C(I))

defines a bounded linear functional on C(I) which by (1) vanishes on the

functions hP(t)=tv, p e {pn— 1}. Now by Miintz' theorem (see, for ex-

ample, [2, p. 305]) the functions hp, p>0, belong to the closure of the set

{hP _x:n=l, 2, • • •} and hence L vanishes on hv, p>0, by continuity of L.

But then by the theorem of dominated convergence it follows that

L(hQ) = |   lim tp(Df - Dg)(t) dt = lim L(hv) = 0
Jo j>->0+ î>-»0+

and hence we must have L=0, that is Df=Dg.

(Necessity) Suppose that {pn} is given with 2f (l/pn)<co. Then, again

by Miintz' theorem, the set of functions S={hp:p=0 or p=pn, n=\,

2, • ■ •} is not dense in C(7), and hence there is a bounded linear functional

L, ||L||_1, on C(7) which vanishes on S but L(hPo)^0 for some p0>l.
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Now, according to the representation theorem for bounded linear func-

tional on C(I), there exist nonnegative, nonincreasing functions <x, ß,

defined on / such that

SL(h) =     h{t) d(a - ß)(t)       (h e C(I))

and a(l) = /S(l)=0. Moreover, we have a^l and ß^l since oc(0)-|-/?(0) =

Total Variation of (a—ß)=\\L\\^l. Hence, if we define/and g to be,

respectively, the right continuous inverse of a and ß, then Df=x, Dg = ß

and if p^.1 integration by parts yields

L(h ,) = f V d(D, - Dg) = -p [Xf-\Df - D„) dt = Hgli;
Jo Jo

so that \\flP=\\g\\v for pe{pn:n=l,2, • • •} but \\f\\„*UK and in

particular, Df^Dg.

The proof of Theorem 2 requires the following lemma:

Lemma. Let F(s) be an analytic function in the strip S={s: — oo<a<

Re j <<?<oo} and suppose F is bounded in S. If F has real zeros, {pn} in S,a

necessary condition in order that £^É0 is that ^xd(Pn,dS)<oo where

d(pH, dS) denotes the distance from pn to the boundary of S. Conversely,

given a real sequence {pn}, pn e S, with 2f d(pn, dS)<<x>, there exists a

function which is analytic in S, bounded in S and whose zeros in S are

precisely {/>„}.

Proof.    The function defined by

/ * ,  b — a ,
s(z) = a +-log

7ri

'. 1 + Z

I -

Ll-2.

maps the unit disc U={z:\z\<l} conformally onto S, and if <x„ is the zero

of/(z) = £(s(z)) corresponding to p„, we must have

2       1  - sin 77yn
Kl   -7-7—-

1 + sin wyn (—fff);
Now, since 2í° (1—|«„|) converges if and only if 2î° (l — |an|2) converges,

one readily verifies that 2? (1—lanl)<°° if and only if 2i° d(pn, dS)<co

and hence the lemma follows from Theorems 15.21 and 15.23 of [2, pp.

302-303].
Proof of Theorem 2.    Let

F(s) = r?-\Df - DQ)(t) dt       (J ^ Re s^ Pa>).
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Then F(s) is the Mellin transform of Df—Dg which is analytic in £<Re i<

pœ, and since

\F(s)\ = (fo+j*)tRe'~1V>f+ »Mdt

ri /"oo

=    r1/2 • 2 • dt +     t*<*-\D, + Dg)(t) dt
Jo Jo

= 4 + n/n;« + iigii;«

for J^Re s^pœ, F is bounded in the closed strip. Hence, by the lemma,

2í° (Px—Pn)=cc implies F=0 and hence Df—Dg = 0 by the well-known

inversion theorem for the Mellin transform (see [3, Theorem 9a, pp.

246-247]).

Conversely, given l^pn^p00<co such that 2i° (f» — Pn) < °o, the lemma

implies the existence of an analytic function F(í)^0 for which |F(s)|^

M<oo, — l^Re s^pœ, and the zeros of Fare precisely the real numbers

pn, n=l, 2, • • • . Define

G(s) = e**F(s),        -l^Res^p^.

Then with s=a+it, G(s) tends to zero uniformly in — l^o^px as |f|—>-oo,

and

I \G(o + it)\ dt < MJtt e° .i    v       i       ¿i        _       v

Hence, according to Theorem 19a of [3, p. 265],

G(s) =      e~sx4>(x) dx
J-CC

where
i       [°a-ticc

(2) <¿(x) = —; G(s)exsds
2nl  Ja—ico

provided —l<o-</700, — oo < x < oo ; moreover (2) does not depend on a.

For x>0, we put ip(x) = <f>(—log x). Then

1 2   f00 2

lv'001 = — Me"      (o2 + i2)1/2e"' X-(°+v dt < AX-{"+1)
2tt Jo

where A is a constant independent of o, —1 ̂ o^px, and since y is inde-

pendent of a, we must have

W(x)\ ^ /I   min   {x"(ir+1)}
-l/2á<rál

so that J^° |^'(x)| dx<co which shows that y> is of bounded variation on

(0, oo).   Let y>—y>x—if>2 where y>¿ are nonnegative and nonincreasing.
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Define/and g to be, respectively, the right continuous inverse of the func-

tions xpxjc and xp2fc where c=sup|^(x)|>0. Then Df=ipx¡c, Dg=y2/c

and, if l^p^Poo,

- G(p) = f V1 (^ - ^)(t) dt = - (U/H* - iign;)
c Jo \c c I p

and since G has zeros precisely atpn, n=l, 2, • • • , we have ||/||„=||g||p if

and only if p e {pn}.
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