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Abstract—In recent years, IT service providers have rapidly achieved
an automated service delivery model. Software monitoring systems are
designed to actively collect and signal event occurrences and, when
necessary, automatically generate incident tickets. Repeating events
generate similar tickets, which in turn have a vast number of repeated
problem resolutions likely to be found in earlier tickets.

In our work, we develop techniques to recommend appropriate
resolution for incoming events by making use of similarities between
the events and historical resolutions of similar events. Built on the
traditional K Nearest Neighbor algorithm, our proposed algorithms take
into account false positives often generated by monitoring systems.
An additional penalty is incorporated into the algorithms to control
the number of misleading resolutions in the recommendation results.
Moreover, as the effectiveness of the K Nearest Neighbor algorithm
heavily relies on the underlying similarity measurement, we proposed
two other approaches to significantly improve our recommendation with
respect to resolution relevance. One approach uses topic-level features
to incorporate resolution information into the similarity measurement;
and the other uses metric learning to learn a more effective similarity
measure. Extensive empirical evaluations on three ticket data sets
demonstrate the effectiveness and efficiency of our proposed methods.

Index Terms—IT Service Management, Recommender System, K
nearest neighbor, Latent Dirichlet Allocation, Metric Learning

1 INTRODUCTION

The competitive business climate and the complexity of ser-
vice environments dictate the need for efficient and cost-
effective service delivery and support. They are largely
achieved through service-providing facilities that collaborate
with system management tools, combined with automation of
routine maintenance procedures, such as problem detection,
determination and resolution for the service infrastructure [1],
[2], [3], [4], [5]. Automatic problem detection is typically
realized by system monitoring software, such as IBM Tivoli
Monitoring [6] and HP OpenView [7]. Monitoring continu-
ously captures the events and generates incident tickets when
alerts are raised. Deployment of monitoring solutions is a first
step towards fully automated delivery of a service. Automated
problem resolution, however, is a hard problem.
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With the development of e-commerce, a substantial amount
of research has been devoted to recommendation systems.
These recommendation systems determine items or products
to be recommended based on prior behavior of the user or
similar users and on the item itself. An increasing number of
user interactions has provided these applications with a huge
volume of historical information that can be converted into
practical knowledge. In this paper, we apply a similar approach
and develop a method that finds a resolution for an event by
making use of similarities between the events and previous
resolutions of monitoring tickets. Most service providers keep
years’ worth of historical tickets with their resolutions. Each
event is stored as a database record that consists of several
related attributes (Table 1) with values describing the system
status at the time this event was generated. For example, a
CPU-related event usually contains the CPU utilization and
paging utilization information. If an event keeps occuring, it
is sent to the ticketing system and becomes one component
of tickets, the other component is the problem resolution.
The problem resolution of every ticket is stored as a textual
description of the steps taken by the system administrator to
resolve this problem, with resulting costs in human labor.

TABLE 1: Event Attribute Types

Type Example
Categorical OSTYPE, NODE, ALERTKEY,...
Numeric SEVERITY, LASTUPDATE, ...
Textual SUMMARY,...

TABLE 2: An sample monitoring ticket

SUMMARY The logical disk C: has a low amount of free space.
Percent available: 5 Threshold: 5

SEVERITY FIRSTOCCURRENCE LASTOCCURRENCE
2 2014-03-01 00:54:20 2014-03-01 00:54:20
RESOLUTION C drive was successfully cleared. It has now over than

ten percent of available space.
CAUSE ACTIONABLE LASTUPDATE
AUTOMATION Actionable 2014-04-28 15:00:12

The resolution is usually collected as free-form text and
describes steps taken to remediate the issue described in the
ticket. We analyzed historical monitoring tickets collected
from three different accounts managed by one of the large
service providers (an account is an aggregate of services that
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uses a common infrastructure). We noticed that there are
many repeating resolutions for monitoring tickets within an
account. It is natural to expect that if events are similar, then
their respective tickets probably have the same resolution.
Therefore, we can recommend a resolution for an incoming
ticket based on the event information and historical tickets.

A traditional KNN-based (K Nearest Neighbor) [8] ap-
proach using attribute-level features has been first applied
to provide resolution recommendations for incoming tickets
in service management. However, the traditional KNN-based
algorithm has one big drawback when applied to system
management.

In automated service management, the resolutions of false
tickets reveal unhelpful comments, such as, “this is a false
alarm,” “everything is fine” and “no problem found.” If a
false ticket’s resolution is recommended for a real ticket, the
system administrator might overlook the real system problem.
Note that in a large enterprise IT environment, overlooking
a real system problem may have serious consequences, such
as system crashes. However, the traditional KNN-based algo-
rithm has no mechanism to avoid such a case in the ticket
resolution recommendation task. To overcome the aforemen-
tioned drawback, we propose two approaches to eliminate
misleading resolutions. One takes a two-step strategy; the other
incorporates an additional penalty to minimize misleading
resolutions. Although the approaches have been successfully
used in practice, they still retain two major limitations:

• Representation of monitoring tickets: In the KNN-
based approach, attribute-based features are used to rep-
resent monitoring tickets. However, attribute-level feature
representation is not interpretable and often contains a
lot of noise. In practice, each monitoring ticket describes
an existing problem (e.g., low capacity, high CPU uti-
lization) in service and the associated ticket resolutions
should be highly relevant to the problems. Therefore,
it is better to use features semantically capturing such
problems, instead of attribute-level features, to represent
monitoring tickets.

• Similarity Measurement: The similarity measure only
considers the event component, and ignores the resolution
component. In addition, each feature is treated equally
when computing the similarity measure. However, the
resolutions often reveal their prevalence in historical tick-
ets and contain important information about the events,
which can be used to improve the recommendation
performance. Moreover, different features should have
different weights in computing the similarity measure as
they often play different roles in representing the tickets.

