
1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

Topology Discovery in Software Defined Networks:

Threats, Taxonomy, and State-of-the-art

Suleman Khan 1,2, Student Member, IEEE, Abdullah Gani 1,2, Senior Member, IEEE,

Ainuddin Wahid Abdul Wahab 2, Member, IEEE, Mohsen Guizani 3, Fellow, IEEE,

Muhammad Khurram Khan 4, Senior Member, IEEE

1 Center for Mobile Cloud Computing Research (C4MCCR), University of Malaya, Malaysia
2 Faculty of Computer Science & Information Technology, University of Malaya, Malaysia.
3 College of Engineering, University of Idaho, USA.
4 Center of Excellence in Information Assurance (CoEIA), King Saud University, Saudi Arabia

Corresponding Authors: Suleman khan, Abdullah Gani (sulemankhan1984@yahoo.com, abdullah@um.edu.my)

ABSTRACT

The fundamental role of the Software Defined Networks (SDN) is to decouple the

data plane from the control plane; thus providing a logically centralized visibility of

the entire network to the controller. This enables the applications to innovate

through network programmability. To establish a centralized visibility, a controller

is required to discover a network topology of the entire SDN infrastructure.

However, discovering a network topology is challenging due to 1) the frequent

migration of the virtual machines in the data centers, 2) lack of authentication

mechanisms, 3) scarcity of the SDN standards, and 4) integration of security

mechanisms for the topology discovery. To this end, in this paper, we present a

comprehensive survey of the topology discovery and the associated security

implications in SDNs. The paper provides discussions related to the possible threats

relevant to each layer of the SDN architecture, highlights the role of the topology

discovery in the traditional network and SDN, presents a thematic taxonomy of

topology discovery in SDN, and provides insights into the potential threats to the

topology discovery along with its state-of-the-art solutions in SDN. Finally, this

paper also presents future challenges and research directions in the field of SDN

topology discovery.

1. Introduction
This survey focuses on the topology discovery such as the representation of the

interconnection between connected peers in Software Defined Networks (SDN). The

logically centralized controller collects the topology information from the network

devices in the data plane of the SDN architecture. Maintaining a complete and

accurate information of the network topology is utmost important and a

prerequisite for various network management tasks including monitoring,

diagnosing, and resource management. The topology information helps the

controller to have an abstract view of the entire network [1], and enables a smooth

mailto:sulemankhan1984@yahoo.com

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

and efficient network operation [2]. Moreover, the topology information is crucial for

the core controller services in the control plane as well as the topologically

dependent services in the application plane.

Since a centralized abstract view of the network topology discovery holds the key

for SDN operation, it has drawn much attention of the research community in the

past few years [3-5]. Note that, the centralized abstract view is based on a built-in

topology discovery mechanism [4] and it strengthens the control capability of the

controller over the entire network [6]. Intuitively, this exposes the SDN wherein the

controller becomes a single point of failure. It follows that, the security of the

topology discovery in protecting the controller from failure is a critical challenge to

address [7].

Several threats to the security of the SDN architecture have been identified and

discussed in the literature [8-15]. However, the most severe attacks are those

affecting the control mechanism in SDN [8]. Once the attack succeeds in controlling

the entire network, it can leak out the information from the network or perform

other malicious behaviors [16]. In topology discovery, threats must be prevented as

early as possible because they pose threat to other services in the application plane

[17]. Furthermore, the vulnerabilities found in the network topology would

ultimately affect the performance of the topology-dependent services because of

their dependencies. While various proposals for topology discovery exist [4, 18, 19],

still these proposals are premature in making topology discovery in SDN truly

secure and scalable. To this end, in this paper, our aim is to describe the security

aspects of the topology discovery in detail. More importantly, we have focused on

the topology discovery threats which affect the visibility of the network by

exploiting different core functionalities of the controller.

To mark distinction of this study, in the following, brief descriptions of the few

existing studies on SDNs are provided. The survey presented in [20] covers a

comprehensive information about SDN including definition, benefits, and

challenges. It provides insight knowledge about the layered architecture of SDN

and explains its role in terms of OF protocol. The survey [21] provides an ample

information about the current programmable network architectures used in wired

and wireless networks such as SDN, Software-Defined Radio, and Network

Functions Virtualization (NFV). The study in [22], surveys the security threats for

each layer of the SDN architecture. The state-of-the-art in mitigating the security

threats are analyzed. Finally, potential future research directions of SDN security

are highlighted. Similarly, the work presented in [23] surveys the security attacks

faced by the SDN along with its solutions. The survey analyzes both the security

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

attacks and their corresponding solutions. That is, the network security

enhancement based on the SDN framework is discussed for the attack

investigation, detection, and prevention. The survey [24] discusses how the

Distributed Denial-of-Service (DDoS) attacks can be mitigated through SDN in

cloud computing and how SDN can be protected from becoming a victim of DDoS

attacks. Furthermore, the role of SDN in a broad perspective is discussed in context

with the emerging areas such as the big data, NFV, and information-centric

networking. The survey presented in [15] classifies the SDN-based hypervisors with

reference to their centralized and distributed architectures. In addition, exhaustive

information regarding network attribute abstraction and isolation feature of SDN

hypervisors is presented along with the future research directions.

To the best of our knowledge, this is the first comprehensive survey that

provides insight about the topology discovery in the SDN architecture. The goal of

this survey is to provide critical information about the topology discovery by

describing its significance, working function, role in SDN, and security threats.

Moreover, the proposed thematic taxonomy will assist in the classification of the

topology discovery area into meaningful sub-groups for better and easy

comprehension.

The key contributions of this survey are highlighted as follows:

— Comprehensive background knowledge of SDN: we provide information

regarding the SDN and various threats to the SDN layered architecture.

— In-depth information regarding topology discovery: we highlight the

importance of the topology discovery and discuss its role in the traditional

networks and SDN.

— Thematic taxonomy: we devise a comprehensive thematic taxonomy to

categorize the topology discovery into different groups i.e., objectives,

controller platforms, dependent services, discovery entities, and controller

services.

— Discussion on topology discovery threats: Classification of topology discovery

threats is presented which explains the state-of-the-art security solutions,

attack entities, controller vulnerabilities, attack types, and occurrence of the

threats.

— Introduce future research directions: we provide potential research areas for

topology discovery in SDN along with recommendations on possible solutions.

The remainder of this paper is organized as follows: Section 2 provides an

overview of the SDN and potential threats to each of its layers. Section 3 describes

the importance of the topology discovery and discusses its role in SDN and

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

traditional networks. A thematic taxonomy of topology discovery is presented

according to its discovery entities, controller platform, topology-dependent services,

and objectives in Section 4. Section 5 provides a classification of topology discovery

threats and solutions on the basis of the attack entities, current solutions, and

further potential threats. Finally, Section 6 discusses and summarizes the potential

future research areas of topology discovery with its possible solutions.

2. Background

2.1 Software Defined Networks (SDN)

The widely known separation of the control plane and the forwarding data plane

is shown in Figure 1. This architecture results in numerous benefits, including easy

insertion of applications and services, streamlined processes, improved efficiency,

reduced complexity, and better user experience [25]. The control plane is controlled

by logically centralized controller instead of the conventional control mechanisms

present in the Border Gateway Protocol [26] and Open Shortest Path First (OSPF)

[27]. The centralized control assists network administrators to dynamically change

the network traffic without re-configuring the network devices. For instance, the

controller can dynamically change the network flow towards high bandwidth

channels while observing high delays on low bandwidth network channels without

affecting the network operation [18].

In Figure 1, the SDN architecture is divided into three main layers/planes i.e.,

infrastructure, control, and application plane [28, 29]. The infrastructure plane

consists of all the network devices that communicate and share information with

each other [30]. For instance, the OF switches forward the packets towards the

destination using rules specified by the controller.

The controller (in the control plane) acts as the brains of the SDN, which

manages the entire network through the logically centralized controller [31],[16].

Moreover, the controller has the abstract view of the network topology that assist

different applications running on top of the controller in the application plane [32].

The application plane is responsible for implementing essential network services

(application, algorithms, protocols, etc.) through the controller [33]. With the given

abstract network, the application plane deploys various network applications. These

applications include load balancing [33], intrusion detection systems [34], network

monitors [35], firewalls [36], and scheduling [37].

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

SDN Controller

South Bound Interface

North Bound Interface

In
fr

as
tr

u
ct

u
re

 L
ay

e
r

A
p

p
lic

at
io

n
 L

ay
e

r

O
p
e
n
F
lo

w
 S

w
itc

h

O
p
e
n
F
lo

w
 S

w
itc

h

Hosts
Hosts

Lo
ad

 B
al

an
ci

n
g

In
tr

u
si

o
n

D

e
te

ct
io

n

Fi
re

w
al

l

Tr
af

fi
c

Sc
h

e
d

u
lin

g

R
o

u
ti

n
g

C
o

n
tr

o
l L

ay
e

r

[Packet_In]

[Packet_Out]

Applications

Figure 1: A general SDN layered architecture

The controller has different interfaces in order to communicate with other planes

and network devices such as south, north, east, and westbound API’s [38]. The most

common API’s used in SDN are the southbound and the northbound. The

southbound API enables communication between the infrastructure plane network

devices and the controller. Initially, when a new packet is received by the OF switch

from the host, it checks for the matching field between the packet header and the

flow rules in the flow table [5, 39]. If the match is not found, a Packet_In message is

generated by the OF switch and it is sent to the controller on the southbound API.

The controller checks the packet header for the necessary information and replies

back to the OF switch through a Packet_Out message. The Packet_Out message

contains the specific rules for the respective network flows which are inserted in the

flow table of the OF switch. When a similar type of flow (i.e., the same source and

destination) arrives at the OF switche, it is forwarded based on the previously

inserted flow rule in the flow table [40]. The flow chart of the Packet_In message is

shown in Figure 2.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

Start

 Host request to the OF switch

 OF switch check for the match field

 Apply the flow rules to the packet

 Generate Packet_In message

 Send Packet_In to the controller

 Controller check the packet header

 Create rules for Packet_In message

 Send the flow rules to the OF switch

 Generate Packet_Out message

Match

No

Yes

Figure 2: A flow chart for Packet-In message

Moreover, the controller can modify the packet header information in real-time

by modifying source/destination addresses and ports [41]. This characteristic of the

controller provides flexibility and reliability to the network. Similarly, the

northbound API connects the controller to various network applications that deploy

algorithms and protocols to operate the SDN [42]. Unlike, the southbound API, the

standard northbound API is not available yet, which presents several security

threats [43, 44]. The eastbound and westbound API’s manage the distributed

controllers in SDN [7]. That is, multiple controllers can be deployed in SDN to

manage different parts of the network [45] due to different assigned functions such

as load balancing, monitoring and task allocation.

2.2 Threats to Software Defined Networks planes

The centralized control, network abstraction, and software-based network

changes attract malicious users to perform attacks on SDN. Attacks can be on the 1)

network devices in the infrastructure plane, 2) control modules in the control plane,

3) network devices in the application plane, or 4) different API’s in the SDN [8]. In

this section, we discuss and classify different attacks as illustrated in Figure 3.

Moreover, we explain attacks performed on various interfaces of SDN. Table 1

illustrates the existing available solutions for each attack in the SDN planes and

interfaces.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

2.2.1 Attacks on the SDN data plane

There are different ways to maliciously exploit the network devices in the data

plane wherein some of these attacks are specific to the SDN while others are

inherited from the traditional networks. Each of these attacks is discussed below:

(a) Malicious OF Switches: Forwarding network flows through a malicious OF

switch allows it to alter the network packets. In this case, the network flows

divert and the legitimate traffic is dropped, which interrupts the

communication between SDN devices. This can slow down the network traffic

and may prevent the legitimate switch from receiving the traffic due to an

excessive idle time specified for the flow entries in the flow tables. This can

cause the network packets to be dropped [46] or generate numerous

Packet_In messages to the controller due to mismatch at the OF switch.

(b) Malicious hosts in the data plane: Malicious hosts can attack any switch and

controller in the SDN by generating forged network packets [47]. In forged

network packets, various fields (such as the IP field, the MAC field or other

fields), can be modified to hide the identity of the attacker. In addition, a

malicious host can generate millions of packets in the form of a Denial-of-

Service (DoS) attack to overload the memory of the OF switches [48].

Similarly, for every new forged packet (i.e., unique source IP address), the OF

switches generates the Packet_In message to the controller which can result

in decreasing the performance of the controller [49].

