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Abstract— The Internet of Things (IoT) is part of the Internet
of the future and will comprise billions of intelligent communi-
cating “things” or Internet Connected Objects (ICOs) that will
have sensing, actuating, and data processing capabilities. Each
ICO will have one or more embedded sensors that will capture
potentially enormous amounts of data. The sensors and related
data streams can be clustered physically or virtually, which raises
the challenge of searching and selecting the right sensors for a
query in an efficient and effective way. This paper proposes a
context-aware sensor search, selection, and ranking model, called
CASSARAM, to address the challenge of efficiently selecting a
subset of relevant sensors out of a large set of sensors with sim-
ilar functionality and capabilities. CASSARAM considers user
preferences and a broad range of sensor characteristics such as
reliability, accuracy, location, battery life, and many more. This
paper highlights the importance of sensor search, selection and
ranking for the IoT, identifies important characteristics of both
sensors and data capture processes, and discusses how semantic
and quantitative reasoning can be combined together. This paper
also addresses challenges such as efficient distributed sensor
search and relational-expression based filtering. CASSARAM
testing and performance evaluation results are presented and
discussed.

Index Terms— sensors, search and selection, indexing and
ranking, semantic querying, quantitative reasoning, multi-
dimensional data fusion.

I. INTRODUCTION

THE number of sensors deployed around the world is
increasing at a rapid pace. These sensors continuously

generate enormous amounts of data. However, collecting data
from all the available sensors does not create additional value
unless they are capable of providing valuable insights that
will ultimately help to address the challenges we face every
day (e.g. environmental pollution management and traffic
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congestion management). Furthermore, it is also not feasible
due to its large scale, resource limitations, and cost factors.
When a large number of sensors are available from which to
choose, it becomes a challenge and a time consuming task to
select the appropriate1 sensors that will help the users to solve
their own problems.

The sensing as a service [1] model is expected to be built
on top of the IoT infrastructure and services. It also envisions
that sensors will be available to be used over the Internet either
for free or by paying a fee through midddleware solutions.
Currently, several middleware solutions that are expected to
facilitate such a model are under development. OpenIoT [2],
GSN [3], and xively (xively.com) are some examples. These
middleware solutions strongly focus on connecting sensor
devices to software systems and related functionalities [2].
However, when more and more sensors get connected to the
Internet, the search functionality becomes critical.

This paper addresses the problem mentioned above as we
observe the lack of focus on sensor selection and search in
existing IoT solutions and research. Traditional web search
approach will not work in the IoT sensor selection and search
domain, as text based search approaches cannot capture the
critical characteristics of a sensor accurately. Another approach
that can be followed is that of metadata annotation. Even if
we maintain metadata on the sensors (e.g. stored in a sensor’s
storage) or in the cloud, interoperability will be a significant
issue. Furthermore, a user study done by Broring et al. [4] has
described how 20 participants were asked to enter metadata for
a weather station sensor using a simple user interface. Those
20 people made 45 mistakes in total. The requirement of re-
entering metadata in different places (e.g. entering metadata
on GSN once and again entering metadata on OpenIoT, etc.)
arises when we do not have common descriptions. Recently,
the W3C Incubator Group released Semantic Sensor Network
XG Final Report, which defines an SSN ontology [5]. The SSN
ontology allows describing sensors, including their character-
istics. This effort increases the interoperability and accuracy
due to the lack of manual data entering. Furthermore, such
mistakes can be avoided by letting the sensor hardware manu-
factures produce and make available sensor descriptions using
ontologies so that IoT solution developers can retrieve and
incorporate (e.g. mapping) them in their own software system.

Based on the arguments above, ontology based sensor
description and data modeling is useful for IoT solutions.
This approach also allows semantic querying. Our proposed

1We describe the term appropriate in Section III.
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solution allows the users to express their priorities in terms
of sensor characteristics and it will search and select appro-
priate sensors. In our model, both quantitative reasoning and
semantic querying techniques are employed to increase the
performance of the system by utilizing the strengths of both
techniques.

In this paper, we propose a model that can be adopted by
any IoT middleware solution. Moreover, our design can be run
faster using MapReduce based techniques, something which
increases the scalability of the solution. Our contributions can
be summarized as follows. We have developed an ontology
based context framework for sensors in IoT which allows
capturing and modeling context properties related to sensors.
This information allows users to search the sensors based on
context. We have designed, implemented and evaluated our
proposed CASSARAM model and its performance in a com-
prehensive manner. Specifically, we propose a Comparative-
Priority Based Weighted Index (CPWI) technique to index
and rank sensors based on the user preferences. Furthermore,
we propose a Comparative-Priority Based Heuristic Filtering
(CPHF) technique to make the sensor search process more effi-
cient. We also propose a Relational-Expression based Filtering
(REF) technique to support more comprehensive searching.
Finally, we propose and compare several distributed sensor
search mechanisms.

The rest of this paper is structured as follows: In Section II,
we briefly review the literature and provide some descrip-
tions of leading IoT middleware solutions and their sensor
searching capabilities. Next, we present the problem defini-
tions and motivations in Section III. Our proposed solution,
CASSARAM, is presented with details in Section IV. Data
models, the context framework, algorithms, and architectures
are discussed in this section. The techniques we developed
to improve CASSARAM are presented in Section V. In
Section VI, we provide implementation details, including
tools, software platforms, hardware platforms, and the data
sets used in this research. Evaluation and discussions related
to the research findings are presented in Section VII. Finally,
we present a conclusion and prospects for future research in
Section VIII.

II. BACKGROUND AND RELATED WORK

Ideally, IoT middleware solutions should allow the users to
express what they want and provide the relevant sensor data
back to them quickly without asking the users to manually
select the sensors which are relevant to their requirements.
Even though IoT has received significant attention from both
academia and industry, sensor search and selection has not
been addressed comprehensively. Specifically, sensor search
and selection techniques using context information [6] have
not been explored substantially. A survey on context aware
computing for the Internet of Things [6] has recognised sensor
search and selection as a critical task in automated sensor
configuration and context discovery processes. Another review
on semantics for the Internet of Things [7] has also recognised
resource (e.g., a sensor or an actuator) search and discovery
functionality as one of the most important functionalities that
are required in IoT. Barnaghi et al. [7] have highlighted the

need for semantic annotation of IoT resources and services.
Processing and analysing the semantically annotated data are
essential elements to support search and discovery [7]. This
justifies our approach of annotating the sensors with related
context information and using that to search the sensors.
The following examples show how existing IoT middleware
solutions provide sensor searching functionality.