Therefore, we propose two additional approaches to address
the aforementioned limitations in recommending ticket resolu-
tions for service management. One adopts topic-level features
and incorporates resolutions’ information; the other utilizes
metric learning to gain a more accurate similarity measure-
ment. In summary, we make the following contributions:

• We analyze historical monitoring tickets from three pro-
duction accounts and observe that their resolutions are
recommendable for current monitoring tickets on the

basis of event information.
• We first apply traditional KNN algorithm for event ticket

resolution recommendation and extend it to two other
resolution recommendation algorithms capable of elimi-
nating misleading resolutions.

• We adopt a feature extraction approach capable of repre-
senting both the event and resolution information using
topic-level features obtained via the LDA model, and
we propose two recommendation algorithms to further
improve the similarity measurement.

• We conduct extensive experiments for our proposed al-
gorithms on real ticket datasets. Experimental results
demonstrate the effectiveness and efficiency of the pro-
posed approaches.

The traditional KNN-based recommendation methodology
is first proposed in our preliminary work [9] and its detail and
extended algorithms are fully discussed here. The rest of the
paper is organized as follows: Section 2 briefly introduces the
workflow of the infrastructure management of an automated
service and shares our observations on three sets of monitoring
tickets. In Section 3, we present resolution recommendation
algorithms for monitoring tickets. Section 4 and Section 5
more specifically illustrate the details on proposed algorithms
to remove misleading resolutions and improve underlying
similarity measurement between events. Section 6 discusses
some detailed implementation issues. In Section 7, we present
experimental studies on real monitoring tickets. Section 8 de-
scribes related work about service infrastructure management
and recommendation systems. Finally, Section 9 concludes our
paper and discusses our future work.

2 BACKGROUND
In this section, we first provide an overview of automated
service infrastructure monitoring with ticket generation and
resolution. Then we present our analysis on real ticket data
sets.

2.1 Automated Services Infrastructure Monitoring
and Event Tickets
The typical workflow of problem detection, determination and
resolution in services infrastructure management is prescribed
by the ITIL specification [10]. Problem detection is usually
provided by monitoring software, which computes metrics
for hardware and software performance at regular intervals.
The metrics are then matched against acceptable thresholds.
A violation induces an alert. If the violation persists beyond a
specified period, the monitor emits an event. Events from the
entire service infrastructure are accumulated in an enterprise
console that uses rule-, case- or knowledge-based engines to
analyze the monitoring events and decide whether to open an
incident ticket in the ticketing system. The incident tickets
created from the monitoring events are called monitoring
tickets. Additional tickets called manual tickets are created
upon customer request. The information accumulated in the
ticket is used by technical support for problem determination
and resolution. However, in this paper, we focus only on those
monitoring tickets generated by a service management system
(see Figure 1).
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Fig. 1: Service Management System

2.2 Repeated Resolutions of Monitoring Tickets
We analyzed ticket data from three different accounts managed
by IBM Global Services. Many ticket resolutions repeatedly
appear in the ticket database. For example, for a low disk
capacity ticket, usual resolutions mean deletion of temporal
files, backup data, or addition of a new disk.

TABLE 3: Data Summary

Data set Num. of Tickets Time Frame
account1 31,447 1 month
account2 37,482 4 months
account2 29,057 5 months
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Fig. 2: Numbers of Tickets and Distinct Resolutions

The collected ticket sets from the three accounts are denoted
by “account1,” “account2” and “account3,” respectively. Table
3 summarizes the three data sets. Figure 2 shows the numbers
of tickets and distinct resolutions and Figure 3 shows the
top repeated resolutions in “account1” denoted by “resolution
ID.” We observe that a single resolution can resolve multiple
monitoring tickets. In other words, multiple tickets share the
same resolutions.

3 RESOLUTION RECOMMENDATION
In this section, we first give the problem statement and an
overview for all algorithms, introduce the basic KNN-based
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Fig. 3: Number of monitoring tickets resolved by each reso-
lution denoted by “resolution ID” in account1

recommendation algorithm, and then present our improved
algorithms.

3.1 Problem Statement
Given an incoming ticket, the objective of the resolution
recommendation is to find k resolutions as close as possible
to the true one for some user-specified parameter k from the
historical tickets.

Each historical ticket has two components: 1) ticket event
and 2) ticket resolution. Each component has a few attributes
that can be type of categorical, numerical or textual. An
incoming ticket is one that has no resolution component.
Moreover, tickets are encoded as feature-level attributes in
which each ticket is considered as composition of attributes
and similarity between tickets are calculated as the sum of
attributes’ similarity according to equation 1, or topic-level
attributes in which each ticket is considered as the probability
distribution of topics extracted using the approach described
in Section 5.1.

3.2 The Overview of Proposed Algorithms
Figure 4 summarizes the differences between resolution rec-
ommendation algorithms. Six different algorithms are included
in the figure and are organized into two groups based on their
purposes:
• WKNN [11]: the basic weighted KNN algorithm using

attribute-level features.
• Proposed approaches aiming to remove misleading/false

resolutions:
– Division: the algorithm adopts a two-step approach

for recommendation: first classifying an incoming
event into a true or false ticket, then recommending
resolutions based on its class.

– Fusion: the algorithm incorporates an additional
penalty to minimize misleading resolutions.

• Proposed approaches aiming to improve underlying sim-
ilarity measurement used by WKNN:

– LDABaselineKNN: the algorithm uses topic-level
features obtained via Latent Dirichlet Allocation [12]
(LDA).
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– CombinedLDAKNN: the algorithm incorporates
both the event and resolution information with top-
level features.