2.2.2 Attacks on the SDN control plane

The attacker is more interested in the control plane due to its significant

function such as the network control, network abstraction, and support to various

network applications. There are various types of attacks which can be performed by

the controller as follows:

(a) Malicious modules inside the controller: The integration of the core controller

functions creates an initial setup for the SDN. For instance, the topology

manager stores information regarding devices such as switches and hosts in

the network [50] and uses the Link Layer Discovery Protocol (LLDP) to

discover the interconnected links between the OF switches [51]. An attacker

can exploit vulnerabilities within these building blocks. As an example, , a

recent topological poisoning attack [52] exploits the link discovery module

running in the controller by generating fake links between the switches. As a

result, the fake links affect the functionalities of the entire network [53].

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

(b) Compromised controllers: The controllers can also be distributed and

exchange information from time-to-time to update their states [54]. The

module for such distributed communication among controllers can be

exploited by the attacker. . For instance, Open daylight controller uses ODL-

SDNi app for distributed communication among multiple controllers. The

problem arises when one of the controllers is performing maliciously and

shares wrong information among the controllers. To identify the malicious

controller among a pool of controllers is a challenging task due to isolated

functionality of each controller. A malicious controller disseminates incorrect

topological updates to another controller to make the network malfunction

[55].

(c) Attack on management consoles: The management console allows authorized

individuals to access the SDN. An attacker can get an unauthorized access to

the management console through a password brute-force attack or leaking

the password from different sources. Once the attacker gets access to the

SDN, attacks can be generated on the controller as well as on different

resources of the network. Usually, the access to management console is

defined in the policy agent module of the controller. The compromised

management console empowers the attacker to create a gateway in launching

various other attacks on the SDN.

2.2.3 Attacks on the SDN application plane

The SDN application plane consists of different applications/software [56] for

functions such as load balancing, routing, firewall, and intrusion detection.

Moreover, these applications/software may be used to monitor the traffic, extract

statistical traffic features, apply authentication mechanism to different user

domains, and diverts the traffic based on the network etc. The application

development in the application plane is considered as a dramatic change to the SDN

architecture [57]. A single network infrastructure can be used by multiple

applications at the same time to fulfill their requirements. However, this is not

possible in the traditional network where the configuration of network device needs

update upon using different network applications. A user can easily develop an

application module and embed in the application plane [58]. This allows malicious

users to affect the entire network. There are various possible attacks in the SDN

application plane which are briefly discussed as follows:

(a) Unauthorized access to applications: An unauthorized access to these

applications can help attackers bypass the security level of the controller [59,

60]. The controller treats all applications as normal network services because

of the absence of a trust mechanism between the application and control

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

layers. The unauthorized access to various applications can inform attackers

about the operation of the network which further creates a chance to exploit

various parts of the network.

(b) Disclosure of information through the application server: Once an attacker

gains access to the application server, the information of any application that

is currently or previously executed in the RAM can be accessed and disclosed.

In a traditional network, such kind of attack is called a RAM scraper attack

[61]. In SDN, an attacker can scan the RAM processes in the application

server to gain access to the application information through the northbound

API. An attacker can further identify the rules of the controller for various

network flows.

(c) Modification of user privileges for application execution: Due to network

virtualization, each user can treat the network with its own requirement

provided with isolation [15, 62]. Each user is provided with specific rights to

execute different applications according to its requirement. However, if the

attacker accesses the application server, the user privileges can be changed

to produce malfunctioning results [63].

Threats to software Defined

Network Layers

Data Plane Attacks

Application Plane Attacks
Control Plane Attacks

SDN interfaces Attacks

Malicious modules inside the controller

Compromised controllers

Attack on management consoles

Malicious OpenFlow Switches

Malicious hosts in data plane

Unauthorized access to applications

Disclosure of information

Modification of user privileges

Attack on southbound interface

Attack on northbound interface

Attack on east & westbound

Figure 3: Classification of attacks on SDN planes

2.2.4 Attacks on SDN interfaces

Note that, the southbound and northbound interfaces are used for the

centralized controller environment while the eastbound and westbound interfaces

are used in a distributed controller environment. These interfaces are used to send

and receive network information which attracts attackers to eavesdrop [47].

(a) Attacks on the southbound interface: Mostly, the southbound interface in SDN

uses the standard OF protocol [64]. The OF protocol is allows

communication between the OF switch and the controller. Each OF switch

has to communicate with the controller through Packet_In message upon

reception of new packets [65]. This makes the southbound interface more

suitable for information extraction from the Packet_In messages. The

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

attacker can exploit the Transport Layer Security (TLS) vulnerabilities and

to take control over the southbound interface [66]. Subsequently, the

attacker can create, modify, and delete the flow rules. This causes

malfunctioning results in the network due to malicious flow entries in the

flow table. Moreover, an attacker can generate forged packets to the OF

switches with a unique identity to force OF switch to generate a large

number of Packet_In messages to overload the bandwidth channel used

between the OF switches and the controller [67].

(b) Attacks on the northbound interface: The northbound interface is used for

communication among the applications of the application plane [68]. Unlike

the southbound interface, the northbound interface does not use a standard

protocol because of its initial stage of development [43, 44]. The attacker can

use the northbound interface to interfere with the communication between

the application and the controller. An attacker can get unauthorized access to

the northbound interface and may delete some information which can lead to

falsified output of the application. Similarly, the attacker can use a malicious

application to inform the controller to disconnect other applications leading to

a flow rule modification problem. Moreover, the malicious application can

send numerous requests to overload the CPU as well as to occupy the

available bandwidth of the northbound interface. Note that, proper

authentication and encryption mechanism is not standardized for the

northbound interface. Various APIs for the northbound interface can increase

the security threats because of the built-in vulnerabilities. This decreases the

trustworthiness between the controller and various applications.

(c) Attacks on eastbound & westbound interfaces: The eastbound and westbound

interfaces are also prone to various attacks. The information updates through

these interfaces can be exploited by the attacker with an unauthorized access

to the management console. The attacker can take advantage of unencrypted

communication of data between controllers for sharing the network

information updates [69]. An attacker can also compromise the network by

tapping the application to eavesdrop on clear text communications between

two controllers.

Table 1: SDN layers/Interfaces possible attacks and existing solutions

SDN

Layers/Interfaces
Possible Attacks Existing Solutions Attack Nature

Data Plane
Malicious switches FortNOX [22] , SDNsec [20] SDN-based attack

Malicious hosts VAVE [21], OFGUARD [48], FlowVisor [70] TN-based attack

Control Plane
Malicious modules VeriCon [71], FRESCO [10], SPIRIT [72] SDN-based attack

Compromised controllers Fleet [73] , DISCO [54], HyperFlow [74] SDN-based attack

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

SDN

Layers/Interfaces
Possible Attacks Existing Solutions Attack Nature

Management consoles Sandbox-based system [75] SDN-based attack

Application Plane

Unauthorized access PermOF [76], SDN Rootkits [77] TN-based attack

Disclosure of information Proactive strategies and Randomization [78] TN-based attack

Modification of user privileges OFX [79] TN-based attack

SDN Interfaces

Southbound interface threats VeriFlow [80], HSCS architecture [81] SDN-based attack

Northbound interface threats Dynamic Filtering [82] SDN-based attack

Eastbound & westbound threats DRS [83] SDN-based attack

3. Topology Discovery

3.1 Importance

The topology management is a unique feature of SDN which allows the

controller to facilitate the applications in the application plane[84]. For instance, a

routing application uses the network topology to route the network traffic to its

destination [75, 85, 86]. The controller discovers a topology through [52] a) Host

discovery, b) Switch discovery, and c) Inter-connected links between the switches.

The controller discovers the host by receiving a Packet-In message from the switch.

The switches are discovered during the initial handshake process with the

controller, and inter-connected links between switches are discovered through the

OpenFlow Discovery Protocol (OFDP). However, there are vulnerabilities found in

the core applications of the controller which are exploited to initiate topology

poisoning attacks [87].

If an attacker poisons the network topology information, its effect will

immediately be visible to all its dependent applications [88]. Therefore, it is

important to detect a topology poisoning attack at an early stage. Note that,

detecting a fake link between the OF switches created by the topology poisoning

attack is relatively easy than identifying the source of the attack. Mostly, attackers

hide their identity information after they perform the attack [89]. Similarly, in a

topology poisoning attack, the attacker creates a fake link between the OF switches

by spoofing the LLDP packet to hide his identity [19]. The controller should be

aware of the fake links upon their insertion in the network so that the attack can be

prevented at an early stage.

3.2 Topology Discovery in Traditional Networks

Topology poisoning attacks are not new to traditional networks. The main aim of

a topology poisoning attack is to fabricate the network topology and disturb normal

network operations in terms of control and management [90]. If a malicious router

advertises its routing information to its neighbors, it will result in a falsified

network traffic distribution based on the malicious routing information [91]. For

instance, a network using the Routing Information Protocol (RIP) protocol allows

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

each router to send its link with an update information of their topological view to

its neighbors [92]. The information includes a destination identifier and a cost

metric to the destination. However, the information sent by a malicious can

update the neighbor routers link database with the wrong information and can

affect the entire routing process [93]. Also, the malicious router may advertise for

having the least cost path to a specific destination, thus causing the traffic to be

diverted from other sources to a malicious destination [72, 73].

A similar type of attacks can also be performed in the link-state protocol, i.e.,

OSPF, where every router is bound to send its link update to its neighbors in order

to calculate the optimal path depending on the metrics [94]. In OSPF, the link

update information sent by the router is called Link State Advertisements (LSA). A

malicious router may send a false LSA to its neighbors defining other routers by

forging their original information [95]. This will divert the network traffic towards

the malicious router which may forward the packet on to a longer path, perform

eavesdropping, modify the packet information, and drop some/all the packets in the

network flow. Besides the wired networks, topological information can be exploited

in the wireless networks as well. For instance, the Optimized Link State Routing

(OLSR) is used in mobile ad-hoc networks to discover and disseminate the link-state

information throughout the network [96]. This information helps nodes to compute

the optimal path to the next node in the network to reach the destination.

The OLSR determine and forward the link state information to the neighbor

nodes by using hello and topology control messages. These messages can be falsified

to disseminate the wrong information and results in a false topological

development. Moreover, Bridge Protocol Data Units (BPDU’s) in the Spanning Tree

Protocol (STP) [97] can be forged to exploit the information. Such exploitation can

be performed by an attacker to make the malicious switch as a root bridge in the

network and therefore gain access to the network traffic. Such type of attack is also

called an STP mangling [98]. The STP mangling affects the topology of the network

in terms of selecting the wrong switch as a root bridge. The root bridge has an easy

access to the network traffic that is costly when a malicious switch is selected as a

root bridge in the selection process.

3.3 Topology Discovery in SDN

The topology management is a unique characteristic of SDN as compared to

traditional networks. Table 2 provides a comparison between a traditional network

and an SDN topology discovery. The decoupling of the control plane from the data

plane enables the SDN to have a logically centralized control of the network [60,

99]. To achieve the centralized control, a controller (responsible to control the

network centrally) should have a global visibility of the complete network [86]. A

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

controller incorporates various core modules that assist in executing various SDN

applications [100]. Among the core modules, a topology management is creates a

topology of the entire SDN infrastructure [4]. The topology not only facilitates the

controller but also assists the application plane service to perform its operation

using the network programmability [101]. The network topology is significant to

both the control plane and the application plane because it provides an abstract

visibility of the entire network devices.

The OF protocol is a standard approach used for communication between the

controller and the OF switches on the southbound interface of the SDN [102]. The

southbound interface carries requests and replies to both the controller and the OF

switches. The updated network topology information is significant to the controller

in providing efficient control and management of the network. As a result, the

efficient topology discovery is considered to be an important characteristic for the

controller. Developing a topology of the network requires switch discovery, host

discovery, and interconnected switches’ discovery [52]. Each of these discovery

mechanisms is briefly explained in Section 4.1.

In the work [4], an efficient topology discovery mechanism is proposed which

reduces the topology discovery overhead up to 40 % by minimizing Packet_Out

messages generated from the controller. A single LLDP packet is sent to each of the

OF switches rather than the de-facto standard of sending each LLDP packet to each

of the ports of the OF switch. Moreover, a switch broadcasts the LLDP packet to all

its active ports which further discovers links between the switches. The work in

[18] proposes to represent network topology, find loops, and determine alternative

paths at the time of link failure in SDN. An adjacency matrix is used to represent

the LLDP packets corresponding to the switches in the network. This helps to find

the loops and alternative paths at the time of link failure in SDN. Moreover, the

work in [19] presents the security of topology discovery in SDN and shows that how

information can be spoofed to generate fake links in the network topology. Finally,

it also presents a countermeasure by using the Keyed-Hash Message

Authentication Code (HMAC) authentication.