Linked Sensor Middleware (LSM) [8], [9] provides some
sensor selection and searching functionality. However, they
have very limited capabilities, such as selecting sensors based
on location and sensor type. All the searching needs to be done
using SPARQL, which is not user-friendly to non-technical
users. Similar to LSM, there are several other IoT middleware
related projects under development at the moment. GSN [3] is
a platform aiming at providing flexible middleware to address
the challenges of sensor data integration and distributed query
processing. It is a generic data stream processing engine. GSN
has gone beyond the traditional sensor network research efforts
such as routing, data aggregation, and energy optimisation.
GSN lists all the available sensors in a combo-box which users
need to select. However, GSN lacks semantics to model the
metadata. Another approach is Microsoft SensorMap [10]. It
only allows users to select sensors by using a location map,
by sensor type and by keywords. xively (xively.com) is also
another approach which provides a secure, scalable platform
that connects devices and products with applications to provide
real-time control and data storage. This also provides only
keyword search. The illustrations of the search functionalities
provided by the above mentioned IoT solutions are presented
in [11]. Our proposed solution CASSARAM can be used to
enrich all the above mentioned IoT middleware solutions with
a comprehensive sensor search and selection functionality.

In the following, we briefly describe some of the work
done in sensor searching and selection. Truong et al. [12]
propose a fuzzy based similarity score comparison sensor
search technique to compare the output of a given sensor with
the outputs of several other sensors to find a matching sensor.
Mayer et al. [13] considers the location of smart things/sensors
as the main context property and structures them in a logical
structure. Then, the sensors are searched by location using tree
search techniques. Search queries are distributively processed
in different paths/nodes of the tree. Elahi et al. [14] propose
a content-based sensor search approach (i.e. finding a sensor
that outputs a given value at the time of a query). Dyser is
a search engine proposed by Ostermaier et al. [15] for real-
time Internet of Things, which uses statistical models to make
predictions about the state of its registered objects (sensors).
When a user submits a query, Dyser pulls the latest data to
identify the actual current state to decide whether it matches
the user query. Prediction models help to find matching sensors
with a minimum number of sensor data retrievals. Very few
related efforts have focused on sensor search based on context
information. Perera et al. [11] have compared the similarities
and differences between sensor search and web service search.
It was found that context information has played a significant
role in web service search (especially towards web services
composition). According to a study in Europe [16], there
are over 12,000 working and useful Web services on the



408 IEEE SENSORS JOURNAL, VOL. 14, NO. 2, FEBRUARY 2014

Web. Even in such conditions, choice between alternatives
(depending on context properties) has become a challenging
problem. The similarities strengthen the argument that sensor
selection is an important challenge at the same level of
complexity as web services. On the other hand, the differences
show that sensor selection will become a much more complex
challenge over the coming decade due to the scale of the IoT.

De et al. [17] have proposed a conceptual architecture,
an IoT platform, to support real-world and digital objects.
They have presented several semantic ontology based models
that allow capturing information related to IoT resources (e.g.
sensors, services, actuators). However, they are not focused
on sensors and the only context information considered is
location. In contrast, CASSARAM narrowly focuses on sen-
sors and considers a comprehensive set of context information
(see Section IV-F). Guinard et al. [18] have proposed a web
service discovery, query, selection, and ranking approach using
context information related to the IoT domain. Similarly,
TRENDY [19] is a registry-based service discovery protocol
based on CoAP (Constrained Application Protocol) [20] based
web services with context awareness. This protocol has been
proposed to be used in the Web of Things (WoT) domain with
the objective of dealing with a massive number of web services
(e.g. sensors wrapped in web services). Context information
such as hit count, battery, and response time are used to
select the services. An interesting proposal is by Calbimonte
et al. [21], who have proposed an ontology-based approach
for providing data access and query capabilities to streaming
data sources. This work allows the users to express their
needs at a conceptual level, independent of implementation.
Our approach, CASSARAM, can be used to complement
their work where we support context based sensor search
and they provide access to semantically enriched sensor data.
Furthermore, our evaluation results can be used to understand
the scalability and computational performance of their working
big data paradigm as both approaches use the SSN ontology.
Garcia-Castro et al. [22] have defined a core ontological model
for Semantic sensor web infrastructures. It can be used to
model sensor networks (by extending the SSN ontology),
sensor data sources, and the web services that expose the
data sources. Our approach can also be integrated into the
uBox [23] approach, to search things in the WoT domain
using context information. Currently, uBox performs searches
based on location tags and object (sensor) classes (types) (e.g.
hierarchy local/class/actuator/light).

The Table I summarises the different research efforts that
have addressed the challenge of sensor search. Table I lists the
efforts and the number of sensors used in their experiments.

III. PROBLEM DEFINITION AND MOTIVATION

The problem that we address in this paper can be defined
as follows. Due to the increasing number of sensors avail-
able, we need to search and select sensors that provide data
which will help to solve the problem at hand in the most
efficient and effective way. Our objective is not to solve
the users problems, but to help them to collect sensor data.
The users can further process such data in their own ways
to solve their problems. In order to achieve this, we need

TABLE I

NUMBER OF SENSORS USED IN EXPERIMENTAL EVALUATIONS OF

DIFFERENT SENSOR SEARCH APPROACHES

to search and select sensors based on different pieces of
context information. Mainly, we identify two categories of
requirements: point-based requirements (non-negotiable) and
proximity-based (negotiable) requirements. We examined the
problem in detail in [11] by providing real world application
scenarios and challenges.

First, there are the point-based requirements that need be
definitely fulfilled. For example, if a user is interested in
measuring the temperature in a certain location (e.g. Canberra),
the result (e.g. the list of sensors) should only contain sensors
that can measure temperature. The user cannot be satisfied by
being providing with any other type of sensor (e.g. pressure
sensors). There is no bargain or compromise in this type
of requirement. Location can be identified as a point-based
requirement. The second is proximity-based requirements that
need be fulfilled in the best possible way. However, meeting
the exact user requirement is not required. Users may be
willing to be satisfied with a slight difference (variation). For
example, the user has the same interest as before. However, in
this situation, the user imposes proximity-based requirements
in addition to their point-based requirements. The user may
request sensors having an accuracy of around 92%, and
reliability 85%. Therefore, the user gives the highest priority to
these characteristics. The user will accept sensors that closely
fulfil these requirements even though all other characteristics
may not be favourable (e.g. the cost of acquisition may be
high and the sensor response may be slow). It is important to
note that users may not be able to provide any specific value,
so the system should be able to understand the user’s priorities
and provide the results accordingly, by using comparison
techniques.