– MLCombinedLDAKNN: the algorithm uses the sim-
ilarity measure obtained from metric learning (when
resolution categories are available).

Figure 4 clearly illustrates the differences among these rec-
ommendation methods. The details of the proposed algorithms
will be described in detail in Section 4.1, 4.2, 5.1, 5.2, and
5.3, respectively.

Fig. 4: Differences between proposed algorithms. For exam-
ple; “LDABaselineKNN” and “CombinedLDAKNN” both use
topic level features; however “LDABaselineKNN” searches
nearest neighbors based on similarity between e and e(ti),
the other adopts similarity between e and ti.

3.3 Basic KNN-based Recommendation

The recommendation problem is often related to that of
predicting the top k possible resolutions. A straightforward
approach is to apply the KNN algorithm, which searches the
K nearest neighbors of the given ticket (K is a predefined
parameter), and recommends the top k ≤ K representative
resolutions among them [13], [14]. The nearest neighbors are
indicated by similarities of the associated events of the tickets.
In this paper, the representativeness is measured by the number
of occurrences in the K neighbors.
Table 4 lists the notations used in this paper. Let D =
{t1, ..., tn} be the set of historical monitoring tickets and ti be
the i-th ticket in D, i = 1, ..., n. Given a monitoring ticket t,
the nearest neighbor of t is the ticket ti which maximizes
sim(e(t), e(ti)), ti ∈ D, where sim(·, ·) is a similarity
function for events. Each event consists of event attributes
with values. Let A(e) denote the set of attributes of event e.
The similarity for events is computed as the summation of the
similarities for all attributes. There are three types of event
attributes: categorical, numeric and textual (shown by Table

TABLE 4: Notations

Notation Description
D Set of historical tickets
| · | Size of a set
ti i-th monitoring ticket
r(ti) Resolution description of ti
e(ti) The associated event of ticket ti
c(ti) Type of ticket ti, c(ti) = 1 indicates ti is a real ticket,

c(ti) = 0 indicates ti is a false ticket.
A(e) Set of attributes of event e
sim(e1, e2) Similarity of events e1 and e2
sima(e1, e2) Similarity of a values of event e1 and e2
K Number of nearest neighbors in the KNN algorithm
k Number of recommended resolutions for a ticket, k ≤

K

1). Given an attribute a and two events e1 and e2, a ∈ A(e1)
and a ∈ A(e2), the values of a in e1 and e2 are denoted by
a(e1) and a(e2). The similarity of e1 and e2 with respect to
a is

sima(e1, e2) =


I[a(e1) = a(e2)], if a is categorical,
|a(e1)−a(e2)|

max|a(ei)−a(ej)|
, if a is numeric,

Jaccard(a(e1), a(e2)), if a is textual,

where I(·) is the indicator function returning 1 if the input
condition holds, and 0 otherwise. Let max|a(ei) − a(ej)| be
the size of the value range of a. Jaccard(·, ·) is the Jaccard
index for the bag of words model [15], frequently used to
compute the similarity of two texts. Its value is the proportion
of common words in the two texts. Note that for any type of
attribute, inequality 0 ≤ sima(e1, e2) ≤ 1 holds. Then, the
similarity for two events e1 and e2 is computed as

sim(e1, e2) =

∑
a∈A(e1)∩A(e2)

sima(e1, e2)

|A(e1) ∪A(e2)|
. (1)

Clearly, 0 ≤ sim(e1, e2) ≤ 1. To identify the type of attribute
a, we only need to scan all appearing values of a. If all values
are composed of digits and a dot, a is numeric. If some value
of a contains a sentence or phrase, then a is textual. Otherwise,
a is categorical.

4 EXTENSION TO ELIMINATE MISLEADING
RESOLUTIONS

Traditional recommendation algorithms focus on the accuracy
of the recommended results. However, in automated service
management, false alarms are unavoidable in both the his-
torical and incoming tickets [2]. The resolutions of false
tickets are short comments such as, “this is a false alarm,”
“everything is fine” and “no problem found.” If we recommend
a false ticket’s resolution for a real ticket, it would cause
the system administrator to overlook the real system problem.
Moreover, none of the information in this resolution is helpful.
Note that in a large enterprise IT environment, overlooking a
real system problem may have serious consequences such as
system crashes. Therefore, we consider incorporating penalties
in the recommendation results. There are two cases meriting
a penalty: recommendation of a false ticket’s resolution for a
real ticket, and recommendation of a real ticket’s resolution
for a false ticket. The penalty in the first case should be larger
since the real ticket is more important. The two cases are
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analogous to the false negative and false positive in prediction
problems [14], but note that our recommendation target is the
ticket resolution, not its type. A false ticket’s event may also
have a high similarity with that of a real one. The objective
of the recommendation algorithm is now maximized accuracy
under minimized penalty.

4.1 The Division Method
A straightforward solution consists of dividing all historical
tickets into two sets: the real tickets and the false tickets. Then,
it builds a KNN-based recommender for each set respectively.
Another ticket type predictor is created, establishing whether
an incoming ticket is real or false, with the appropriate rec-
ommender used accordingly. In particular, the division method
works as follows: it first uses a type predictor to predict
whether the incoming ticket is real or false. If it is real, then
it recommends the tickets from the real historic tickets; if
it is false, it recommends the tickets from the false historic
tickets. The historic tickets are already processed by the system
administrator, so their types are known and we do not have to
predict them.