Table 2: Comparison between a traditional network and an SDN topology discovery

Features
Topology Discovery in Traditional

Networks

Topology Discovery in

Software Defined Networks

Host Discovery NMAP Packet_In message

Switch Discovery SNMP Initial Handshaking process

Link Discovery Various updates (RIP, OSPF, LSA, OLSR) LLDP

Control Management Independent Controller

Scalability No. of switches No. of OF switches

Communication updates Switch- Switch Controller-Switch-Controller

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

4. A Thematic Taxonomy: Topology Discovery
In this section, we provide an in-depth information about the topology discovery

of the SDN. We devise a thematic taxonomy of the topology discovery in SDN as

illustrated in Figure 4. The thematic taxonomy can be used to establish a

conceptual knowledge of the topology discovery [76]. The taxonomy consists of four

main categories including (1) Discovery Entities, (2) Controller Platform, (3)

Topology-Dependent Services, and (4) Objective. These categories provide a clear

understanding of the topology discovery in SDN.

Topology Discovery

in SDN

Discovery Entities Objective

Switches

Inter-connected switch

links

Hosts
Discover Topology on

OpenFlow Network

Spanning Tree

Controller Platform
Topology

Dependent Services

Centralized

De-Centralized

Routing

Mobility Tracking

Load Balancing

Topology based Slicing

Robustness

Manage Topology

Changes

Statistical Data

Gathering

Traffic Scheduling

Resource Provisioning

Figure 4: A thematic taxonomy of topology discovery in SDN

4.1 Discovery Entities

The controller has a visibility of the entire network topology. To create a

topology of the entire network, the controller has to discover network entities and

inter-connected links among them. In particular, the controller has to discover three

entities for a complete view of the network topology, i.e., a) Hosts, b) Switches, and

c) Inter-connected links between the switches. The hosts are the physical or virtual

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

systems (virtual machines) connected to the switches that are used by users to

execute their services. The switches are known as the OpenFlow switches that

forward the packets from source to the destination upon receiving flow rules from

the controller. The inter-connected links are the physical or the virtual links

between the switches which are used to transfer the network packets. Discovery of

these entities is significant for the topology management in updating a network

topology view of the controller.

4.1.1 Host Discovery

. The host discovery helps the controller in identifying the exact location of the

host in the network which allows for traffic monitoring, assisting in traffic routes,

and determining the source of the packets [103]. Generally, a host tracking function

is available in most of the controllers, which determines the host attached and its

respective port of the switch [104]. The host tracking can trace the virtual machine

migrations in the data centers, which are difficult if done manually due to their

frequent moments. The controller maintains a host profile table for each of the hosts

that joins the network.

Similarly, the controller deletes the host profile table when a host leaves the

network. To populate the empty host table, the controller uses the Packet_In

message to generate a host profile table for each of the hosts sent by the OF switch.

For example, a host attached to a port of the OF switch generates a request

message. This request message is encapsulated by the OF switch in the form of

Packet_In message and it is then sent to the controller. Based on the Packet-In

message, a controller identifies the identity of the host.

The host profile is built on the Packet-In message which contains information

such as a) IP address, b) MAC address and c) Meta information (DPID, port

number, and last timestamp). When a host migrates from one switch to another, its

port and switch IDs are changed due to its new location. The controller updates the

record for the migrated host based on Packet-In messages received from another OF

switch. The payload information in the Packet-In message helps the controller to

track the location of the host. Different controllers have different host tracking

applications to discover hosts in the network [52]. For instance, the ‘hosttracker.cc’

is used in NOX controller, the ‘host tracker.py’ is used in Ryu controller, the

‘DeviceManagerImpl.java’ is used in the Floodlight controller, and the

‘OFMDeviceManager.java’ is used in the OpenIRIS controller.

4.1.2 Switch Discovery

Typically, OF switches communicate with the controller on the arrival of new

packets, i.e., Packet_In messages. The controller replies with a Packet_Out message

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

to insert flow entries in the OF switches. The location of the OF switches is vital to

the controller due to its two-way frequent communication. The controller discovers

the location of the OF switches in its initial handshake process.

The OF switches are discovered in the initial handshaking process by the

controller. Once the OF switch is added to the network, the controller gets the

existence and key properties of the OF switch. The controller records the MAC

address, the number of ports, etc. to know the information about the OF switch.

There is no requirement for a separate protocol to discover the location of the OF

switch in SDN.

4.1.3 Inter-connected link between switches

The discovery of the inter-connected link between switches is significant to

generate a topology by the controller in SDN. The inter-connected links determine

the connectivity between the OF switches that helps the controller and the

application plane services to utilize the network according to their requirements. In

most of the times (if not all), the OFDP is used to discover the inter-connected links

between the OF switches. The OFDP uses LLDP to advertise the capabilities and

neighbor information of the nodes in the network [105]. The LLDP is usually used

in the Ethernet switch, which actively sends and receives LLDP packets to each of

its active ports. The extracted information from the LLDP packet is stored in a

Management Information Base (MIB) in the switch.

The collected information from different MIB’s of the switches via the SNMP

helps to determine the network topology. When the LLDP packet is sent by the

switch through its active ports, the Ethernet frame encapsulates the payload of

LLDP and set the EtherType field to 0x88cc. The Ethernet frame contains the

LLDP Data Unit (LLDPDU) that consists of a Type Length Value (TLV) structure.

The TLV contains a switch identifier (chassis ID), Port ID, Time to live value, and

other optional values. The OFDP uses a similar format of LLDP packet, however; it

operates differently due to its limited API’s match-action functionality. Moreover, in

the SDN the OF switches does not send, receive, and process the LLDP messages

itself but rather created by the controller. The operation of the LLDP packet in the

SDN is briefly explained below.

(a) Inter-connection between OF switches: The link discovery using LLDP does not

require any other discovery approach because both ends of the link consist the OF

switches which support the topology discovery mechanism. The topology discovery

determines the initial IP address and the TCP port of the controller which helps the

OF switch to establish a connection soon after it is connected to the controller. The

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

OF switch also has a pre-configured rules, which generates the Packet_In message

to the controller when it is received on the ports other than the controller. Initially,

when an OF switch establishes a connection with a controller, the controller passes

a request message to the OF switch such as FEATURE_REQUEST_MESSAGE,

wherein the switch responds with a FEATURE_REPLY_MESSAGE. The response

includes the switch ID and active ports along with their respective MAC addresses.

The controller encapsulates the LLDP packet in a Packet_Out message and sends it

to each active port of all OF switches in the network. The destination address in the

LLDP packet is the multicast MAC address defined in the IEEE 802.1AB standard.

The total number of Packet_Out messages sent by the controller is equal to the

number of active ports in the network, i.e., (Total Packet_Out message = Number of

active ports of all the switches).

The Packet_Out message installs the flow entries in the OF switch in order to

route each LLDP packet to its destination port as indicated in the TLV field. The

OF switch forwards the received LLDP packet to its corresponding port that is

connected to another OF switch. When the neighbor of the OF switch receives the

LLDP packet on the port other than the connected controller port, the switch

encapsulates the LLDP packet in a Packet_In message and forwards it to the

controller. The fields in the Packet_In message includes the switch ID and the Port

ID on which the LLDP packet is received. The controller updates its network

topology based on LLDP messages and by default, this process is repeated every 5

seconds. The illustration of this process is shown in Figure 5.

OpenFlow Switch

Controller

OpenFlow Switch

P
a
c
k
e
t
_
O
u
t

(
L
L
D
P
)

P
a
c
k
e
t
_
I
n

(
L
L
D
P
)

Switch (S1) Switch (S2)

Active Ports

Inactive Ports

P-1

P-2

P-3

P-4

P-1

P-2

S1, P-3

S1, P-4

S1, P-2

S1, S2, P-2

S1, S2, P-1, P-2

Figure 5: The LLDP process in SDN environment

(b) Inter-connection between the OF switch and the traditional switch: Currently, the

adoption of SDN architecture in the current emerging networks integrates OF

protocol with the existing traditional network technologies. This requires a new

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

mechanism to operate in a new network infrastructure without affecting the

performance. Similarly, using both traditional and OF switches in data centers will

create problems to identify the inter-connected link between these switches. The

approach to finding the inter-connected link between the OF switches is not

implemented in a hybrid switch infrastructure. The controller needs a mechanism

for the handshake with an OF switch to identify its information and capabilities.

However, handshake is not performed for the traditional switches. A controller in a

hybrid switch infrastructure can identify the inter-connected links between the OF

switch and a traditional switch which must be connected to another OF switch. This

scenario can be considered as a non-direct connection between two OF switches.

Simply, a controller can find the multi-hop connections between the OF switches.

The LLDP is a single-hop discovery mechanism and it is not applicable to a multi-

hop connection. It requires a new approach for finding non-directed connections

among the OF switches. To identify the inter-connection between two OF switches,

both the OF switches should be in the same broadcast domain or the controller will

not able to associate addresses to the multi-hops among the OF switches. The

current Open source controller such as Floodlight and Open Daylight controller

have integrated layer 2 topology discovery protocols such as the LLDP and the

Broadcast Domain Discovery Protocol (BDDP) to discover multi-hop links between

OF switches and traditional switches within a broadcast domain [106].

The BDDP message and the LLDP messages are identical but have different

destination MAC address fields. The BDDP message has a broadcast address in its

destination field while the LLDP message has a multicast address in its destination

field. This feature allows the traditional switch to forward a BDDP message to find

multi-hop links between the OF switches within a broadcast domain. The controller

sends each BDDP message to each active port of the switch by encapsulating it in

the Packet_Out message. When the Packet_Out message is sent to the OF switch, it

installs a flow entry in the flow table indicating that the OF switch has received the

message. Then, the OF switch forwards the message to the neighbor switches via a

port indicated in the TLV field. If the neighbor switch is a traditional, it examines

the destination MAC address and further floods the packet to all its active ports.

The port connecting the controller receives the Packet_In message that incorporates

the Meta data required to identify multi-hop links. The Packet_In message contains

a BDDP packet which helps the controller to know indirect links between two OF

switches such as through multi-hop links.

4.2 Controller Platform

The SDN has an architecture which consists of a single or multiple controllers to

control the entire network as illustrated in Figure 6(a) and 6(b). Usually, small data

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

center networks incorporates a single controller while large data centers are

distributed and have multiple controllers. This section explains the significance of a

topology discovery in single and multiple controller platforms in SDN.

4.2.1 Topology Discovery in Single Controller Platforms

The single controller platform is used for a homogeneous network, which is a

network of devices connected within a single physical location. The controller is

responsible for discovering the network topology by querying the switches through

the LLDP packets as described in Section 4.3.3. The controller communicates with

the switches through LLDP packet after a specified time interval (i.e., after every 5

seconds) to identify the links between the OF switches in the network. In

discovering the network topology, the position of the controller is crucial. That is,

the controller that is closer to the switches will result in a faster transmission of the

LLDP packets to the OF switches as well as receiving a quick response from the OF

switches.

O
p

e
n

F
l
o

w

S

w

i
t

c
h

O
p

e
n

F
l
o

w

S

w

i
t

c
h

H o s t s

H o s t s

C o n t r o l l e rS w i t c h e s

C o n t r o l l e r

O
p
e
n
F
lo

w
 S

w
itc

h

O
p
e
n
F
lo

w
 S

w
itc

h

Hosts

Hosts

Controller-1

Switches

Controller-1

O
p
e
n
F
lo

w
 S

w
itc

h

O
p
e
n
F
lo

w
 S

w
itc

h

Hosts

Hosts

Controller-2

Switches

Controller-2

 Figure 6(a): Single controller architecture Figure 6(b): Multiple controller architectures

4.2.2 Topology Discovery in Multiple Controller Platforms

Large networks are employed using heterogeneous setting that includes multiple

controllers responsible for different portions of the network. All these controllers

coordinate through a logically centralized controller. Each controller requires

discovery of the network topology of the assigned SDN domain. The topology

discovery information is sent to the centralized controller and also to the

neighboring controllers for the latest updates. However, sharing topology

information among controllers requires a standard procedure which is not available

till date.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

The shared topology information is not verified during the sharing process and

might be shared by the malicious controller. This may affect the performance of the

other controllers such as routing, load balancing, scheduling and various other

services. The importance of topology discovery in multiple controller platforms

increases due to the distributed controllers, sharing of topology updates, and

instance (virtual machine) migration [101] among different SDN domains.