Another motivation behind our research are statistics and
predictions that show rapid growth in sensor deployment
related to the IoT and Smart Cities. It is estimated that
today there about 1.5 billion Internet-enabled PCs and over
1 billion Internet-enabled mobile phones. By 2020, there will
be 50 to 100 billion devices connected to the Internet [25].
Furthermore, our work is motivated by the increasing trend
of IoT middleware solutions development. Today, most of
the leading midddleware solutions provide only limited sensor
search and selection functionality, as mentioned in Section II.

We highlight the importance of sensor search functionality
using current and potential applications. Smart agriculture [26]
projects such as Phenonet [27] collects data from thousands
of sensors. Due to heterogeneity, each sensor may have dif-
ferent context values, as mentioned in Section IV-F. Context
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TABLE II

COMMON ALGORITHMIC NOTATION TABLE

information can be used to selectively select sensors depending
on the requirements and situations. For example, CASSARAM
helps to retrieve data only from sensors which have more
energy remaining when alternative sensors are available. Such
action helps to run the entire sensor network for a much longer
time without reconfiguring and recharging. The sensing as a
service [28] architectural model envisions an era where sensor
data will be published and sold through the cloud. Consumers
(i.e., users) will be allowed to select a number of sensors and
retrieve data for some period as specified in an agreement by
paying a fee. In such circumstances, allowing consumers to
select the sensors they want based on context information is
critical. For example, some consumers may be willing to pay
more for highly accurate data (i.e., highly accurate sensors)
while others may be willing to pay less for less accurate data,
depending on their requirements, situations, and preferences.

IV. CONTEXT-AWARE SENSOR SEARCH, SELECTION AND

RANKING MODEL

In this section, we present the proposed sensor selection
approach step by step in detail. First, we provide a high-level
overview of the model, which describes the overall execution
flow and critical steps. Then, we explain how user preferences
are captured. Next, the data representation model and proposed
extensions are presented. Finally, the techniques of semantic
querying and quantitative reasoning are discussed with the help
of some algorithms. All the algorithms presented in this paper
are self-explanatory and the common algorithmic notations
used in this paper are presented in Table II.

Fig. 1. High level Overview of CASSARAM.

A. High-Level Model Overview

The critical steps of CASSARAM are presented in Fig. 1.
As we mentioned earlier our objective is to allow the users to
search and select the sensors that best suit their requirements.
In our model, we divide user requirements into two categories
(from the user’s perspective): point-based requirements and
proximity-based requirements, as discussed in Section III.
Algorithm 1 describes the execution flow of CASSARAM. At
the beginning, CASSARAM identifies the point-based require-
ments, the proximity-based requirements, and the user priori-
ties. First, users need to select the point-based requirements.
For example, a user may want to collect sensor data from 1,000
temperature sensors deployed in Canberra. In this situation, the
sensor type (i.e., temperature), location (i.e., Canberra) and
number of sensors required (i.e., 1,000) are the point-based
requirements. Our CASSARAM prototype tool provides a user
interface to express this information via SPARQL queries.
In CASSARAM, any context property can become a point-
based requirement. Next, users can define the proximity-based
requirements. All the context properties we will present in
Section IV-F are available to be defined in comparative fashion
by setting the priorities via a slider-based user interface, as
depicted in Fig. 2. Next, each sensor is plotted in a multi-
dimensional space where each dimension represents a context
property (e.g. accuracy, reliability, latency). Each dimension
is normalized [0,1] as explained in Algorithm 3. Then,
the Comparative-Priority Based Weighted Index (CPWI) is
generated for each sensor by combining the user’s priorities
and context property values as explained in Section IV-E. The
sensors are ranked using the CPWI and the number of sensors
required by the user is selected from the top of the list.

B. Capturing User Priorities

This is a technique we developed to capture the user’s
priorities through a user interface, as shown in Fig. 2. CAS-
SARAM allows users to express which context property is
more important to them, when compared to others. If a user
does not want a specific context property to be considered in
the indexing process, they can avoid it by not selecting the
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Algorithm 1 Execution Flow of CASSARAM

Fig. 2. A weight of W1 is assigned to the reliability property. A weight
of W2 is assigned to the Accuracy property. A weight of W3 is assigned
to the availability property. A weight of W4, the default weight, is assigned
to the cost property. High priority means always favoured, and low priority
means always disfavoured. For example, if the user makes cost a high priority
(more towards the right), that means CASSARAM tries to find the sensors
that produce data at the lowest cost. Similarly, if the user makes accuracy a
high priority, that means CASSARAM tries to find the sensors that produce
data with high accuracy.

check-box correlated with that specific context property. For
example, according to Fig. 2, energy will not be considered
when calculating the CPWI. This means the user is willing to
accept sensors with any energy consumption level. Users need
to position the slider of each context property if that context
property is important to them. The slider scale begin from 1,
which means no priority (i.e., the left corner). The highest
priority can be set by the user as necessary with the help of a
scaler, where a higher scale makes the sliders more sensitive
(e.g. 102 = 1 to 100, 103, 104). Algorithm 2 describes the user
priority capturing process.

As depicted in Fig. 2, if the user wants more wieght to be
placed on the reliability of a sensor than on its accuracy, the
reliability slider need to be placed further to the right than
the accuracy slider. A weight is calculated for each context
property. Therefore, higher priority means higher weight. As
a result, sensors with high reliability and accuracy will be
ranked highly. However, those sensors may have high costs
due to the low priority placed on cost.

C. Data Modeling and Representation

In this paper, we employed the Semantic Sensor Network
Ontology (SSN) [5] to model the sensor descriptions and
context properties. The main reasons for selecting the SSN
ontology are its interoperability and the trend towards ontol-
ogy usage in the IoT and sensor data management domain.

Algorithm 2 User Priority Capturing

A comparison of different semantic sensor ontologies is pre-
sented in [29]. The SSN ontology is capable of modeling a
significant amount of information about sensors, such as sensor
capabilities, performance, the conditions in which it can be
used, etc. The details are presented in [5]. The SSN ontol-
ogy includes the most common context properties, such as
accuracy, precision, drift, sensitivity, selectivity, measurement
range, detection limit, response time, frequency and latency.
However, the SSN ontology can be extended unlimitedly by
a categorization with three classes: measurement property,
operating property, and survival property. We depict a sim-
plified segment of the SSN ontology in Fig. 3. We extend
the quality class by adding several sub-classes based on our
context framework, as listed in Section IV-F. All context
property values are stored in the SSN ontology in their original
measurement units. CASSARAM normalizes them on demand
to [0,1] to ensure consistency. Caching techniques can be used
to increase the execution performances. Due to technological
advances in sensor hardware development, it is impossible to
statically define upper and lower bounds for some context
properties (e.g. battery life will be improved over time due
to advances in sensor hardware technologies). Therefore, we
propose Algorithm 3 to dynamically normalize the context
properties.