The division method is simple, but relies heavily on the
precision of the ticket type predictor, which cannot be perfect.
If the ticket type prediction is correct, there will be no penalty
for any recommendation result. If the ticket type prediction is
wrong, every recommended resolution will incur a penalty.
For example, if the incoming ticket is real, but the predictor
says it is a false ticket, then this method only recommends
false tickets. As a result, all the recommendations would incur
penalties.

4.2 The Probabilistic Fusion Method
To overcome the limitation of the division method, we develop
a probabilistic fusion method. The framework of the basic
KNN-based recommendation is retained, with the difference
that the penalty and probability distribution of the ticket type
are incorporated in the similarity function.

Let λ be the penalty for recommending a false ticket’s
resolution for a real ticket, and 1 − λ for recommending a
real ticket’s resolution for a false one. λ can be specified by
the system administrator based on the actual cost of missing a
real alert, 0 ≤ λ ≤ 1. Larger λ indicates a greater importance
of real tickets. The penalty function is

λt(ti) =

 λ, t is a real ticket, ti is a false ticket
1− λ, t is a false ticket, ti is a real ticket
0, otherwise,

where t is the incoming ticket and ti is the historical one
whose resolution is recommended for t. Conversely, an award
function can be defined as ft(ti) = 1 − λt(ti). Since 0 ≤
λt(ti) ≤ 1, 0 ≤ ft(ti) ≤ 1.

Let c(·) denote the ticket type. c(ti) = 1 indicates ti is a real
ticket; c(ti) = 0 indicates ti is a false ticket. The idea of this
method is to incorporate the expected award in the similarity
function. The new similarity function sim′(·, ·) is defined as:

sim′(e(t), e(ti)) = E[ft(ti)] · sim(e(t), e(ti)), (2)

where sim(·, ·) is the original similarity function defined by
Eq. (1), and E[ft(ti)] is the expected award, E[ft(ti)] =
1 − E[λt(ti)]. If ti and t have the same ticket type then
E[ft(ti)] = 1 and sim′(e(t), e(ti)) = sim(e(t), e(ti)),
otherwise sim′(e(t), e(ti)) < sim(e(t), e(ti)). Generally, the
expected award is computed as

E[ft(ti)] = E[1− λt(ti)] = 1− E[λt(ti)]

= 1−
∑

c(t),c(ti)∈0,1

P [c(t), c(ti)]λt(ti).

We can assume that a new ticket t and historical ticket ti are
independent, i.e., P [c(t), c(ti)] = P [c(t)] · P [c(ti)]. Then, the
expected penalty is

E[λt(ti)] =
∑

c(t),c(ti)∈0,1

P [c(t)] · P [c(ti)] · λt(ti).

Since c(ti) is already fixed, substituting λt(ti), we obtain

E[λt(ti)] =

{
P [c(t) = 0] · (1− λ), ti real ticket
P [c(t) = 1] · λ, ti false ticket

Note that all factors in the new similarity function are of the
same scale, i.e., [0, 1], thus 0 ≤ sim′(·, ·) ≤ 1.

4.3 Prediction of Ticket Type
Given an incoming ticket t, the probabilistic fusion method
needs to estimate the distribution of P [c(t)]. The division
method also has to predict whether t is a real ticket or a false
ticket. Since t is an incoming ticket, the value of c(t) is not
known. However, using a ticket type predictor, we can estimate
the distribution of P [c(t)]. There are many binary classification
algorithms for estimating P [c(t)]. In our implementation, we
utilize another KNN classifier. The features are the event
attributes and the classification label is the ticket type. The
KNN classifier first finds the K nearest tickets in D, denoted
as DK = {tj1 , ..., tjk}. Then, P [c(t) = 1] is the proportion of
real tickets in DK and P [c(t) = 0] is the proportion of false
tickets in DK . Formally,

P [c(t) = 1] = |{tj |tj ∈ DK , c(tj) = 1}|/K
P [c(t) = 0] = 1− P [c(t) = 1].

Once we have the estimate of the distribution of P [c(t)],
the prediction of ticket type can be performed by comparing
P [c(t) = 1] and P [c(t) = 0].

5 EXTENSION TO IMPROVE ACCURACY

5.1 Representation of Monitoring Tickets
As shown in Section 3.3, attribute level features are used in
the traditional KNN algorithm for recommendation. However,
attribute-level feature representation is not interpretable and
often contains a lot of noise.

Our observation indicates that each monitoring ticket de-
scribes the existing problems (e.g., low capacity, high CPU,
utilization) in service, and the associated ticket resolution
should be highly relevant to the problems. For example,
Table 5 presents some sample monitoring tickets for “low free
space” and their corresponding resolutions. The problems in
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these tickets are described by the “SUMMARY” attribute and
they all share the similar semantic meaning “low free space”.
Therefore, it is better to use features that semantically capture
these problems, instead of attribute-level features, to represent
monitoring tickets.

In this paper, we apply Latent Dirichlet Alloca-
tion [12](LDA) to perform feature extraction, which can first
extract hidden topics and then encode monitoring tickets using
topic level features. LDA is a generative probabilistic model
of a document corpus. Its basic idea is that documents are
represented as random mixtures over latent topics, where
each topic is characterized by a distribution over words. In
particular, LDA represents documents as mixtures of topics
that generate words with certain probabilities. With LDA, the
documents are written as follows: 1) decide on the number
of words in the document; 2) choose a topic mixture for the
document; and 3) generate each word by picking a topic and
using the topic to generate the word itself. Assuming this
generative model for a document collection, LDA then finds
the latent topics as well as various distributions. Learning the
various distribution (the set of topics, their associated word
probabilities, the topic of each word, and the topic probabilities
of each document) is a problem of Bayesian Inference [12].
Topic probability distribution of a document is commonly used
as its feature vector.