4.3 Dependent Services

This section discusses the topology-dependent services used in SDN. The

logically centralized visibility of the network supports various network applications

to efficiently perform tasks and control the network devices. We have explained

some of the topology dependent services to highlight the significance of the topology

discovery in SDN as shown in Table 3.

4.3.1 Routing

The routing application depends on the controller’s abstract view of the topology

to provide the visibility of the entire network [107]. For instance, a routing

application will require information about the network topology to route the

network traffic to its destination on the shortest path [17]. However, falsified

topological information may lead the routing application to route its network traffic

on to a malicious route.

In the case of a link fabrication attack, an attacker can spoof the LLDP packet

with a malicious switch DPID and Port ID to inject a fake link in the network

topology. This may affect the existing legitimate shortest path towards the

destination. For example, as shown in Figure 7, host 1 requires four hops (switches)

to reach host 4. However, during a link fabrication attack, host 1 will send the

LLDP packet with DPID-3 and Port ID-1 to switch 1, which further inserts DPID-1

and ingress Port ID-1 in the metadata of the Packet_In message and informs the

controller that there is a direct link between switch-1 and switch-3. Subsequently,

the controller may wrongly update its topology information by assuming a direct

link between switch 1 and switch 3. This affects the legitimate shortest path, as the

traffic from host 1 can be sent to host 4 through the newly added fake link. As a

result, the malicious switch 3 can eavesdrop or modify the traffic before it reaches

the destination.

4.3.2 Mobility Tracking

The mobility tracking refers to a mechanism of tracking a mobile node in the

network. Mobility tracking is generally associated with the cellular networks [4,

108]. The mobility tracking in SDN is achieved through a mobility management

function running on top of the controller [109]. The mobile management function is

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

responsible for monitoring nodes’ movements. Mobility tracking depends on the

network topology for information on the current and future location of the network

nodes. Usually, when a network node (host) changes its position from one switch to

another, it changes its IP address and results in a connection break down. However,

in SDN, with the help of a mobility management function, the forwarding function

informs the controller about the nodes’ movement which then re-calculates the

forwarding rules and forwards it to the forwarding function to route the IP packets

accordingly.

As a result, it continues with the application session and makes the movement of

the node without changing the IP address. Node mobility changes the network

topology which is updated by the controller based on the information received from

the forwarding function. Thus, the node movement should be sent to the controller

and mobility tracking function on a timely basis to keep the network topology up to

date in the SDN.

O
p
e
n
F
lo

w
 S

w
itc

h

O
p
e
n
F
lo

w
 S

w
itc

h

O
p
e
n
F
lo

w
 S

w
itc

h

O
p
e
n
F
lo

w
 S

w
itc

h

Hosts-1

Controller

Switch-1 Switch-2 Switch-3 Switch-4

Hosts-2 Hosts-3
Hosts-4

Fake Link

L
in

k

Malicious

Host

In
fr

as
tr

u
ct

u
re

 L
ay

e
r

C
o

n
tr

o
l L

ay
e

r C

1

2

Switches

Controller

3

4

F
a

k
e

L

i
n

k

1

1
1

2
2

1

2

3
3 3

Controller Visibility

Fake Link

Link

Destination

Figure 7: A diagram illustrating link fabrication attacks

4.3.3 Load Balancing

The load balancing is used to improve the utilization of resources and power by

distributing the traffic more simply and more efficiently. The load balancer uses a

logically centralized control of the SDN to perform traffic load balancing [110]. The

dependency of the load balancing on the network topology is significant, which is its

selection of the optimal server for the traffic execution. For instance, the load

balancing application that is installed on top of the controller requires the location

of the servers and the optimal path to access them in the network.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

The optimal path is selected by computing augmented bandwidth of the links

between the switches. Any modification in the network topology causes the load

balancer to re-calculate the bandwidth for the optimal path. Thus, topology

discovery plays a vital role in executing the load balancing properly in SDN.

4.3.4 Topology-based Slicing

The topology-based slicing is a mechanism of the Flow-visor in SDN that divides

the network topology into different parts/slices [111]. The aim of slicing is to provide

a dedicated link to each of the tenants in the multi-tenant environment. Topology-

based slicing, also known as port-based slicing, creates different slices based on the

switch ports. Each switch part has a subset of full network topology controlled by

the Flow-visor [112].

The Flow-visor handles the network traffic on each of the connected links by

adding a flow space. The slicing phenomenon reduces the controller load by focusing

on specific OF switches of the topology. Therefore, the slicing depends on the

locations and ports of the OF switches which are key entities of the network

topology discovery. However, any modification in the topology will cause Flow-visor

to re-compute the specific slice that is affected by the change in the specific domain.

Table 3: Topology-dependent applications with its effected attacks

Topology-

Dependent

Applications

Description Effected attacks

Routing Route network traffic from source to the destination Link Fabrication

Mobility Tracking Determine the location of the host in the network Host Location Hijacking

Load Balancing Distribute network traffic among different servers Link Fabrication

Topology-based Slicing Divide single network topology into sub-topologies Link Fabrication

4.4 Objective

The key objectives which are achieved through an efficient topology discovery in

SDN are listed as follows:

(a) Multiple switches: The topology discovery provides an easy way to identify OF

switches in SDN. The OF switches could be in single or multiple management

domains, controlled by single or multiple distributed controllers [113]. The

identification of the OF switches in the network assists in topology discovery

and updating its topology information, respectively.

(b) Spanning Tree: The spanning tree protocol in SDN [114] provides a loop-free

topology. It utilizes discovery services to identify a neighbor link detection

between OF switches. The spanning tree installs flow entries in the OF

switches. However, without having an efficient topology discovery, the

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

spanning tree is unable to select an appropriate path to eliminate a loop from

the network.

(c) Managing Topology changes: The host migration, isolation of working

domains, and insertion/deletion of the network devices in SDN can cause

changes in the network topology. The function of topology discovery includes

coping up with the change detected in the network. For instance, in a data

center environment, virtual machines (hosts) often migrate from one resource

to another, which results in a change in topology such as appearance of new

switches and ports ID [115]. Consequently, the changes in the network

should be sent to the controller to update the topology based on its discovery

mechanism.

(d) Traffic Scheduling: Often, the optimal path, i.e., the shortest path is selected

to route the network traffic from source to the destination. The topology

discovery assists the traffic scheduler in finding the optimal path with less

propagation delays between different number of hops (switches) [40, 116].

However, incomplete information regarding the network topology may lead to

improper traffic scheduling that causes high bandwidth delays and time

overhead.

(e) Robustness: The ability to tolerate the packet loss depends on the topology. If

the topology is timely updated by the controller, the network application runs

smoothly without causing any packet loss. The correct topology of the

network reduces the overhead of the controller that cause to increase

robustness of the SDN without affecting its normal operation.

(f) Statistical Data Gathering: The OF switches provide different levels of

statistical information to the controller including port statistics, flow

statistics, and other counter measurements [117]. The statistical information

helps the controller to have an in-depth observation about the flows, network

devices and the overall behavior of the network. However, changes in the

network topology (due to the insertion of new hosts, flow entries, and inter-

connected links) between the OF switches can cause changes in the statistical

data previously gathered by the controller. The controller has to update its

database information based on the new topology of the network.

(g) Resource Provisioning: To operate an elastic data center infrastructure

through the SDN architecture, a proper resource provisioning mechanism is

required to enable on-demand resources for the applications [118]. The

resource provision depends on the network topology in order to understand

the allocation and processing of available resources to different applications.

The topology discovery information assists the resource provisioning module

in selecting the right resources for the right application.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

5. Topology Discovery Threats and Solutions
In this section, we provide a comprehensive description of the potential threats

to the topological discovery. The threats exploit the vulnerabilities in the controller

by performing attacks on the network. Basically, we devise a classification of the

topology discovery threats as illustrated in Figure 8. The classification comprises of

three categories, such as a) Attack entity, b) Controller vulnerabilities, c) Current

solutions, and d) Miscellaneous threats. Each of the categories is explained as

follows.

Figure 8: Classification of topology discovery threats and solutions

5.1 Attack Entity

Several security threats from different parts of the SDN architecture can be

recognized through literature. In this section, we focus on the topology poisoning

attacks. The topology poisoning attack is generated with respect to two entities in

the SDN architecture i.e., hosts and the OF switches. These attacks are explained

with respect to their working operations as follows.

Topology Discovery Threats
and Solutions

Attack Entity

Host-based Attack

Switch-based
Attack

Controller
Vulnerabilities

Host Tracking
Systems

Link Discovery
Procedure

Current
Solutions

SPHINX

TopoGuard

Authentication
of LLDP
packets

OFDPv2

Miscellaneous
Threats

Man-In-The-
Middle

Denial-of-
Services

Identity Spoofing

Repudiation

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

 5.1.1 Host-based Attacks

The topology poisoning attack generated from the host (system connected to the

switch) is called host location hijacking attack. In this attack, the attacker

impersonates the target host location in the network and starts receiving traffic

intended for the target host. The attacker exploits Host Tracking System (HTS) of

the controller which lacks an authentication mechanism especially for the host

mobility in SDN. The controller uses HTS to record parameters such as joining and

mobility of the host in SDN by maintaining a host profile table. The controller uses

Packet-In message to update the host profile table by monitoring the DPID, ingress

Port ID, and other metadata information. However, lack of security consideration in

HTS provides an opportunity for the attacker to temper the target host location

information by diverting the target host traffic towards itself.

The controller may assume that the target host has moved towards the new

location but actually towards the attacker location. The attacker easily hijacks the

traffic of the target host by generating a spoofed IP address of the target host using

the Packet_In message. Upon receiving the Packet-In message, the controller

updates the host profile table of the target host using its new location, as a result,

affecting the topology-dependent applications including routing, load balancing, and

various others.

Moreover, the malicious host in SDN can spoof the legitimate LLDP packets and

forward it to the OF switch as well. That is, the OF switch can forward the spoofed

LLDP packet to all of its active ports, which may reach the controller and can

update its link record of the OF switches. The malicious host can also send a

legitimate LLDP packet to another OF switch, which may create a fake link

between the OF switches. Therefore, the controller may route the traffic on the fake

links that actually gets forwarded to the malicious host.

5.1.2 Switch-based Attacks

The topology poisoning attack can also be performed through the malicious OF

switches. The malicious OF switches spoofs the LLDP packets by creating fake links

in the network. This type of attack is called a link fabrication attack in SDN. The

malicious OF switches can affect a large scale of the network due to fake

connections with many devices. The topology poisoned through malicious OF

switches is difficult to detect due to the minimal clues in reference to the fake link

creation in the network. For instance, it does not require any host to create a fake

link between the OF switches during a topological poisoning attack.

After receiving the LLDP packet from a single OF switch, the malicious OF

switch relays the packets to another OF switch instead of forwarding them to the

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

controller. Subsequently, upon reception of LLDP packets by the new OF switch,

the LLDP packets are sent to the controller in the form of Packet-In message. This

tricks the controller into believing that there exists a link between the malicious OF

switch and the legitimate OF switch that forwarded the LLDP packet to the

controller. Such fake link injection attracts future possible attacks such as the DoS

attack, man-in-the-middle attack and much more.

5.2 Controller Vulnerabilities

This section describes the vulnerabilities in the controller that are used by the

attacker to launch an attack.

5.2.1 Host Tracking Systems

The vulnerability discovered in the HTS attracts attackers to hijack the location

of the hosts. As stated earlier that the host profile in the controller contains the

DPID, ingress Port ID, and other metadata information which exhibits the

controller with the location of the host and the connected OF switch. The key

exploited vulnerability includes the lack of authentication mechanism that can be

used to verify the host updates received by the controller through Packet-In

message. All information received by the controller is considered as genuine (even if

received from a malicious OF switch) and the host profile is updated accordingly.

In previous versions of Floodlight and Open Daylight controllers, an empty shell

API ‘isEntityAllowed’ is provided, which accepts all updates related to the host

locations. The attacker simply spoofs the packet with target host identity and

forwards it to the connected OF switch which further send it to the controller in the

form of Packet_In message. The controller assumes a shift of position of the host

and updates the host profile for the target host. The lack of authentication

mechanism in HTS makes the controller update the topology with falsified host

information and this will affect numerous services, especially routing.