D. Filtering Using Querying Reasoning

Once the point-based requirements of the user have been
identified, they need to be expressed using SPARQL. Seman-
tic querying has weaknesses and limitations. When a query
becomes complex, the performance decreases [30]. Relational
expression based filtering can also be used; however, using it
will increase the computational requirements. Further expla-
nations are presented in Section V-B. Any of the context
properties identified in Section IV-F can become point-based
requirements and need to be represented in SPARQL. This
step produces SFiltered , where all the sensors satisfy all the
point-based requirements.
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Fig. 3. Data model used in CASSARAM. In SSN ontology, sensors are not constrained to physical sensing devices; rather a sensor is anything that can
estimate or calculate the value of a phenomenon, so a device or computational process or combination could play the role of a sensor. A sensing device is
a device that implements sensing [5]. Sensing device is also a sub class of sensor. By following above definition, our focus is on sensors. CF (Climate and
Forecast) ontology is a domain specific external ontology. DOLCE+DnS Ultralite (DUL) ontology provides a set of upper level concepts that can be the basis
for easier interoperability among many middle and lower level ontologies. More details are provided in [5].

Algorithm 3 Flexi-Dynamic Normalization

E. Ranking Using Quantitative Reasoning

In this step, the sensors are ranked based on the proximity-
based user requirements. We developed a weighted Euclidean
distance based indexing technique, called the Comparative-
Priority Based Weighted Index (CPWI), as follows.

(C PW I ) =
√∑n

i=1

[
Wi (Ud

i − Sα
i )2

]

First, each sensor is plotted in multi-dimensional space
where each context property is represented by a dimen-
sion. Then, users can plot an ideal sensor in the multi-
dimensional space by manually entering context property
values as illustrated in Fig. 4 by Ui . By default, CASSARAM
will automatically plot an ideal sensor as depicted in Ud

(i.e., the highest value for all context properties). Next, the
priorities defined by the user are retrieved. Based on the
positions of the sliders (in Fig. 2), weights are calculated
in a comparative fashion. Algorithm 4 describes the indexing
process. It calculates the CPWI and ranks the sensors using
reverse-normalised techniques in descending order. CAS-
SARAM selects N sensors from the top.

Fig. 4. Sensors plotted in three-dimensional space for demonstration
purposes. Sα , Sβ , and Sγ represent real sensors. Ui represent the user
preferred sensor. Ud represent the default user preferred sensor. CPWI
calculate weighted distance between S j=α||β||γ and Ui||d . Shortest distance
means sensor will rank higher because it is close to the user requirement.

F. Context Framework

After evaluating a number of research efforts conducted in
the quality of service domain relating to web services [31],
mobile computing [32], mobile data collection [33], and sensor
ontologies [5], we extracted the following context properties
to be stored and maintained in connection with each sensor.
This information helps to decide which sensor is to be used
in a given situation. We adopt the following definition of
context for this paper. “Context is any information that can
be used to characterise the situation of an entity. An entity
is a person, place, or object that is considered relevant to
the interaction between a user and an application, including
the user and applications themselves.” [34]. CASSARAM
has no limitations on the number of context properties that
can be used. More context information can be added to the
following list as necessary. Our context framework comprises
availability, accuracy, reliability, response time, frequency,
sensitivity, measurement range, selectivity, precision, latency,
drift, resolution, detection limit, operating power range, system
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Algorithm 4 Comparative-Priority Based Weighted Index

(sensor) lifetime, battery life, security, accessibility, robust-
ness, exception handling, interoperability, configurability, user
satisfaction rating, capacity, throughput, cost of data transmis-
sion, cost of data generation, data ownership cost, bandwidth,
and trust.

V. IMPROVING SCALABILITY AND EFFICIENCY

In this section, we present three approaches that improve
the efficiency and the capability of CASSARAM. First, we
propose a heuristic approach that can handle a massive number
of sensors by trading off with accuracy. Second, we propose
a relational-expression based filtering technique that saves
computational resources. Third, we tackle the challenge of
distributed sensor search and selection.

A. Comparative-Priority Based Heuristic Filtering (CPHF)

The solution we discussed so far works well with small
number of sensors. However, model becomes inefficient when
the number of sensors available to search increases. Let us
consider an example to identify the inefficiency. Assume we
have access to one million sensors. A user wants to select
1,000 sensors out of them. In such situation, CASSARAM
will index and rank one million sensors using proximity-based
requirements provided by the user and select top 1,000 sensors.
However, indexing and ranking all possible sensors (in this
case one million) is inefficient and wastes significant amount
of computational resources. Furthermore, CASSARAM will
not be able to process large number of user queries due to
such inefficiency. We propose a technique called Comparative-
Priority Based Heuristic Filtering (CPHF) to make CAS-
SARAM more efficient. The execution process is explained
in Algorithm 5. The basic idea is to remove sensors that are
positioned far away from user defined ideal sensor and reduce
the number of sensors that need to be indexed and ranked.
Fig. 5 illustrates the CPHF approach with a sample scenario.
The CPHF approach can be explained as follows. First, all the
eligible sensors are ranked in descending order of the highest

Algorithm 5 Comparative-Priority Based Heuristic Filtering

Fig. 5. Visual illustration of Comparative-Priority Based Heuristic Filtering.

weighted context property (in this case accuracy). Then, 40%
(from NRemovable) of the sensors from the bottom of the list
need to be removed. Next, the remaining sensors need to
be ordered in descending order of the next highest weighted
context property (in this case reliability). Then, 30% (from
NRemovable) of the sensors from the bottom of the list need to
be removed. This process needs to be applied for the remaining
context properties as well. Finally, the remaining sensors need
to be indexed and ranked. This approach dramatically reduces
the indexing and ranking related inefficiencies. Broadly, this
category of techniques are called Top-K selection where top
sensors are selected in each iteration. The efficiency of this
approach is evaluated and discussed in Section VII.