We process tickets as follows to encode them in the same
feature space:

• Represent each monitoring ticket as a document by con-
catenating each textual attribute after stop words removal
and tokenization.

• Using historical tickets to train an LDA model.
• Inference feature vectors using the trained LDA model for

both incoming events and historical monitoring tickets.

Once monitoring tickets are encoded as feature vectors, then
the cosine similarity can be applied to measure their similari-
ties. Experiments in Section 7 demonstrate that the algorithm
performance based on topic level features is better than that
on attribute level features.

5.2 Incorporating the Resolution Information

In previous KNN-based recommendation approaches, reso-
lutions are ranked according to the similarity measurement
using the event information only. However, the resolutions
often reveal their prevalence in historical tickets and contain
important information about the events, which can be used
to improve the recommendation performance. There are two
practical motivations for incorporating the resolution informa-
tion:

1) In a K nearest neighbor search, historical tickets with
resolutions that are highly relevant to an incoming event
should be ranked higher than those tickets having similar
event descriptions, but with fewer related resolutions.

2) In a K nearest neighbor search, those tickets with
resolutions that are more prevalent should be ranked
higher than those with less prevalent resolutions, even
if their event descriptions are similar.

Table 5 presents four tickets having similar event descrip-
tions (shown in the “SUMMARY” attribute) from account1.
All four tickets describe a “low free space” problem. In
practice, however, the resolution from Ticket 1 should have
a higher rank than the one from Ticket 4 since the resolution
from Ticket 1 is more informative. Similarly, resolutions from
Ticket 1 and Ticket 2 should have higher ranks than the one
from Ticket 3 because of their higher prevalence.

TABLE 5: Tickets for explaining motivation of incorporating reso-
lution information

ticketID SUMMARY RESOLUTION
1 The logical disk has a low

amount of free space. Percent
available: 2 Threshold: 5

After deleting old uninstall
files, the logical disk now has
over 10% of free disk space.

2 The percentage of used space
in the logic disk is 90 percent.
Threshold: 90 percent

After deleting old uninstall
files, the logical disk now has
over 15% of free disk space.

3 File system is low. The per-
centage of available space in
the file system is 10 percent.
Threshold: 90 percent

After delprof run, the server
now has more than 4gb of free
space

4 The logical disk has a low
amount of free space. Percent
available: 3 Threshold: 5

No trouble was found, situa-
tion no longer persists.

In Section 3.3, sim(e, e(ti)) is computed to find the K
nearest neighbors of an incoming event e, in which e(ti)
is the event information associated with the i-th ticket. To
incorporate the resolution information, sim(e, ti) (i.e., simi-
larity between an incoming event and the i-th ticket), rather
than sim(e, e(ti)), is used in the algorithm. sim(e, ti) can
be easily computed since e and ti can be vectorized with the
same dimensions after using topic-level features. Experiments
in Section 7 demonstrate the effectiveness of this proposed
approach.

5.3 Metric Learning

In previous sections, we improved the recommendation algo-
rithm by using topic-level features and incorporating resolution
information into a K nearest neighbor search. However, we
still treat each feature equally in computing the similarity
measure. According to our observation, topics extracted from
the LDA model should have different contributions to the
similarity measurement since some topics contain the major
descriptive words about events while the others may consist of
fewer meaningful words. For example, Table 6 lists two topics
for illustration. Apparently Topic 30 contains more descriptive
words than Topic 14, and thus we should assign a larger weight
to Topic 30 in the similarity measurement. We adopt metric
learning [16] to achieve this goal.

TABLE 6: First 6 words are extracted to represent topics trained
from LDA

topicID SUMMARY
14 server wsfpp1 lppza0 lppzi0 nalac application
30 server hung condition responding application apps

The metric learning [17] problem aims at learning a distance
function tuned to a particular task, and has been shown to
be useful when used in conjunction with nearest-neighbor
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Fig. 5: Before metric learning, its neighbors include instance
from different classes; after metric learning, its neighbors are
all belong to a same class.

methods and other techniques that rely on distances or simi-
larities [18] as illustrated in Figure 5. Mahalanobis Distance
is commonly used for vectorized inputs, which can avoid the
scenario in which one feature dominates in the computation
of the Euclidean distance. In the metric learning literature,
the term “Mahalanobis distance” is often used to denote any
distance function of the following form:

dA(x, y) = (x− y)TA(x− y), (3)

where A is some positive semi-definite (PSD) matrix, and x, y
are the feature vectors. To facilitate the learning process, in
metric learning, a slightly modified form of distance function
is commonly used, as described below [16]:

dA(x, y) = xTAy. (4)

In our work, we have n historical tickets t1, t2, . . . , tn
and n corresponding resolutions r(t1), r(t2), . . . , r(tn). We
consider the resolution categories as supervision for met-
ric learning since intuitively similar resolutions solve sim-
ilar issues. We pre-calculate matrix R ∈ Rn∗n in which
Ri,j = sim(r(ti), r(tj)). The resolution categories are usually
provided by system administrators. With the available cate-
gory information, the similarity between two resolutions is
computed as follows:

sim(r(ti), r(tj)) =

{
1, if r(ti), r(tj) have same category,
0, otherwise.