5.2.2 Link Discovery Procedure

 The vulnerability in the link discovery procedure can also be exploited by

fabricating the false link between the OF switches. Firstly, there is no

authentication mechanism for the controller to ensure the origin of the LLDP

packet. Secondly, the controller is unable to verify the traversed path used by the

LLDP. Addressing these issues is critical in preventing the OF switches from

inserting a fake link. Note that, the OF switches receive LLDP packets from each of

its ports. This allows the attacker to spoof the LLDP packets to create a fake inter-

connected link between the OF switches which is known as link fabrication attack.

This attack can be performed in two ways 1) modification of LLDP packets, and

2) through the LLDP relay. In the case of the LLDP modification,, a fake link is

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

established between the OF switches by spoofing the DPID and the Port ID of

legitimate OF switch. This causes the controller to update a new link between

legitimate and malicious OF switch. The link fabrication attack generated through

the modified LLDP packet is explained with an example shown in Figure 7.

The host attached to switch-1 learns about the LLDP syntax from the receiving

LLDP packet from the controller. The switch-1 then forwards it to all of its ports

except the controller port. The host-1 sends LLDP packet to the switch-1 with

spoofed information including DPID=3 of switch-3 and Port ID=1 of switch 3. The

switch-1 inserts the DPID=1, and Port ID=1 in the metadata and and forwards the

Packet-In message to the controller. The controller checks the Packet_In message

and perceives a link between switch 3 and switch 1. The controller takes the LLDP

source information from the TLV such as (DPID=3, Port ID=1) and the link

information from the metadata such as (DPID=1, Port ID=1). Thus, the controller is

updated with the wrong related to a fake link. In another type of link fabrication

attack, the attacker simply forward one of the legitimate LLDP packets to another

OF switch and resulting in a falsified link information received by the controller.

The malicious OF switch requires a relay OF switch to forward the LLDP packet to

the target OF switch.

The relay OF switch is identified through a connection test. In addition, some

controllers such as POX and Floodlight disables the HTS on the internal link switch

ports, however, an attacker can still launch the attack by using a tunnel-based

LLDP relay attack. The tunnel-based LLDP relay attack is used to launch fake

links between multi-hop link ports having OF switches connected to the traditional

switches. It is difficult to disable these ports in SDN due to the availability of the

hybrid switches in the network. Thus, the link fabrication attack also opens doors to

numerous attacks including the DoS and the man-in-the-middle attack.

5.3 Current solutions

We explain the state-of-the-art topological poisoning solutions in this section.

However, the literature has very few solutions the topology poisoning attacks. We

briefly explain the state-of-the-art solution with reference to their proposed

methodology. Table 4 presents the comparison between the proposed solutions using

parameters such as techniques, SDN features, attack entity, the problem addressed,

and future work. The parameter techniques highlights the key module/application

developed by the proposed solution. The parameter SDN features points out which

features have been used to model the solution in SDN. The attack entity shows

which type of attacks can be detected through the current solution. The parameter

problem addressed points out a objective functions which has been addressed to

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

detect the attack. Finally, the parameter future work explains future research

directions of the current solution.

5.3.1 SPHINX

In [88], the work has presented several attacks which target the network

topology and forwarding devices in SDN. It has been shown that an attack can be

launched from malicious hosts and OF switches. A proposed solution as a SPHINX

is presented to detect an unknown attack on network topology and the forwarding

devices in SDN. The SPHINX provides a real-time and accurate verification

solution of the network behavior by a) monitoring all OF messages, b) analyzing

features set of the messages, and c) providing a fast validation of the network

updates. The SPHINX focuses on four messages, i.e., Packet_In, stats_reply,

features_reply, and flow_mod to get the metadata, detect network topology and

forwarding device attacks. First, the SPHINX intercepts the OF messages

transferred between the switch and the controller. Then, it builds the incremental

flow graphs with new updates and validates the network behavior. These intercepts

are important to identify the malicious behavior of the attacker.

After getting the latest update, SPHINX increments and updates its network

topology flow graphs and detects malicious behavior based on the tangible changes

observed in the network topology and the data plane forwarding. Specifically,

IP/MAC address binding, MAC/port binding, and flow statistics of the host are used

to provide metadata for assisting SPHINX to detect malicious behaviors in the

network topology and the data plane forwarding. The network behavior is validated

through the SPHINX policy engine. The policy engine enables administrators to

validate the incremental flow graphs. The constraints specified by the

administrators is written in the policy language. However, validating the policy

itself is not considered in the SPHINX and is left for future work. In [24], a policy-

based security is provided for an SDN.

5.3.2 TopoGuard

Hong et al. [52] has first time proposed an attack in the SDN architecture that

affect the visibility of the controller by providing poisoned network topology view.

The attack illegally modify the network visibility by hijacking the host location and

inserting a fake link between the OF switches. These attacks disturb the operation

of different network applications that run on top of the controller such as packet

routing, network virtualization, and mobility tracking. A TopoGuard application is

proposed to overcome the problem of the poisoned network topology in SDN.

The TopoGuard application is executed in the OF controller that is composed of

three main modules namely, port manager, host prober, and topology update

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

checker. Each of these modules in the TopoGuard application depends on the

Packet_In message to investigate and detect the illegal modifications in the network

topology. The port manager provides information related to the device type

connected to the switch. The device type contains values of host, switch, or any. The

value any is the default value for the device type and will change to host or switch

once the packet has been forwarded. The port manager detects the attack and

generates an alert to the topology update checker by receiving LLDP packets from

the host. The alerts are generated when LLDP packets traverse between internal

link ports of the switches rather than hosts.

Upon migration to a new location, the host probe module is responsible for

checking whether the host’s previous location is unreachable. This is achieved by

sending the probe packets (i.e., ICMP echo packets) the host’s previous location . If

the echo replies are received by the host probe, it will inform the topology update

checker to hold the update of a new host location due to a host location hijacking

attack. Similarly, topology update checker is also responsible for checking and

verifying the information of the host migration and new link discovery in the

network topology. Once the host migration is detected, the topology update checker

collects the host’s previous location from the host probe and then updates its

topology discovery of the network.

For the link discovery, topology update checker checks cryptographic hash value

for the integrity of the LLDP packet. After the integrity check, the device type is

checked from which the LLDP packet is generated. If the device found has a host

entity, the topology update checker considers it as an attack and holds the update of

the new discovery link in the network topology. Therefore, TopoGuard enables a

real-time detection of the topology poisoning attacks in SDN.

5.3.3 Authentication of LLDP Packets

In [19], a countermeasure based mechanism is proposed to overcome the security

problem presented in the OFDP. The OFDP lacks an authentication of LLDP

packets that might risk the packets to be forged. The proposed method uses a

cryptographic Message Authentication Code (MAC) in each of the LLDP packets in

order to authenticate the packet’s integrity. The HMAC is used to compute the MAC

code. The uniqueness of the HMAC in authenticating the LLDP packet is the use of

a dynamic key instead of the static key. In each round of the topology discovery, a

dynamic key is used for each LLDP packet which makes difficulty for the

adversaries to speculate the key. Guessing the key is critical in order to compute the

MAC value and launch a successful fake link attack.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

The key is selected randomly for security and it is difficult for the attacker to

guess the key especially when the key is generated with an entropy measurement.

Moreover, the controller can detect any attempt made by the attacker for guessing

the key. The controller keeps track of each of the keys generated for every packet

and verifies the authenticity of the received LLDP packet. The Chassis ID and the

Port ID are combined to provide a necessary identifier while hashing is performed

through a MD5 hashing function. The HMAC value is inserted in the optional TLV

field of the LLDP packet which shows that the OFDP having HMAC can detect any

fabrication of the LLDP packets generated by the attacker. The proposed method

using HMAC values in the LLDP packet creates 8% of the CPU overhead which is

lower than identifying fabricated links in the network.

5.3.4 OFDPv2

In [119], a simple and practical modification is performed on the existing

topology discovery approach for reducing the control load and to increase the

efficiency of the controller. The proposed approach modifies the de-facto standard of

the topology discovery by introducing OFDPv2-A and OFDPv2-B. The two new

versions have the same functionality of OFDP with significantly lesser number of

control messages used for link identification between the OF switches. The

reduction of control messages significantly decreases the controller load.

In OFDPv2-A, a specified rule is inserted in the flow table of every switch. This

is to direct the OF switch to create a copy of the received LLDP packet and forward

it to all of its active ports. . The forwarded message has a modified MAC address for

each port. The LLDP packets are limited to the number of the available OF

switches, however, the unique LLDP packet in OFDP is sent to the active ports of

the switches that cause to increase the workload on the controller due to handling a

large amount of the LLDP packets.

In addition, Packet-In event handler in the controller is changed to know the source

MAC address of the Ethernet frame in the place of Port ID TLV field of the LLDP

payload. The OFDPv2-B operates similar to OFDPv2-A but it has no rules to handle

the LLDP packets from the controller. An action list is added to each of the

Packet_Out messages to inform the OF switch about forwarding the packets. The

action list contains the forwarding logic similar to the OFDPv2-A. The key

advantage of the OFDPv2-B is the minimum use of the OF switch memory.

However, OFDPv2-B has a disadvantage of increased size the of Packet_Out

messages due to the insertion of an action list for each switch. The experiments

results proven that OFDPv2-A and OFDPv2-B reduce 40% of the CPU overload and

control traffic overhead as compared to the de-facto standard such as OFDP.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE Communications Surveys & Tutorials

Table 4: A general description of state-of-the-art topology discovery

Classification Techniques SDN Features

Attack Entity Problem Addressed Future Work

SPHINX [88] SPHINX

controller

application

Incremental flow

graphs with

metadata

information

Host-based attack To detect suspicious

changes observe in network

topology and data plane

Sphinx will consider flow rule

aggregation, Proactive OpenFlow

environment, and Mixed networks in

the future.

TopoGuard [52] TopoGuard

application

Extension of OF

controller by

designing topology

update checker

Host-based attack,

Switch-based attack,

Controller-based

attack

Detection of network

topology poisoning attacks

Design a new security framework

which detects more vulnerabilities in

SDN

Authentication

of LLDP

packets [19]

Hash Message

Authentication

Code

Using HMAC inside

LLDP packet in

every topology

discovery round

Host-based attack Provides authentication and

packet integrity for LLDP

packets

Check the impact of the proposed

solution in another area rather than

routing.

OFDPv2 [119] OpenFlow

discovery

protocol

Modify de-facto

standard of

topology discovery,

i.e. OFDP

Controller-based

attack

Reduce the control messages

used to identify the links

between switches

The discovery of hosts in SDN

network

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

5.4 Miscellaneous Threats

With a successful topology poisoning attack, the chance for other security threats

also increase. The threats such as man-in-the-middle, denial of service, identity

spoofing, and repudiation are explained in the subsequent sections and their side

effects on the topology discovery are presented in Table 5.

5.4.1 Man-in-the-middle

The man-in-the-middle attack is performed in SDN in various ways [120]. One of

which is to inject a fake link in the network topology. The attacker eavesdrop the

traffic from source to destination by using a false update by the controller. The fake

link may force the controller to divert traffic to the attacker. It might affect the

confidentiality as well as the integrity of the network traffic passing through the

fake link created between the OF switches.

To mitigate the man-in-the-middle attack in SDN a proposed solution [52] is

presented. The proposed solution used device types such as (switch or host) to detect

the spoofed LLDP packet, i.e., generated from the host rather than switches.

Usually, no host participates in the legitimate LLDP propagation process. The

LLDP packets traverse between the switches to determine a link between each

other. The proposed solution determines whether the LLDP packet is generated

from the host. In that case, the packet is considered as spoofed and further

propagation of the packet in the network is stopped. The host devices are easily

detected through the normal network traffic such as the TCP and the UDP. Once

the device type is detected as a host, then any information regarding its topology

update will not be considered as legitimate. Thus, the solution effectively prevents

the man-in-the-middle attack at its early stage by finding the malicious host in

SDN.