B. Relational-Expression Based Filtering (REF)

This section explains how computational resources can be
saved and how to speed up the sensor search and selection
process by allowing the users to define preferred context
property values using relational operators such as <,>,≤,
and ≥. For example, users can define an upper bound,
lower bound, or both, using relational operators. All context
properties defined by relational operators, other than the
equals sign (=), are considered to be semi-non-negotiable
requirements. According to CASSARAM, non-negotiable as
well as semi-non-negotiable requirements are defined using
semantic queries. Let us consider a scenario where a user
wants to select sensors that have 85% accuracy. However,
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Fig. 6. Distributed Processing Approaches for CASSARAM.

the user can be satisfied by providing sensors with accuracy
between 70% and 90%. Such requirements are called semi-
non-negotiable requirements. Defining such a range helps to
ignore irrelevant sensors during the semantic querying phase
without even retrieving them to the CPWI generating phase,
and this saves computational resources. Even though users
may define ranges, the sensors will be ranked considering the
user’s priorities by applying the same concepts and rules as
explained in Section IV. The efficiency of this approach is
evaluated in Section VII.

C. Distributed Sensor Searching

We have explained how CASSARAM works in an isolated
environment without taking into consideration the distributed
nature of the problem. Ideally, we expect that not all sensors
will be connected to one single server (e.g., a single middle-
ware instance). Similarly, it is extremely inefficient to store
complete sensor descriptions and related context information
in many different servers in a redundant way. Ideally, each IoT
middleware instance should keep track of the sensors that are
specifically connected to them. This means that each server
knows only about a certain number of sensors. However, in
order to deal with complex user requirements, CASSARAM
may need to query multiple IoT middleware instances to search
and select the suitable sensors. Let us consider a scenario
related to the smart agriculture domain [26]. A scientist
wants to find out whether his experimental crops have been
infected with a disease. His experimental crops are planted
in fields distributed across different geographical locations in
Australia. Furthermore, the sensors deployed in the fields are
connected to different IoT middleware instances, depending
on the geographical location. In order to help the user to find
the appropriate sensors, CASSARAM needs to query different
servers in a distributed manner. We explored the possibilities of
performing such distributed queries efficiently. We identified
three different ways to search sensors distributively, depending
on how the query/data would be transferred over the network
(i.e., path), as depicted in Fig. 6. We also identified their
strengths, weaknesses, and applicability to different situations.

1) Chain Processing: Data is sent from one node to another
sequentially as depicted in Fig. 6(a). First, a user defines his
requirements using an IoT middleware instance (e.g. GSN
installed in a particular server). Then, this server becomes the
search request initiator (SRI) for that specific user request. The
SRI processes the request and selects the 100 most appropriate
sensors. Then, the information related selected sensors (i.e. the

Fig. 7. Optimization: (a) wihout k-extension and (b) with k-extension.

unique IDs of the sensors and respective CPWIs) is sent to the
next server node. The second node (i.e., that next node) merges
the incoming sensor information with the existing sensor
descriptions and performs the sensor selection algorithm and
selects the 100 best sensors. This pattern continues until the
sensor request has visited all the server nodes. This method
saves communication bandwidth by transferring only the most
essential and minimum amount of data. In contrast, due to a
lack of parallel processing, the response time could be high.

2) Parallel Processing: The SRI parallelly sends each user
search request to all available nodes. Then, each sensor node
performs the sensor searching algorithm at the same time.
Each node selects the 100 most appropriate sensors and returns
the information related selected sensors to the SRI. In circum-
stances where we have 2500 server nodes, the amount of data
(2500 × 100) received by the SRI could be overwhelming,
which would waste the communication bandwidth. The SRI
processes the sensor information (2500 × 100) and selects the
final 100 most appropriate sensors. This approach becomes
inefficient when N becomes larger.

3) Hybrid Processing: By observing the characteristics of
the previous two methods, it is obvious that the optimal
distributed processing strategy should employ both chain and
parallel processing techniques. There is no single method that
works efficiently for all types of situations. An ideal distributed
processing strategy for each situation needs to be designed and
configured dynamically depending on the context, such as the
types of the devices, their capabilities, bandwidth available,
and so on.

We can improve the efficiency of the above methods as
follows. In the parallel processing method, each node sends
information related to N sensors to the SRI as depicted in
Fig. 7(a). However, at the end, the SRI may only select N
sensors (in total) despite its having received a significant
amount of sensor related information (N ×numberof nodes).
Therefore, the rest of the data [(N × numberof nodes) − N]
received by the SRI would be wasted. For example, let us
assume that a user wants to select 10,000 sensors. Assuming
that there are 2500 server nodes, the SRI may receive a signifi-
cant amount of sensor information (10, 000×2500). However,
it may finally select only 10,000 sensors. We propose the
following method to reduce this wastage, depicted in Fig. 7(b).

In this method, the SRI forwards the search request to each
server node parallelly, as depicted in step (1) in Fig. 7b. Each
node selects the 10,000 most appropriate sensors. Without
sending information about these 10,000 sensors to the SRI,
each server node sends only information about the kth sensor
(the UID and CPWI of every kth sensor). (I.e., If k = 1, 000,
then the server node sends only the 1000th, 2000th, 3000th,
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Fig. 8. First, users need to select, in the UI, the context properties about which they are concerned. Then, users need to set the scale. The slider becomes
more sensitive when the scale is increased. Next, the slider attached to each context property needs to be positioned to express its priority. The ideal value
related to each context property can be entered. The values can be entered in native measurement units (e.g., accuracy in percentage, latency in milliseconds).
All the values are normalized by CASSARAM. The default is ‘best possible’ (i.e., highest accuracy, lowest cost, lowest latency). Later, users can decide
whether to use the optimization functionality or not, by selecting that option. Users can also define the margin of error as a percentage (the default is 50%).
Based on the user’s preferences, CASSARAM generates the SPARQL appropriately. Finally, users need to specify the number of sensors they require.

…10,000th sensors). Therefore, instead of sending 10,000
records, now each server node returns only 10 records. Once
the SRI receives the sensor information from all the server
nodes, it processes and decides which portions need to be
retrieved. Then, the SRI sends requests back to the server
nodes and now each node returns the exact portion specified
by the SRI (e.g. the 5th server node may return only the first
2000 sensors instead of sending 10,000 sensors) as depicted
in (2). In this method, k plays a key role and has a direct
impact on the efficiency. k needs to be chosen by considering
N as well as other relevant context information as mentioned
earlier. For example, if we use a smaller k, then information
about more sensors would be sent to the SRI during step
(1), but with less wastage in step (2). In contrast, if we
use a larger k, then less information would be sent to the
SRI during step (1), but there would be comparatively more
wastage in step (2). Furthermore, machine learning techniques
can be used to customize the value of k for each server
node, depending on the user’s request and context information,
such as the types of the sensors, energy, bandwidth avail-
ability, etc. The suitability of each approach is discussed in
Section VII-B.