Our goal is to learn a similarity function SA(~ti, ~tj) by solving
the following optimization problem:

minf(A) = min

n∑
i=1

n∑
j=1

||Ri,j − SA(~ti, ~tj)||2

= min||R− SAST ||2, (5)

in which we use SA(~ti, ~tj) = ~ti
T ∗ A ∗ ~tj (~ti and ~tj are

feature vectors for ticket ti and tj) instead of SA( ~e(ti), ~e(tj))
as we want to keep the benefits of incorporating the resolution
information into K nearest search. Since matrix A is con-
strained to be a PSD matrix, the projected gradient descent
algorithm can be directly applied to solve the optimization
problem in Equation 5. In each iteration of gradient descent,
the new updated matrix A will be projected into a PSD matrix

as the initial value for the next iteration. The singular value
thresholding [19] has been applied to project A into a PSD
matrix by setting all A’s negative eigenvalues to be zero. The
following is the gradient for Equation 5:

∇f(A) = ∇A((R− SAST )T (R− SAST ))

= 2STSASTS − 2STAS

6 IMPLEMENTATION

In this section, we discuss two issues in implementing the
resolution recommendation system.

Finding Nearest Neighbors: Finding the K nearest neigh-
bors in a large collection of historical tickets is time-
consuming. There are many standard indexing search methods,
such as k-d Tree [20], R-Tree [21], VP-Tree [22], and cover
tree [23]. However, in resolution recommendation, the search
space of our monitoring tickets is generally not metric and
the dimensionality is typically very high. Therefore, locality
sensitive hashing [24] is more practical and suitable. Another
heuristic solution is the attribute clustering-based method.
Different system events have different system attributes, and
the clustering algorithm can easily separate all tickets into
categories based on their attribute names. If two events share
very few common attributes, their similarity cannot be high.
Therefore, in most cases, the nearest neighbors search only
needs to access those tickets in the same category. In our
experiments, we used clustering and locality sensitive hashing
to efficiently find nearest neighbors.

Redundancy Removal in Recommendation: KNN-based
recommendation algorithms recommend the top k representa-
tive resolutions in the K nearest tickets. However, since all
of these are similar to the incoming ticket, the resolutions
of the K tickets may also be similar to each other, so that
there may be some redundancy in the recommended results.
To avoid this issue, another validation step is applied. First,
the K nearest tickets’ resolutions are sorted according to
their representativeness in descending order. Then, we go
through all K resolutions and check whether or not each
of them is redundant to any previously selected resolution.
If it is, we skip this resolution and jump to the next one;
otherwise, we add it to the selection. Since the resolutions
are textual descriptions, the redundancy of two resolutions is
measured by the Jaccard index, Jaccard(·, ·), introduced in
Section 3.3. In practice, if the descriptions of two resolutions
r(t1) and r(t2) have more than one half common words (i.e.
Jaccard(r(t1), r(t2)) > 0.5), the two resolutions are quite
likely to be the same.

7 EVALUATION

We implemented six algorithms denoted by WKNN, Di-
vision, Fusion, LDABaselineKNN, CombinedLDAKNN and
MLCombinedLDAKNN, respectively whose brief interpreta-
tions are given in Section 3.2. These algorithms are all based
on the weighted KNN algorithm framework. We show our
experimental results from two perspectives. We first compare
experimental results from WKNN, Divide, and Fusion to
show the effectiveness of our proposed methods in eliminating
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misleading resolutions, and then compare experimental re-
sults from LDABaselineKNN, CombinedLDAKNN and ML-
CombinedLDAKNN to show the efficiency of our proposed
methods in improving recommended resolutions’ relevance.
We use the Weighted KNN algorithm as the underlying
algorithm because it is the most widely used Top-N item-based
recommendation algorithm.

7.1 Experimental Data
Experimental monitoring tickets are collected from three ac-
counts managed by IBM Global Services, denoted later as
“account1,” “account2” and “account3.” The monitoring events
are captured by IBM Tivoli Monitoring [25]. The ticket sets
are summarized in Table 3. To evaluate metric learning,
1000 labeled tickets with resolution categories are obtained
from “account1”. Table 7 shows three sample categories of
resolutions [26].

TABLE 7: Three resolution categories with the event description
they resolved

Resolution Category Resolved Event Key Words
Server Unavailable Server unavailable due to unex-

pected shutdown, reboot, defect
hardware, system hanging

Disk/FS Capacity shortage Disk or file system capacity prob-
lems and disk failure

Performance inefficiency Performance and capacity prob-
lems of CPU or memory

7.2 Evaluation Metric
The following evaluation measures are used in our experi-
ments.

7.2.1 Weighted Accuracy
For each ticket set, the first 90% tickets are used as the historic
tickets and the remaining 10% tickets are used for testing. Hit
rate is a widely used metric for evaluating the accuracy in
item-based recommendation algorithms [27], [28], [29].

Accuracy = Hit-Rate = |Hit(C)|/|C|,

where C is the testing set, and Hit(C) is the set for which one
of the recommended resolutions is hit by the true resolution.
Here we define a recommended resolution as a hit if it has
a jaccard similarity greater than a threshold with the ground
truth resolution.

Since real tickets are more important than false ones,
we define another accuracy measure, the weighted accuracy,
which assigns weights to real and false tickets. The weighted
accuracy (WA) is computed as follows:

WA =
λ · |Hit(Creal)|+ (1− λ) · |Hit(Cfalse)|

λ · |Creal|+ (1− λ) · |Cfalse|
,

where Creal is the set of real testing tickets, Cfalse is the
set of false testing tickets, Creal ∪ Cfalse = C, λ is the
importance weight of the real tickets, 0 ≤ λ ≤ 1, and also the
penalty mentioned in Section 4.2. In this evaluation, λ = 0.9
since the real tickets are much more important than the false

tickets in reality. We also test other large λ values, such
as 0.8 and 0.99. The accuracy comparison results have no
significant change. As shown by Figure 6, our two proposed
algorithms have smaller penalties than the traditional KNN-
based recommendation algorithms. The probabilistic fusion
method outperforms the division method, which relies heavily
on the ticket type predictor. Overall, our probabilistic fusion
method only has about one-third of the penalties of the
traditional methods.