5.4.2 Denial of service

The controller uses the spanning tree algorithm to remove redundant ports after

each topology update. However, an attacker can use the same feature to shut down

the normal OF switch ports after injecting the fake links in the topology. This

causes burden on the other links connected to the target OF switch and results in a

DoS attack [24]. A legitimate link can be removed by sending a fake LLDP packet

by the attacker to the OF switch having lower DPID. The attacker announces a link

with a target switch as well. However, if the DPID of the selected OF switch by the

attacker is lower than the target switch connected with another switch, then the

port of the target switch connected to another switch is removed. This causes

overhead on the selected OF switch which can cause a DoS attack due to an

increase in the workload in the network traffic. The availability of the OF switch is

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

affected through due to numerous flow rules in the flow table generated through as

a result of a DoS attack.

The literature has various solutions to mitigate the DoS attacks in SDN. In [48],

a connection migration tool is proposed to reduce data-control plane interaction

that detects dynamic flow changes in the network traffic. In [70], a seamless

primary controller backup is proposed to defend the centralized network operating

system from failure. Another DoS prevention mechanism is proposed in [121], which

uses proactive flow rules to preserve network policy enforcement. It uses packet

migration mechanism to defend the controller from overloading its memory due to

numerous Packet_In messages. However, the solution fails to find the real source of

the attack.

5.4.3 Identity spoofing

When a malicious host injects spoofed LLDP packets, the controller updates the

false information in the host profile system. The controller thinks that the host has

changed its position and the information is sent to its new position from where the

LLDP is received, i.e., a malicious host. The target host remains at its position

however; the malicious host pretends to be a legitimate (target) host. The controller

passes the information to the malicious host hence, affecting the confidentiality and

integrity of the data by modifying it and forwarding it to further destinations.

To overwhelm the spoofed identity problem in SDN, a work in [52] proposes a

solution based on the pre-condition and post-condition of the host migration. In the

pre-condition, once the host migrates from its position, it has to inform SDN

controller about its previous port_shutdown. In the post-condition, the controller

confirms that host is not reachable by sending ping messages to its previous

location. Thus, the controller can effectively track the real location of the host and

can determine the spoofed identity of the malicious host.

5.4.4 Repudiation

The lack of a proper authentication mechanism of LLDP packet in the controller

may cause repudiation attacks. The repudiation attacker creates a fake link

through injected spoofed LLDP packet and then denies it to generate by him. The

attacker inserts the spoofed DPID and Port ID of the victim OF switch and forwards

the packet to the controller by showing it has been come from another OF switch.

The spoofed LLDP packet loses its confidentiality and integrity by modifying its

original value in the packet field.

The work presented in [88] builds an updated flow graph based on metadata of

the Packet_In and FEATURES_REPLY messages to detect the fake links generated

through spoofed LLDP packets. The MAC-IP binding mechanism of the proposed

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

solution is built by using the policy language engine that assists the controller to

detect the fake links upon observing the deviation from the bindings.

Table 5: A side effect of threats on topology discovery

Threats Possible Reason Affect Confidentiality Integrity Availability

Man-in-the-middle Injected fake link Change the shortest path Yes Yes No

Denial of services Removing legitimate link Increase a workload No No Yes

Identity spoofing Spoofing host identity Illegal information

exploitation

Yes Yes No

Repudiation Spoofed LLDP packet Hiding the attacker

identity

Yes Yes No

6 Future Challenges and Directions
In this section, future research challenges and directions of topology discovery in

SDN are presented. The research on topology discovery is still at its early stages.

Therefore, ample opportunities exist for future work to mitigate the challenges in

topology discovery. The following future directions will help academicians,

industrialists, SDN vendors, and network specialists to explore novel solutions in

making the topology discovery secure and sustainable in the SDN. The descriptions

with possible solutions for each future direction are given in Table 6.

6.1 Multiple SDN Domains

Practically, the SDNs are created by the network operators in the enterprise

according to their network requirements. Mostly, the enterprise have different

domains which are controlled by each controller resulting in a multiple SDN

domains environments. However, small-scale data center network may require a

single SDN domain while a large-scale data center network (carrier networks) may

require several SDN domains that are controlled by the logically centralized

controller. The division of SDN domains varies on the requirements that includes

physical locations, traffic monitoring, load balancing, and various others.

However, interconnecting multiple SDN domains and sharing the network

topology updates in the topology discovery can be a very challenging task. These

interconnections require a standard protocol to efficiently share and secure the

control information between the SDN devices. Moreover, the standard protocol must

be able to consider various important aspects of the topology discovery including for

instance a) how the network topologies in various SDN domains are connected, b)

how one controller communicates with its neighbor controller, c) what will be the

form of information format to share among the controllers, d) how to get the

controller addresses, and e) which policies and procedures have to be adopted for

the communication. The work presented in [23] proposed AutoSlice virtualized layer

for the SDN architecture to separate multiple SDN domains on the shared network

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

physical resources. This could enable efficient sharing of topology discovery

information among the controllers placed in multiple SDN domains.

6.2 Topology Discovery through OF switches

Currently, the topology discovery function is executed by the controller and the

SDN infrastructure is a single point of failure. The applications in these topologies

can be affected by the malicious attacks on the controller. One way to overwhelm

this issue is to shift the responsibility of a topology discovery to the OF switches.

This reduces the liability on the controller and protects the topology discovery

function at the time the controller is attacked. The OF switches can send the LLDP

packets to their ports after a specified time interval to determine the links between

their neighbor OF switches. The LLDP packet should contain the switch ID and an

output port number to identify the origin of the LLDP packet. The OF switch should

update the controller on every new link detected to inform the controller for the

latest updates. Therefore, the topology discovery cost will be independent of the

number of controllers in the SDN. However, discovering a network topology for each

controller domain is costly in terms of the LLDP messages used in communication

between controllers and the OF switches, network bandwidth consumption, and the

time overhead.

The above complications can be minimized through the dependable and simpler

topology discovery mechanisms in SDN. For instance, the use of the OF switch-

based topology discovery can decrease the controller cost linearly because a single

discovery mechanism will work for all the controllers in the network. Moreover, the

OF switches can increase the priority values for the LLDP packets in the flow tables

to transfer the packets on time even in the heavily loaded network links. This will

assist the controller to have more consideration towards the other core

functionalities.

6.3 Identification of fake links

The injection of a fake link in the network topology will critically damage the

controller visibility and affect the network services to produce false results. To

determine whether the link is fake or legitimate, the controller has to be intelligent

enough to decide the legitimacy of the link in network topology within a specified

time. However, currently, a proper mechanism is lacking essential features to

distinguish between legitimate and fake links.

A potential solution to this issue is to access the history information generated

by the OF switch to identify any involvement of a malicious activity. Another

solution is to check the traffic flow on the newly inserted link as most of the fake

links are created to overload the resources i.e., OF switches by flooding the link

with packets. Also, selecting the optimal feature of the network traffic plays a vital

part in the detection of a fake link. Therefore, utilizing a machine learning

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

technique can make the management of the topology discovery more secure with

minimum risks.

6.4 Frequent migration

Mostly, in medium and large data center networks, the SDN architecture is

implemented for different purposes. The topology discovery is more sophisticated in

these data center networks due to the frequent migration of the virtual instances in

a virtualized network environment for numerous cloud users [71, 122]. This

overloads the controller which requires to frequently update the network instances

in order to have a clear and fair network visibility of the network. This opens the

opportunity for the malicious node to connect with other network nodes and create

fake links.

An intelligent mechanism based on statistical probability is required to track the

network nodes behavior to assist in determining the malicious activities that affect

the topology discovery mechanism. One way is to use the entropy measurement

technique to determine the uncertainty in SDN after the attack [24]. For instance,

the attacker injects the fake links in the network which creates uncertainty in the

network due to incorrect network topology. The entropy can be used to determine

the locations where the fake links are inserted by calculating the uncertainty in the

network. It can support forensics mechanism in reaching the real source of the

attack [74, 123]. As a result, the topology discovery will be performed efficiently by

focusing on the visibility rather than the security parameters.

6.5 Topology discovery information safety

The internal state information of the controller is recorded in the Network

Information Base (NIB). The NIB is a separate module in the controller that stores

the critical states of the controller. These states can be used to regenerate the

events at a specific time as required. Similarly, the topology discovery information

is saved in the NIB module of the controller. Nowadays, the controller has become a

key focus of attacks due to its core management functions and logically centralized

control. The controller can be attacked through various channels to produce a false

output. The decision of the malicious controller cannot be trusted and can lead to an

incorrect decision. Similarly, during the attack on the controller, the NIB states can

be affected, which might destroy the topology states stored in the NIB. As a result,

the controller in the next iteration of the topology discovery updates its record

without having the information from the previous topology discovery iteration. This

may cause the controller to update with the malicious information injected by the

attacker after exploiting the records of topology discovery state in the NIB.

To circumvent the aforementioned issue, a controller should forward a copy of its

topology discovery states to its neighbor controller. The neighbor controller can re-

generate the topology discovery states whenever the topology discovery states are

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

affected by an attack. Alternatively, having a strong authentication mechanism will

prevent the attackers from exploiting the core management modules of the

controller. The work presented in [54] proposed an extendable control plane, i.e.,

DISCO in order to deliver end-to-end network services using a distributed controller

environment. It enables highly manageable control channels for sharing aggregated

network information among the controllers. Thus, it can traverse topology discovery

information among the controllers in controlled environment.

6.6 Controller upgrade

The controller must be periodically upgraded by adding features, fixing bugs to

improve its performance. This is important due to frequent change in the network

infrastructure in the dynamic virtualized environment. Currently, the SDN lacks

the effective techniques to assist the controller in upgrading without affecting the

current operation of the network. In existing controller up gradation techniques, the

controller is restarted or the old states of the controller are recorded and then

replayed in the upgraded controller to recover its previous states. Similarly, the

situation is same for the topology discovery states. Upon upgrading the controller

for its new assignments, the previous topology discovery states are lost. This incurs

overhead of re-executing the topology discovery right from the start to acquire the

network visibility of the network.

One of the possible solutions is to save the topology discovery state in the

neighbor controller [15]. After the controller is upgraded, the operation of the

topology discovery is resumed from the last recorded status. However, when the

network topology changes during the upgrades, the records will be inadequate in

the respective topology. To minimize this issue, the controller should be upgraded at

the time when the chance for the topological change in the network is minimum.

Table 6: A description of future challenges and directions of topology discovery with its possible solutions

Future Directions Description Possible Solutions

Multiple SDN domain
The SDN controllers controlling different domains create

complication in sharing topology discovery information

— Standard protocol

Topology discovery

through OF switches

Reduce less burden on the controller due to topology

discovery

— Use OF switches for Topology

discovery

Identification of fake links To know about the status of the link
— Check OF switch history record

— Verify traffic flow on the link

Frequent migration
Topology discovery mechanism becomes sophisticated due

to frequent migration of instances

— Statistical probability

— Entropy measurement

Safety of topology

discovery information

The topology discovery states can be exploited by the

attackers

— Strong authentication mechanism

— Redundant topology discovery states

Upgradation of the

controller

The topology discovery should be consistent at the time of

the controller up gradation
— Redundant topology discovery states

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

7 Conclusion
The network visibility at the logically centralized controller is a unique

characteristic of SDN. Despite the network visibility of the controller, network

topologies are poisoned by attackers through the exploitation of vulnerabilities

found in the controller functions. This can happen due to lack of security measures

in the design of SDN. A substantial work is in development to build a secure and

sustainable method to discover the network topologies by the SDN controller.

However, research on the area of topology discovery security is still in its early

stages. Efficient secure topology discovery mechanisms remain a distant goal for

SDN in the future.

To meet the network visibility requirements, this work presented a

comprehensive outline of the topology discovery and its implications towards a

secure SDN. We explained the SDN layered architecture by discussing the security

threats in each of the planes. In addition, we devised a thematic taxonomy of the

topology discovery by reporting the discovery entities, controller platforms,

topology-dependent services, and objectives. Comprehensive information is provided

related to topology discovery threats by classifying them into four main categories

including attack entities, current solutions, and miscellaneous threats.

Distinguished features of the current solutions have been explained along with

their working mechanisms. Attack entities used to perform topological attacks are

highlighted and discussed. Moreover, vulnerabilities found in the controller

functions that can be exploited in poisoning the network are explained. Various

types of topology poisoning attacks are presented which we believe may open

ventures for further research in this field.

Acknowledgement
This work is fully funded by Bright Spark Unit, University of Malaya, Malaysia and

partially funded by Malaysian Ministry of Higher Education under the University

of Malaya High Impact Research Grant UM.C/625/1/HIR/MOE/FCSIT/03 and

RP012C-13AFR. The authors also extend their sincere appreciations to the

Deanship of Scientific Research at King Saud University for funding this Prolific

Research Group (PRG-1436-16).