VI. IMPLEMENTATION AND EXPERIMENTATION

In this section, we describe the experimental setup, datasets
used, and assumptions. The experimental scenarios we used
are explained at the end. The discussions related to the
experiments are presented in Section VII.

We analysed and evaluated the proposed model using a
prototype, called ‘CASSARA Tool’, which we developed using
Java. The user interface of “CASSARA Tool” is presented
in Fig. 8 with a self-explanatory description. The data was
stored in a MySQL database. Our tool allows capturing user

preferences and the priorities of the various context properties
of the sensors. We used a computer with an Intel(R) Core
i5-2557M 1.70GHz CPU and 4GB RAM to evaluate our
proposed model. We also reproduced the experimentations
using a higher-end computer with more CPU and RAM and
the results showed that the graphs are similar in shape though
the exact values are different. In order to perform mathe-
matical operations such as a Euclidean distance calculation
in multi-dimensional space, we used the Apache Commons
mathematics [35] library. It is an open source optimized library
of lightweight, self-contained mathematics and statistics com-
ponents, addressing the most common problems not available
in the Java programming language. As we used a Semantic
Sensor Ontology (SSN) [5] to manage the sensor descriptions
and related data, we employed open source Apache Jena
API [36] to process and manipulate the semantic data. Our
evaluation used a combination of real data and synthetically
generated data. We collected environmental linked data from
the Bureau of Meteorology [37] and data sets from both
the Phenonet project [27] and the Linked Sensor Middleware
(LSM) project [8], [9]. The main reasons for combining the
data were the need for a large amount of data and the need to
control different aspects (e.g., the context information related
to the sensors needed to be embedded into the data set,
because real data that matches our context framework is not
available in any public data sets at the moment) to better
understand the behaviour of CASSARAM in different IoT
related real world situations and scenarios where real data
is not available. We make the following assumptions in our
work. We assume that the sensor descriptions and context
information related to the sensors have already been retrieved
from the sensor manufacturers in terms of ontologies, and been
into the SSN ontology. Similarly, we assume that the context
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Fig. 9. Experimental results of CASSARAM. Processing time, memory usage, accuracy under different conditions (e.g. number of sensors, number of context
properties) are measured in order to examine CASSARAM’s efficiency and scalability.

data related to the sensors, such as accuracy, reliability, etc.,
have been continually monitored, measured, managed, and
stored in the SSN ontology by the software systems. In order
to evaluate the distributed processing techniques, we proposed
an experimental test involving four computational nodes. All
the nodes are connected to a private organizational network
(i.e., The Australian National University IT Network). The
hardware configurations of the three additional devices are as
follows: (1) Intel Core i7 CPU with 6GB RAM, (2) Intel Core
i5 CPU with 4GB, and (3) Intel Core i7 with 4G. The details
are presented in Section VII-B.

We evaluated the performance of CASSARAM using
different combinations of relational operators, such as
<,>,=,≤,≥. The scenarios numbered in Figs. 9i–9l cor-
respond to the scenario numbers listed below. All the

experiments retrieve five context properties. (1) Do not use
any relational operator. (2) 1 out of 5 context properties are
restricted by ≥ (e.g., the accuracy is to be greater than 80%)
(3) 2 out of 5 (e.g., the accuracy is to be greater than 80%
AND reliability greater than 85%), (4) 3 out of 5, (5) 4
out of 5. All 5 context properties are restrained (6) by ≥,
(7) by ≤, (8) by =, (9) by <, (10) by >. (11) 1 out of 5 context
properties are restricted by two relational operators (e.g., the
accuracy is to be greater than ≥ 80% AND less than ≤ 95%),
(12) 2 out of 5, (13) 3 out of 5, (14) 4 out of 5; All 5 context
properties are restrained (15) by ≤ and ≥, (16) by < and >.
We increased the number of restrictions imposed using addi-
tional relational operators. (17) defined two ranges for each
context properties (e.g., (accuracy ≥ 80% AND ≤ 95%) OR
(accuracy ≥ 50% AND ≤ 60%)). (18) defined three ranges.
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VII. EVALUATION AND DISCUSSION

We evaluated CASSARAM using different methods and
parameters as depicted in Figs. 9i–9l. In this section, we
explain the evaluation criteria which we used for each exper-
iment and discuss the lessons we learned. Fig. 9a shows how
the storage requirement varies depending on the number of
sensor descriptions. We stored the data according to the SSN
ontology, as depicted in Fig. 3. We conducted two experiments
where we stored 10 context properties and 30 context proper-
ties from the context framework we proposed in Section IV-F.
To store one million sensor descriptions, it took 6.4 GB (10
context properties) and 17.8 GB (30 context properties). It is
evident that the storage requirements are correlated with the
number of triples: a single triple requires about 0.193 KB stor-
age space (for 100,000+ sensors). Though storage hardware is
becoming cheaper and available in high capacities, the number
of context properties need to store should be decided carefully
in order to minimize the storage requirements, especially when
the number of sensor is in the billions.

Fig. 9b shows how much time it takes to select sensors
as the number of sensors increases. Each step (i.e., searching,
indexing and ranking) has been measured separately. Semantic
querying requires significantly more processing time than
indexing and ranking. Furthermore, as the number of context
properties retrieved by a query increases, the execution time
also increases significantly. Furthermore, it is important to
note that MySQL can join only 61 tables, which only allows
retrieving a maximum of 10 context properties from the SSN
ontology data model. Using alternative data storage or running
multiple queries can be used to overcome this problem. Simi-
larly, it is much more efficient to run multiple queries than to
run a single query if the number of sensors is less than 10,000
(e.g., 8 ms to retrieve 5 context properties and 24 ms to retrieve
10 context properties when querying 10,000 sensors). In
addition, Fig. 9c shows how much memory is required to select
sensors as the number of sensors increases. It is evident that
having more context properties requires having more memory.
The memory requirements for querying do not change much
up to 10,000 (ranging from 10 MB to 25 MB). When the
number of sensors exceeds 10,000, the memory requirements
grow steadily, correlated with the number of sensors. In
comparison, indexing and ranking require less memory.