Fig. 6: Average Penalty for K = 10, k = 3

Fig. 7: Overall Score for K = 10, k = 3

7.2.2 Average Similarity

In general, several resolutions can be recommended for a
single testing instance. To consider the relativeness of all
recommended resolutions, the average similarity (avgSim) is
used as one evaluation metric which is given by the following
equation:

avgSim =
1

N

N∑
i=1

ni∑
j=1

sim(rio, rj)/ni,

in which N is the number of testing instances, and ni is the
number of recommended resolutions for testing instance i and
rio is its original resolution, and rj is its jth recommended
resolution. Jaccard Similarity is used to calculate sim(rio, rj).

7.2.3 Mean Average Precision

Mean Average Precision (MAP) [30] is widely used for
recommendation evaluation. It considers not only the relative-
ness of all recommended results, but also the ranks of the
recommended results.

MAP@n =

N∑
i=1

ap@ni/N,
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(a) Accuracy (b) Accuracy for Real Tickets (c) Weighted Accuracy

Fig. 8: Test Results for K = 10, k = 3

(a) account1 (b) account2 (c) account3

Fig. 9: Weighted Accuracy by varying k, K = 10.

(a) account1 (b) account2 (c) account3

Fig. 10: Average Penalty by varying k, K = 10.

(a) Overall score for account1 (b) Overall score for account2 (c) Overall score for account3

Fig. 11: Overall Score by varying k, K = 10

N is the number of a testing instance, ap@n is given by the
following equation:

ap@n =
n∑

k=1

p(k)δr(k),

where k is the rank in the sequence of retrieved resolutions,
n is the number of retrieved resolutions, p(k) is the precision
at cut-off k in the list, and δr(k) is the change in recall from
items k − 1 to k.

7.3 Overall Recommendation Performance

7.3.1 Evaluation on eliminating misleading resolutions

An overall quantity metric is used for evaluating the
recommendation algorithms, covering both the accuracy
and the average penalty. It is defined as overall score
= weighted accuracy / average penalty. If the weighted
accuracy is higher or the average penalty is lower, then the
overall score becomes higher and the overall performance is
better. Figure 7 shows the overall scores of all algorithms for
two parameter settings. Figure 8 gives the accuracy scores
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for the same parameter settings. It is seen that our proposed
algorithms are always better than the WKNN algorithm in
the perspective of overall score.

Variation of Parameters
To compare the results of each algorithm, we vary the
number of each recommendation resolution, k. Figure 9,
10 and 11 show the weighted accuracies, average penalties
and overall scores by varying k from 1 to 8, with K = 10.
As shown by Figure 9, when we increase the value of
k, the size of the recommendation results becomes larger.
Then the probability of one recommended resolution being
hit by the true resolution also increases. Therefore, the
weighted accuracy becomes higher. Except for the division
method, all algorithms have similar weighted accuracies
for each k. However, as k is increased and there are more
recommended resolutions, there are more potential penalties in
the recommended resolutions. Hence, the average penalty also
becomes higher (Figure 10). Finally, Figure 11 compares the
overall performance by varying k. Clearly, the probabilistic
fusion method outperforms other algorithms for every k.

For other values of K ranging from 8 to 20, the comparison
results are very similar to K = 10. Usually, we set K = 10
and k = 5 in practice. The choice of k is a tradeoff
between accuracy and a reasonable number of recommended
resolutions. Large k decreases user experience since system
administrators have to choose a proper one out of candidate
resolutions, meanwhile small k greatly decreases accuracy.

A Case Study
We select an event ticket in “account1” to illustrate why our
proposed algorithms are better than the traditional KNN-based
algorithms. Table 8 shows a list of recommended resolutions
given by each algorithm. The testing ticket is a real event ticket
triggered by a low capacity alert for the file system. Its true
resolution of this ticket is: “cleaned up the FS using RMAN
retention policies...” RMAN is a data backup and recovery tool
in Oracle database. The general idea of this resolution is to
use this tool to clean up the old data.

As shown by Table 8, the first resolution recommended by
WKNN is a false ticket’s resolution: “No actions were taken
by GLDO for this Clearing Event...” It might be caused by
a temporal file generated by some application, which would
clean up the temporal file automatically after its job was done.
When the system administrator opened that ticket, the problem
was gone, and that ticket is seen as false. However, the testing
ticket is real and would not disappear unless the problem
was actually fixed. This resolution from the false ticket would
have misled the system administrator to overlook this problem.
Consequently, a penalty of λ = 0.9 is given to WKNN.

WKNN, Divide and Fusion all successfully find the true
resolution of this testing ticket, but WKNN has one false
resolution, so its penalty is 0.9. Our proposed methods, Divide
and Fusion, have no penalty for this ticket. Therefore, the two
methods are better than WKNN.

7.3.2 Evaluation on improving accuracy
Choosing the Number of Topics
Figure 14 shows the experimental results of choosing the
proper number of topics for training the LDA model using
data set “account1.” The results show that numTopics = 300
is a proper setup for the number of topics. Thus, we choose
numTopics = 300 for all the following experiments.

50 100 150 200 250 300 350
numTopics

0.32

0.34

0.36

0.38

0.40

a
v
g
S
im

WKNN
LDABaselineKNN
CombinedLDAKNN

Fig. 14: Variation in accuracy for different numTopics for
dataset “account1”

Performance Comparison
The average similarity is used for comparing the performance
among WKNN, LDABaselineKNN and CombinedLDAKNN.
When resolution categories are available, MAP@n is used
for comparing the performance between CombinedLDAKNN
and MLCombinedLDAKNN since it explicitly considers the
relativeness of the recommended results.