References

[1] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, et al., "NOX:

towards an operating system for networks," ACM SIGCOMM Computer

Communication Review, vol. 38, pp. 105-110, 2008.

[2] L. Vanbever, J. Reich, T. Benson, N. Foster, and J. Rexford, "HotSwap: correct and

efficient controller upgrades for software-defined networks," in Proceedings of the

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

second ACM SIGCOMM workshop on Hot topics in software defined networking,

2013, pp. 133-138.

[3] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, "On scalability of software-defined

networking," Communications magazine, IEEE, vol. 51, pp. 136-141, 2013.

[4] F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska, "Efficient topology discovery in

OpenFlow-based Software Defined Networks," Computer Communications, 2015.

[5] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and G. Wang, "Meridian: an

SDN platform for cloud network services," Communications Magazine, IEEE, vol.

51, pp. 120-127, 2013.

[6] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, "Composing software

defined networks," in Presented as part of the 10th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 13), 2013, pp. 1-13.

[7] S. Sezer, S. Scott-Hayward, P.-K. Chouhan, B. Fraser, D. Lake, J. Finnegan, et al.,

"Are we ready for SDN? Implementation challenges for software-defined networks,"

Communications Magazine, IEEE, vol. 51, pp. 36-43, 2013.

[8] D. Kreutz, F. Ramos, and P. Verissimo, "Towards secure and dependable software-

defined networks," in Proceedings of the second ACM SIGCOMM workshop on Hot

topics in software defined networking, 2013, pp. 55-60.

[9] S. A. Mehdi, J. Khalid, and S. A. Khayam, "Revisiting traffic anomaly detection

using software defined networking," in Recent Advances in Intrusion Detection, 2011,

pp. 161-180.

[10] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and M. Tyson, "FRESCO:

Modular Composable Security Services for Software-Defined Networks," in NDSS,

2013.

[11] S. Shin and G. Gu, "Attacking software-defined networks: A first feasibility study,"

in Proceedings of the second ACM SIGCOMM workshop on Hot topics in software

defined networking, 2013, pp. 165-166.

[12] S. Lim, J.-I. Ha, H. Kim, Y. Kim, and S. Yang, "A SDN-oriented DDoS blocking

scheme for botnet-based attacks," in Ubiquitous and Future Networks (ICUFN),

2014 Sixth International Conf on, 2014, pp. 63-68.

[13] Q. Yan and F. Yu, "Distributed denial of service attacks in software-defined

networking with cloud computing," Communications Magazine, IEEE, vol. 53, pp.

52-59, 2015.

[14] A. Akhunzada, A. Gani, N. B. Anuar, A. Abdelaziz, M. K. Khan, A. Hayat, et al.,

"Secure and dependable software defined networks," Journal of Network and

Computer Applications, 2015.

[15] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, "Survey on Network

Virtualization Hypervisors for Software Defined Networking," IEEE

Communications Surveys & Tutorials, vol. 18, pp. 655-685, 2016.

[16] Z. Shu, J. Wan, D. Li, J. Lin, A. V. Vasilakos, and M. Imran, "Security in Software-

Defined Networking: Threats and Countermeasures," Mobile Networks and

Applications, pp. 1-13.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

[17] S. Lee, C. Yoon, and S. Shin, "The Smaller, the Shrewder: A Simple Malicious

Application Can Kill an Entire SDN Environment," in Proceedings of the 2016 ACM

International Workshop on Security in Software Defined Networks & Network

Function Virtualization, 2016, pp. 23-28.

[18] A. K. Saha, K. Sambyo, and C. Bhunia, "Topology Discovery, Loop Finding and

Alternative Path Solution in POX Controller," in Proceedings of the International

MultiConference of Engineers and Computer Scientists, 2016.

[19] T. Alharbi, M. Portmann, and F. Pakzad, "The (In) Security of Topology Discovery in

Software Defined Networks," in Local Computer Networks (LCN), 2015 IEEE 40th

Conference on, 2015, pp. 502-505.

[20] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, "A Survey on Software-Defined

Networking," IEEE Communications Surveys & Tutorials, vol. 17, pp. 27-51, 2015.

[21] D. F. Macedo, D. Guedes, L. F. M. Vieira, M. A. M. Vieira, and M. Nogueira,

"Programmable Networks—From Software-Defined Radio to Software-

Defined Networking," IEEE Communications Surveys & Tutorials, vol. 17, pp. 1102-

1125, 2015.

[22] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, "Security in Software Defined

Networks: A Survey," IEEE Communications Surveys & Tutorials, vol. 17, pp. 2317-

2346, 2015.

[23] S. Scott-Hayward, S. Natarajan, and S. Sezer, "A Survey of Security in Software

Defined Networks," IEEE Communications Surveys & Tutorials, vol. 18, pp. 623-

654, 2016.

[24] Q. Yan, F. R. Yu, Q. Gong, and J. Li, "Software-Defined Networking (SDN) and

Distributed Denial of Service (DDoS) Attacks in Cloud Computing Environments: A

Survey, Some Research Issues, and Challenges," IEEE Communications Surveys &

Tutorials, vol. 18, pp. 602-622, 2016.

[25] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, "A survey of

software-defined networking: Past, present, and future of programmable networks,"

Communications Surveys & Tutorials, IEEE, vol. 16, pp. 1617-1634, 2014.

[26] J. W. Stewart III, BGP4: inter-domain routing in the Internet: Addison-Wesley

Longman Publishing Co., Inc., 1998.

[27] J. T. Moy, OSPF: anatomy of an Internet routing protocol: Addison-Wesley

Professional, 1998.

[28] D. Kreutz, F. M. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S.

Azodolmolky, and S. Uhlig, "Software-defined networking: A comprehensive survey,"

Proceedings of the IEEE, vol. 103, pp. 14-76, 2015.

[29] K. Suleman, G. Abdullah, W. A. W. Ainuddin, A. Ahmed, and A. B. Mustapha,

"FML: A novel Forensics Management Layer for Software Defined Networks,"

presented at the 6th International Conference on Cloud System and Big data

Engineering, Confluence-2016, 14-15 Jan, 2016, Amity University, , Noida, UP

India, 2016.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

[30] B. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, "A survey of

software-defined networking: Past, present, and future of programmable networks,"

Communications Surveys & Tutorials, IEEE, vol. 16, pp. 1617-1634, 2014.

[31] S. Civanlar, E. Lokman, B. Kaytaz, and A. Murat Tekalp, "Distributed management

of service-enabled flow-paths across multiple SDN domains," in Networks and

Communications (EuCNC), 2015 European Conference on, 2015, pp. 360-364.

[32] L. Cui, F. R. Yu, and Q. Yan, "When big data meets software-defined networking:

SDN for big data and big data for SDN," Network, IEEE, vol. 30, pp. 58-65, 2016.

[33] T. Zou, H. Xie, and H. Yin, "Supporting software defined networking with

application layer traffic optimization," ed: Google Patents, 2013.

[34] C.-J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang, "NICE: Network intrusion

detection and countermeasure selection in virtual network systems," Dependable

and Secure Computing, IEEE Transactions on, vol. 10, pp. 198-211, 2013.

[35] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, "Payless: A low cost

network monitoring framework for software defined networks," in Network

Operations and Management Symposium (NOMS), 2014 IEEE, 2014, pp. 1-9.

[36] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, "FLOWGUARD: building robust firewalls

for software-defined networks," in Proceedings of the third workshop on Hot topics in

software defined networking, 2014, pp. 97-102.

[37] L. E. Li, Z. M. Mao, and J. Rexford, "Toward software-defined cellular networks," in

Software Defined Networking (EWSDN), 2012 European Workshop on, 2012, pp. 7-

12.

[38] Y. Jarraya, T. Madi, and M. Debbabi, "A survey and a layered taxonomy of software-

defined networking," Communications Surveys & Tutorials, IEEE, vol. 16, pp. 1955-

1980, 2014.

[39] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan, "Flow-level state

transition as a new switch primitive for SDN," in Proceedings of the third workshop

on Hot topics in software defined networking, 2014, pp. 61-66.

[40] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, "A roadmap for traffic

engineering in SDN-OpenFlow networks," Computer Networks, vol. 71, pp. 1-30,

2014.

[41] N. Feamster, J. Rexford, and E. Zegura, "The road to SDN: an intellectual history of

programmable networks," ACM SIGCOMM Computer Communication Review, vol.

44, pp. 87-98, 2014.

[42] W. Zhou, L. Li, M. Luo, and W. Chou, "REST API design patterns for SDN

northbound API," in Advanced Information Networking and Applications Workshops

(WAINA), 2014 28th International Conference on, 2014, pp. 358-365.

[43] P. Sharma, S. Banerjee, S. Tandel, R. Aguiar, R. Amorim, and D. Pinheiro,

"Enhancing network management frameworks with SDN-like control," in Integrated

Network Management (IM 2013), 2013 IFIP/IEEE International Symposium on,

2013, pp. 688-691.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

[44] A. Hakiri, A. Gokhale, P. Berthou, D. C. Schmidt, and T. Gayraud, "Software-defined

networking: Challenges and research opportunities for future internet," Computer

Networks, vol. 75, pp. 453-471, 2014.

[45] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, "Towards an elastic

distributed SDN controller," ACM SIGCOMM Computer Communication Review,

vol. 43, pp. 7-12, 2013.

[46] A. Kamisiński and C. Fung, "FlowMon: Detecting Malicious Switches in Software-

Defined Networks," in Proceedings of the 2015 Workshop on Automated Decision

Making for Active Cyber Defense, 2015, pp. 39-45.

[47] M. Antikainen, T. Aura, and M. Särelä, "Spook in Your Network: Attacking an SDN

with a Compromised OpenFlow Switch," in Secure IT Systems, ed: Springer, 2014,

pp. 229-244.

[48] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, "Avant-guard: Scalable and vigilant

switch flow management in software-defined networks," in Proceedings of the 2013

ACM SIGSAC conference on Computer & communications security, 2013, pp. 413-

424.

[49] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood, "On

Controller Performance in Software-Defined Networks," Hot-ICE, vol. 12, pp. 1-6,

2012.

[50] D. Syrivelis, G. Parisis, D. Trossen, P. Flegkas, V. Sourlas, T. Korakis, et al.,

"Pursuing a software defined information-centric network," in Software Defined

Networking (EWSDN), 2012 European Workshop on, 2012, pp. 103-108.

[51] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takács, and P. Sköldström, "Scalable

fault management for OpenFlow," in Communications (ICC), 2012 IEEE

International Conference on, 2012, pp. 6606-6610.

[52] S. Hong, L. Xu, H. Wang, and G. Gu, "Poisoning Network Visibility in Software-

Defined Networks: New Attacks and Countermeasures," in NDSS, 2015.

[53] F. Klaedtke, G. O. Karame, R. Bifulco, and H. Cui, "Towards an access control

scheme for accessing flows in SDN," in Network Softwarization (NetSoft), 2015 1st

IEEE Conference on, 2015, pp. 1-6.

[54] K. Phemius, M. Bouet, and J. Leguay, "Disco: Distributed multi-domain sdn

controllers," in Network Operations and Management Symposium (NOMS), 2014

IEEE, 2014, pp. 1-4.

[55] H. Li, P. Li, S. Guo, and A. Nayak, "Byzantine-resilient secure software-defined

networks with multiple controllers in cloud," Cloud Computing, IEEE Transactions

on, vol. 2, pp. 436-447, 2014.

[56] W. Braun and M. Menth, "Software-Defined Networking using OpenFlow: Protocols,

applications and architectural design choices," Future Internet, vol. 6, pp. 302-336,

2014.

[57] Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, and G. Noubir, "Application-

awareness in SDN," in ACM SIGCOMM Computer Communication Review, 2013,

pp. 487-488.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

[58] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, "Sdn-based

application-aware networking on the example of youtube video streaming," in

Software Defined Networks (EWSDN), 2013 Second European Workshop on, 2013,

pp. 87-92.

[59] S. Scott-Hayward, G. O'Callaghan, and S. Sezer, "SDN security: A survey," in Future

Networks and Services (SDN4FNS), 2013 IEEE SDN For, 2013, pp. 1-7.

[60] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, "Research challenges for

traffic engineering in software defined networks," IEEE Network, vol. 30, pp. 52-58,

2016.