Fig. 9d shows the processing time taken by the sensor
indexing process as the number of context properties and the
number of sensors increase. Reducing the number of sensors
needing to be indexed below 10,000 allows speeding up CAS-
SARAM. The processing time starts to increases significantly
after 100,000 sensors. Similarly, Fig. 9e shows the memory
usage by the sensor indexing process as the number of context
properties and sensors increases. Even though the memory
requirements increase slightly, the actual increase is negligible
when the number of sensors is still less than 100,000. After
that, the memory requirements increase substantially, but are
still very small compared to the computational capabilities
of the latest hardware. Furthermore, the number of context
properties involved does not have any considerable impact
during the indexing process. The differences only become

visible when the number of sensors reaches one million. Still,
the memory required by the process is 30 MB. Java garbage
collection performs its task more actively when processing
large numbers of sensors, which makes the difference invisible.

Fig. 9f and 9g compare the time taken by the sensor
selection process and the memory it requires, with and
without the CPHF algorithm, as the number of sensors
increases. The number of sensors that the user requires is kept
at 50 in all experiments (N = 50). Five context properties are
retrieved, indexed, and ranked. The complexity of CPHF (due
to the SPARQL subqueries) has not affected significantly
the total processing time of CASSARAM. Instead, CPHF
has saved some time in the indexing and ranking phases. In
contrast, CPHF requires more memory when querying, due to
its complexity. However, it requires significantly less memory
when transferring data to the next phase for indexing. There-
fore, CPHF is efficient as it does not require holding millions
of pieces of sensor information in multiple phases in CAS-
SARAM. Furthermore, CPHF returns only a limited number
of sensors whereas the non-CPHF approach returns all sensors
available to CASSARAM, which consumes more resources
including more processing time and a significant amount of
memory and temporary storage. Fig. 9h shows how the accu-
racy changes when the Margin of Error (M%) value changes in
the CPHF algorithm and the number of sensors increases. The
scenario presented in Fig. 5 has been evaluated. The accuracy
of the CPHF approach increases when the margin of error
(M) increases. However, a lower M leads CASSRAM towards
low resource consumption. Therefore, there is a trade-off
between accuracy and resource consumption. The optimum
value of M can be dynamically learned by machine learning
techniques based on which context properties are prioritized
by the users in each situation and how the normalized weights
are distributed between the context properties.

In Fig. 9i and Fig. 9j, we evaluated how processing time
and memory requirements change when relational expressions
are used during the semantic querying phase. We tested
different scenarios with and without relational expressions
(e.g. <,>,=,≤,≥) as described at the end of Section VI.
For all experiments, we queried 100,000 sensors. When at least
one relation operator is used in SPARQL, the processing time
and the memory requirements increase by 100%. However,
neither the number of relational operators used nor the type of
relational operators used make any impact on either processing
time or memory requirements. Therefore, it is efficient to use
multiple relational operators (as much as possible) so as to
reduce the number of sensors retrieved by the querying phase.
This helps to reduce the amount of data needing to be handled
in the other phases.

Finally, in Figs. 9k and 9l, we extensively evaluated how
REF affects the processing time and memory requirements in
CASSARAM, as the number of sensors and context properties
increases. As we mentioned earlier, REF adds more processing
overhead, which affects the processing time and memory.
There is a significant difference in processing time when the
number of sensors needing to be queried is less than 100,000.
However, when the number of sensors increases beyond
100,000, the difference becomes insignificant. In contrast,
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Fig. 10. Results of alternative storage usage and distributed sensor searching: (a) comparison of the processing times taken by both the Jena SDB/MySQL
and the Jena TDB approach, (b) comparison of memory usage by the SDB and TDB approaches, and (c) comparison of the times taken by two different
distributed searching techniques, namely, chain processing and parallel processing.

the differences in memory requirements are negligible when
the number of sensors is less than 10,000: but it starts to
become visible after that. Furthermore, the processing time
increases significantly after 10,000 sensors. We also learned
that allocating more memory for CASSARAM can speed up
the entire sensor selection process.

In contrast, CASSARAM can also be used under limited
resources though it takes a much longer time to respond.
According to the extensive evaluations we conducted, it is
evident that CPHF and REF techniques can be used to improve
the efficient of CASSARAM. Even though this paper is
specifically focused on sensor selection in the IoT domain, the
proposed model and the concepts we employed can be used in
many other domains, such as web service selection. Further-
more, the results we obtained through these evaluations are
also applicable to any other approach that employs an ontology
model similar to the SSN ontology and requires a large number
of records. Even though we tested our solution with millions
of sensor descriptions, in practice it is highly unlikely that
millions of sensors would connect to a single middleware
instance. Practically, IoT middleware solutions will store data
in a distributed manner in different instances, and need to be
searched in a distributed fashion, as explained in Section V-C.
By parallel processing, the amount of time it takes to process
millions of sensor data descriptions can be reduced drastically.

A. Evaluating Alternative Storage Options

In the evaluations conducted earlier (Figs. 9a–9l), we used
Jena SDB/MySQL-backed RDF storage to store the data.
In order to evaluate the performance of CASSARAM when
using alternative storage options, we here employ a Jena
TDB-backed approach (jena.apache.org/documentation/tdb).
In Fig. 10c, we compare the processing times taken by both
the Jena SDB/MySQL and the Jena TDB approach. Further-
more, in Fig. 10b, we compare the memory usage by the
SDB and TDB approaches. According to the Berlin SPARQL
Benchmark [30], Jena TDB is much faster than Jena SDB. We
also observed similar results both in 5 context data processing
as well as in 10 context data processing. Specifically, Jena
TDB is 10 times faster than SDB when processing 10 context
properties, where the dataset consists of half a million sensor
descriptions. The Jena SDB approach consumed less memory
than the Jena TDB approach when the dataset was less than
100,000 sensor descriptions. However, after that, the Jena

TDB approach consumes less memory than the Jena SDB.
Specifically, Jena TDB uses 50% less memory than Jena
SDB when processing 10 context properties, where the dataset
consists of half a million sensor descriptions. Therefore it is
evident that Jena TDB is more suitable when the number of
sensor descriptions goes beyond 100,000.

Despite the differences we observed in our evaluation,
there are several factors that need to be considered when
selecting underlying storage solutions. As evaluated on the
Berlin SPARQL Benchmark, there are several other storage
options available, such as Sesame (openrdf.org), Virtuoso TS,
Virtuoso RV, and D2R Server [30]. Jena TDB offers faster load
times and better scale, but has the worst query performance.
Sesame seems better all-round for low data sizes assuming
infrequent loads. In contrast, Jena SDB provides moderate
performance, offering load times, query performance, and
scalability between the Jena TDB and Sesame. Based on these
evaluations, at the time at which this paper was written, there
is no superior solution that has all good qualities. Due to the
lack of extensive usage and the short existence of Sesame,
SDB/MySQL can be seen as a better choice especially when
considering database functionalities such as backup, concur-
rent and parallel processing. As we do not expect frequent
loading/ unloading of datasets such as sensor descriptions, it
is evident that SDB outperforms TDB in query processing
(excluding data loading) [30]. As we expect more updates
(transactions) to occur, SDB would be a better choice.

B. Evaluating Distributed Sensor Searching

We evaluated distributed sensor searching using a pri-
vate network that consists of four computational nodes. We
compare two different distributed sensor search techniques,
namely, chain processing and parallel processing with/without
k-extensions, which we discussed in Section V-C. The results
are presented in Fig. 10c. Each node consists of a dataset
of one million sensor data descriptions. The four datasets
are different from each other. Five context properties are
considered for the evaluation and the context information is
stored using Jena TDB. First, we discuss the techniques from
the theoretical perspective.

Let us define some of the notations which will be used in
the following discussion: n = number of computational nodes
(in our experiments n = 4), N = number of sensors requested
by the users, Si = number of sensor descriptions stored in
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TABLE III

THE AMOUNT OF REDUNDANT DATA COMMUNICATION SAVED BY THE PARALLEL SENSOR SEARCH WITH k-EXTENSION STRATEGY

the i th computational node, r = size of a single sensor
description record (i.e., storage requirements), tnet

i, j = time
taken for network communication between the computational
nodes i and j , t pro

i = time taken to query the computational
node i , merge the indexed results with the incoming results,
and select the final number N of sensors. The total time taken
by chain-based distributed sensor searching can be defined as:

T otalchain =
n∑

i=1

t pro
i +

n−1∑

i=1

tnet
i,i+1 + tnet

n,1 . (1)

The total time taken by parallel distributed sensor searching
can be defined as:

T otalparallel = max
{
i = [2..n] : t pro

i + tnet
1,i

}
. (2)

According to the results, it is evident that parallel processing
is more efficient than chain processing in terms of the total
processing time. However, parallel processing is inefficient in
other aspects, such as network communication and bandwidth
consumption. Therefore, we proposed k-extension to address
this issue. The evaluation of the k-extension approach is
presented in Table III. In this experiment, we measured
how much data communication can be saved (i.e., due to
elimination of redundant data communication that occurs in
parallel processing without k-extension) by using different k
values under different N values. We measured the guaran-
teed minimum2 amount of data communications (measured in
Megabytes) that can be saved.

In Table III, positive values (marked in green) indicate
the minimum amount of data communication saved using the
k-extension. Although negative values (marked in orange/red)
indicate no guaranteed savings, some situations (marked in
orange) have a high chance of saving redundant data com-
munication compared to others. Equation (3) can be used to
calculate the guaranteed minimum amount of data saving by
using k- extensions.

T otalSav ing =
n∑

i=2

Sir −
{

[
n∑

i=2

Si

k
+ N + (k − 1)n] × r

}
,

IF (k < N). (3)

2Depending on the dataset and the context information stored in each node,
the parallel processing technique with k-extension will be able to save more
data communication than the guaranteed minimum level.

Fig. 11. CASSARAM in Action.

Let us consider different scenarios where chain and parallel
processing can be used. Chain processing is suitable for situ-
ations where saving computational resources and bandwidth
is more critical than response time. A parallel processing
method without k-extension is suitable when response time is
critical and N is fairly small. k-extension requires two com-
munication rounds: communication radios need to be opened
and closed twice. Such a communication pattern consumes
more energy [38], especially if the computational devices are
energy constrained. Therefore, transmitting data at once is
more efficient. However, this recommendation becomes invalid
when N becomes very large (10,000+). Our experiments
clearly show that k-extensions can be used to improve the
efficiency of the parallel sensor searching approach, especially
when N is large. The ideal value of k needs to be determined
based on N , n, and Si .

C. Application

In this section, we show where CASSARAM fits in the
big picture (Figure 11). Sensor data consumers are expected
to interact with a model called Context Aware Sensor
Configuration Model (CASCoM) [39]. Details explanation
of CASCoM is out of the scope of this paper. Consumers
are facilitated with a graphical user interface, which is based
on a question-answer (QA) approach, that allows to express
the requirements. Users can answer as many questions as
possible. CASCoM searches and filters the tasks that the user
may wants to perform. From the filtered list, users can select
the desired task (e.g. environmental pollution detection).
CASCoM searches for different programming components
that allow to capture the data stream required by consumers
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(i.e. sensor data required to detect environmental pollution).
CASCoM tries to find sensors that can be used to produce the
inputs required by the selected data processing components.
To achieve this task, CASCoM employs CASSARAM. Once
the required sensor types are identified (and if multiple sensors
are available), CASSARM graphical user interface is provided
to the consumers to define their priorities. Later, the final
set of sensors and data processing components are composed
together. Required wrappers [40] and the virtual sensor [3]
are generated and sent to GSN by CASCoM. Finally, GSN
starts streaming data to the consumer as defined in the
virtual sensor.

VIII. CONCLUSIONS AND FUTURE RESEARCH

With advances in sensor hardware technology and cheap
materials, sensors are expected to be attached to all the objects
around us, which will increase the number of sensors available
to be used. This means we have access to multiple sensors that
would measure a similar environmental phenomenon. Such
circumstances force us to choose between alternatives. We
need to decide which operational and conceptual sensor-related
context properties are more important than others.

In this paper, we showed how the context information
related to each sensor can be used to search and select the sen-
sors that are best suited to a user’s requirements. We selected
sensors based on the user’s expectations and priorities. As a
proof of concept, we built a working prototype to demonstrate
the functionality of our CASSARAM and to support the exper-
imentations using realistic applications. We also highlight how
CASSARAM helps achieve our broader sensing-as-a-service
vision in the IoT paradigm. CASSARAM allows optimizing
the sensor data collection approaches by selecting the sensors
in an optimized fashion. For example, CASSARAM can be
used to find out which sensors have more energy and collect
data only from those sensors. This helps to run the entire sen-
sor network for a much longer time without reconfiguring. We
explored three different techniques that improve the efficiency
and scalability of CASSARAM: comparative-priority based
heuristic filtering, relational-expression based filtering, and
distributed sensor searching. We evaluated the performance
of the proposed model extensively. In the future, we plan
to incorporate CASSARAM into leading IoT middleware
solutions such as GSN, SenseMA, and OpenIoT, to support
an automated sensor selection functionality in distributed
environments. We will also investigate how to improve the
efficiency of CASSARAM using cluster-based sensor search
and heuristic algorithms that incorporate machine learning
techniques.
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