[61] H. Saini, Y. S. Rao, and T. Panda, "Cyber-crimes and their impacts: A review,"

International Journal of Engineering Research and Applications, vol. 2, pp. 202-209,

2012.

[62] D. Drutskoy, E. Keller, and J. Rexford, "Scalable network virtualization in software-

defined networks," Internet Computing, IEEE, vol. 17, pp. 20-27, 2013.

[63] Z. Hu, M. Wang, X. Yan, Y. Yin, and Z. Luo, "A comprehensive security architecture

for SDN," in Intelligence in Next Generation Networks (ICIN), 2015 18th

International Conference on, 2015, pp. 30-37.

[64] T. D. Nadeau and K. Gray, SDN: software defined networks: " O'Reilly Media, Inc.",

2013.

[65] M. Monaco, O. Michel, and E. Keller, "Applying operating system principles to SDN

controller design," in Proceedings of the Twelfth ACM Workshop on Hot Topics in

Networks, 2013, p. 2.

[66] J. M. Dover, "A denial of service attack against the Open Floodlight SDN controller,"

ed: Dover Networks LCC, 2013.

[67] H. Wang, L. Xu, and G. Gu, "Of-guard: A dos attack prevention extension in

software-defined networks," The Open Network Summit (ONS), 2014.

[68] S. Cho, S. Chung, W. Lee, I. Joe, J. Park, S. Lee, et al., "An Software Defined

Networking Architecture Design Based on Topic Learning-Enabled Data

Distribution Service Middleware," Advanced Science Letters, vol. 21, pp. 461-464,

2015.

[69] C. Dixon, D. Olshefski, V. Jain, C. Decusatis, W. Felter, J. Carter, et al., "Software

defined networking to support the software defined environment," IBM Journal of

Research and Development, vol. 58, pp. 3: 1-3: 14, 2014.

[70] P. Fonseca, R. Bennesby, E. Mota, and A. Passito, "A replication component for

resilient OpenFlow-based networking," in Network Operations and Management

Symposium (NOMS), 2012 IEEE, 2012, pp. 933-939.

[71] H. Qi, M. Shiraz, A. Gani, M. Whaiduzzaman, and S. Khan, "Sierpinski triangle

based data center architecture in cloud computing," The Journal of Supercomputing,

vol. 69, pp. 887-907, 2014.

[72] S. Khan, M. Shiraz, A. W. Abdul Wahab, A. Gani, Q. Han, and Z. Bin Abdul

Rahman, "A comprehensive review on adaptability of network forensics frameworks

for mobile cloud computing," The Scientific World Journal, vol. 2014, 2014.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

[73] S. Khan, A. Gani, A. W. A. Wahab, M. Shiraz, and I. Ahmad, "Network forensics:

Review, taxonomy, and open challenges," Journal of Network and Computer

Applications, vol. 66, pp. 214-235, 2016.

[74] S. Khan, E. Ahmad, M. Shiraz, A. Gani, A. W. A. Wahab, and M. A. Bagiwa,

"Forensic challenges in mobile cloud computing," in Computer, Communications,

and Control Technology (I4CT), 2014 International Conference on, 2014, pp. 343-347.

[75] O. A. Mahdi, A. W. A. Wahab, M. Y. I. Idris, A. A. Znaid, Y. R. B. Al-Mayouf, and S.

Khan, "WDARS: A Weighted Data Aggregation Routing Strategy with Minimum

Link Cost in Event-Driven WSNs."

[76] B. A. Thomas, N. Idris, A. Al-Hnaiyyan, R. Binti Mahmud, A. Abdelaziz, S. Khan, et

al., "Towards Knowledge Modeling and Manipulation Technologies: A Survey,"

International Journal of Information Management, 2016.

[77] C. Röpke and T. Holz, "SDN Rootkits: Subverting Network Operating Systems of

Software-Defined Networks," in Research in Attacks, Intrusions, and Defenses, ed:

Springer, 2015, pp. 339-356.

[78] D. He, S. Chan, and M. Guizani, "Securing software defined wireless networks,"

Communications Magazine, IEEE, vol. 54, pp. 20-25, 2016.

[79] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, "Enabling Practical Software-

defined Networking Security Applications with OFX," 2016.

[80] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, "Veriflow: Verifying

network-wide invariants in real time," in Presented as part of the 10th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 13), 2013, pp.

15-27.

[81] M. Furukawa, K. Kuroda, T. Ogawa, and N. Miyaho, "Highly secure communication

service architecture using SDN switch," in Information and Telecommunication

Technologies (APSITT), 2015 10th Asia-Pacific Symposium on, 2015, pp. 1-3.

[82] A. Martin, "Dynamic filtering for sdn api calls across a security boundary," ed:

Google Patents, 2014.

[83] H.-z. WANG, P. ZHANG, L. XIONG, X. LIU, and C.-c. HU, "A secure and high-

performance multi-controller architecture for software defined networks," Frontiers,

vol. 1.

[84] S. Shenker, M. Casado, T. Koponen, and N. McKeown, "The future of networking,

and the past of protocols," Open Networking Summit, vol. 20, 2011.

[85] V. Kotronis, X. Dimitropoulos, and B. Ager, "Outsourcing the routing control logic:

Better Internet routing based on SDN principles," in Proceedings of the 11th ACM

Workshop on Hot Topics in Networks, 2012, pp. 55-60.

[86] C. Staff, "A purpose-built global network: Google's move to SDN," Communications

of the ACM, vol. 59, pp. 46-54, 2016.

[87] A. Zaalouk, R. Khondoker, R. Marx, and K. Bayarou, "OrchSec: An orchestrator-

based architecture for enhancing network-security using Network Monitoring and

SDN Control functions," in Network Operations and Management Symposium

(NOMS), 2014 IEEE, 2014, pp. 1-9.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

[88] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, "SPHINX: Detecting Security

Attacks in Software-Defined Networks," in NDSS, 2015.

[89] S. Hwang and K. Kim, "Middlebox Driven Security Threats in Software Defined

Network."

[90] S. Jajodia, S. Noel, and B. O’Berry, "Topological analysis of network attack

vulnerability," in Managing Cyber Threats, ed: Springer, 2005, pp. 247-266.

[91] V. N. Padmanabhan and D. R. Simon, "Secure traceroute to detect faulty or

malicious routing," ACM SIGCOMM Computer Communication Review, vol. 33, pp.

77-82, 2003.

[92] D. Pei, D. Massey, and L. Zhang, "Detection of invalid routing announcements in rip

protocol," in Global Telecommunications Conference, 2003. GLOBECOM'03. IEEE,

2003, pp. 1450-1455.

[93] A. T. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage, "Detecting and isolating

malicious routers," Dependable and Secure Computing, IEEE Transactions on, vol. 3,

pp. 230-244, 2006.

[94] D. Katz, K. Kompella, and D. Yeung, "Traffic engineering (TE) extensions to OSPF

version 2," RFC 3630, September2003.

[95] J. Moy, P. Pillay-Esnault, and A. Lindem, "Graceful OSPF restart," RFC3623,

November, 2003.

[96] T. Clausen, P. Jacquet, C. Adjih, A. Laouiti, P. Minet, P. Muhlethaler, et al.,

"Optimized link state routing protocol (OLSR)," 2003.

[97] J. Choudhary, "Distributed BPDU processing for spanning tree protocols," ed:

Google Patents, 2010.

[98] A. Ornaghi and M. Valleri, "Man in the middle attacks," in Blackhat Conference

Europe, 2003.

[99] R. Kloti, V. Kotronis, and P. Smith, "OpenFlow: A security analysis," in Network

Protocols (ICNP), 2013 21st IEEE International Conference on, 2013, pp. 1-6.

[100] J. C. Mogul, A. AuYoung, S. Banerjee, L. Popa, J. Lee, J. Mudigonda, et al.,

"Corybantic: towards the modular composition of SDN control programs," in

Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks, 2013, p. 1.

[101] M. Aslan and A. Matrawy, "On the Impact of Network State Collection on the

Performance of SDN Applications," 2016.

[102] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, et

al., "OpenFlow: enabling innovation in campus networks," ACM SIGCOMM

Computer Communication Review, vol. 38, pp. 69-74, 2008.

[103] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai, et al., "Troubleshooting

blackbox SDN control software with minimal causal sequences," in ACM SIGCOMM

Computer Communication Review, 2014, pp. 395-406.

[104] P. Goncalves, A. Martins, D. Corujo, and R. Aguiar, "A fail-safe SDN bridging

platform for cloud networks," in Telecommunications Network Strategy and

Planning Symposium (Networks), 2014 16th International, 2014, pp. 1-6.

[105] J. Hollander, A Link Layer Discovery Protocol Fuzzer: Citeseer, 2007.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

[106] L. Ochoa Aday, C. Cervelló Pastor, and A. Fernández Fernández, "Current Trends of

Topology Discovery in OpenFlow-based Software Defined Networks," 2015.

[107] M. Karakus and A. Durresi, "A Scalable Inter-AS QoS Routing Architecture in

Software Defined Network (SDN)," in Advanced Information Networking and

Applications (AINA), 2015 IEEE 29th International Conference on, 2015, pp. 148-

154.

[108] F. Yu and V. Leung, "Mobility-based predictive call admission control and

bandwidth reservation in wireless cellular networks," Computer Networks, vol. 38,

pp. 577-589, 2002.

[109] M. Karimzadeh, L. Valtulina, and G. Karagiannis, "Applying sdn/openflow in

virtualized lte to support distributed mobility management (dmm)," 2014.

[110] S. Namal, I. Ahmad, A. Gurtov, and M. Ylianttila, "Sdn based inter-technology load

balancing leveraged by flow admission control," in Future Networks and Services

(SDN4FNS), 2013 IEEE SDN for, 2013, pp. 1-5.

[111] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, et al.,

"Flowvisor: A network virtualization layer," OpenFlow Switch Consortium, Tech.

Rep, pp. 1-13, 2009.

[112] W. You, K. Qian, X. He, Y. Qian, and L. Tao, "Towards security in virtualization of

SDN," in Proceedings of the International Conference on Computer Communications

and Networks Security, ser. ICCCNS, 2014.

[113] B. Heller, R. Sherwood, and N. McKeown, "The controller placement problem," in

Proceedings of the first workshop on Hot topics in software defined networks, 2012,

pp. 7-12.

[114] T. Nelson, A. D. Ferguson, M. J. Scheer, and S. Krishnamurthi, "Tierless

programming and reasoning for software-defined networks," in 11th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 14), 2014, pp.

519-531.

[115] A. Mayoral, R. Vilalta, R. Muñoz, R. Casellas, and R. Martinez, "Experimental

Seamless Virtual Machine Migration Using a SDN IT and Network Orchestrator,"

2015.

[116] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, et al., "ONOS:

towards an open, distributed SDN OS," in Proceedings of the third workshop on Hot

topics in software defined networking, 2014, pp. 1-6.

[117] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore, "OFLOPS: An open

framework for OpenFlow switch evaluation," in Passive and Active Measurement,

2012, pp. 85-95.

[118] K. Bakshi, "Considerations for software defined networking (SDN): Approaches and

use cases," in Aerospace Conference, 2013 IEEE, 2013, pp. 1-9.

[119] F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska, "Efficient topology discovery in

software defined networks," in Signal Processing and Communication Systems

(ICSPCS), 2014 8th International Conference on, 2014, pp. 1-8.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2597193, IEEE
Communications Surveys & Tutorials

[120] S. Namal, I. Ahmad, A. Gurtov, and M. Ylianttila, "Enabling secure mobility with

openflow," in Future Networks and Services (SDN4FNS), 2013 IEEE SDN for, 2013,

pp. 1-5.

[121] H. Wang, L. Xu, and G. Gu, "FloodGuard: a dos attack prevention extension in

software-defined networks," in Dependable Systems and Networks (DSN), 2015 45th

Annual IEEE/IFIP International Conference on, 2015, pp. 239-250.

[122] A. Gani, G. M. Nayeem, M. Shiraz, M. Sookhak, M. Whaiduzzaman, and S. Khan, "A

review on interworking and mobility techniques for seamless connectivity in mobile

cloud computing," Journal of Network and Computer Applications, vol. 43, pp. 84-

102, 2014.

[123] S. Khan, A. Gani, A. W. A. Wahab, and M. A. Bagiwa, "SIDNFF: Source

identification network forensics framework for cloud computing," in Consumer

Electronics-Taiwan (ICCE-TW), 2015 IEEE International Conference on, 2015, pp.

418-419.