To compare the results of each algorithm, we vary the
number of recommended resolutions, k. Figure 12 shows the
average similarity scores by setting k = 1, 3, 5, 7 separately,
with K = 8; and Figure 13 show the average similarity scores
by setting k = 1, 3, 5, 7 separately, with K = 16. We have the
following observations from the figures: 1) LDABaselineKNN
outperforms WKNN on account1 and account 2. On account3,
LDABaselineKNN achieves similar performance as WKNN
(In fact, the performance of LDABaselineKNN is slightly
worse than that of WKNN when k is less than 3). This
shows that in general, topic-level features are generally more
effective than attribute-level features. Note that the time frame
of account3 (5-month) is the largest among the three datasets.
The long time frame may lead to the quality decrease of
topic-level features as it is difficult for LDA to effectively
capture latent topics over a long period of time. 2) CombinedL-
DAKNN always outperforms LDABaselineKNN and WKNN.
This clearly demonstrates the effectiveness of incorporating
the resolution information into K nearest neighbor search.

7.3.3 Metric Learning Performance
In this section, we conduct experiments to evaluate the effec-
tiveness of using metric learning. Figure 15 and Figure 16
are used to illustrate the usefulness of metric learning. In
both figures, X-axis and Y-axis are the event ID’s ordered
by the resolution categories, and the color value at each entry
indicates the similarity score of the corresponding events. As
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Fig. 12: Test Results for three accounts by varying k for K = 8.
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Fig. 13: Test Results for three accounts by varying k for K = 16.

TABLE 8: A Case Study for K = 10, k = 3

Algorithm Recommended Resolution Is Hit Is Real Ticket’s
Resolution

Penalty

WKNN
No actions were taken by GLDO for this Clearing Event... no false 0.9
I cleaned up the FS using RMAN retention policies... yes true 0
Duplicated 28106883... no true 0

Division
Duplicated 28106883... no true 0
Another device failure has been reported for this node... no true 0
I cleaned up the FS using RMAN retention policies... yes true 0

Fusion
Duplicated 28106883... no true 0
Another device failure has been reported for this node... no true 0
I cleaned up the FS using RMAN retention policies... yes true 0

shown in Figure 15 and Figure 16, after metric learning,
similarity scores between monitoring tickets with resolutions
from the same category will be enhanced while similarity
scores between monitoring tickets with resolutions from dif-
ferent categories will be reduced. Therefore, for example, for a
testing instance whose original resolution belongs to category
i, more resolutions from category i will be retrieved first after
applying metric learning.

Figure 17 uses MAP to evaluate the performance of Com-
binedLDAKNN and MLCombinedLDAKNN with different
values of K. As shown, the overall MAP scores of ML-
CombinedLDAKNN are higher and more stable than those
of CombinedLDAKNN when K increases. This indicates that
MLCombinedLDAKNN can retrieve more related resolutions
and thus is more robust to noisy resolutions compared to
CombinedLDAKNN. In summary, the experimental results
from Figure 15, Figure 16, and Figure 17 demonstrates the
effectiveness of metric learning in resolution recommendation.

0

0.5

0

0.5

Fig. 15: Similarity measure before and after metric learning
for training set

8 RELATED WORK

This section reviews prior research studies related to the
automated IT service management and recommendation sys-
tems. System monitoring, as part of the automated service
management, has become a significant research area of the IT
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Fig. 16: Similarity measure before and after metric learning
for testing set

10 20 30 40 50 60 70
K

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
A
P
@
K

mean average precision for different K

CombinedLDAKNN
MLCombinedLDAKNN

Fig. 17: Mean average precision (MAP) varying parameter K
of underlying KNN algorithm

industry in the past few years. Commercial products such as
IBM Tivoli [25], HP OpenView [7] and Splunk [31] provide
system monitoring. Numerous studies [32] [33] [34] [35] [36]
[37] focus on monitoring that is critical for a distributed
network. The monitoring targets include the components or
subsystems of IT infrastructures, such as the hardware of the
system (CPU, hard disk) or the software (a database engine,
a web server). Once certain system alarms are captured, the
system monitoring software will generate the event tickets
into the ticketing system. Automated ticket resolution is much
harder than automated system monitoring because it requires
vast domain knowledge about the target infrastructure. Some
prior studies apply approaches in text mining to explore the
related ticket resolutions from the ticketing database [38], [39].
Other works propose methods for refining the work order of
resolving tickets [38], [40]. A number of studies focused on
the analysis of historical events with the goal of improving the
understanding of system behaviors. A significant amount of
work was done on analysis of system log files and monitoring
events. See example, [41], [42], [43]. Another area of interest
is the identification of actionable patterns of events and misses,
or false negatives, by the monitoring system.

False negatives are indications of a problem in the mon-
itoring software configuration, wherein a faulty state of the
system does not cause monitoring alerts.

One major cost of modern IT service is manpower. In
large service providers, service centers are constituted by

hundred or thousands of IT experts, who take charge of
various incident tickets every day. Therefore, service providers
heavily rely on human efficiency for such tasks as root cause
analysis and incident ticket resolving. Automatic techniques of
recommending relevant historical tickets with resolutions can
significantly improve the efficiency of humans in this task.
Based on the relevant tickets, the human can correlate related
system problems that have happened before and perform a
deeper system diagnosis. The solutions described in relevant
historical tickets also provide best practices for solving similar
issues.

Recommendation techniques have also been widely studied
in e-commerce and online advertising areas. With the devel-
opment of e-commerce and online advertising, a substantial
amount of research has been devoted to the recommenda-
tion system. The existing recommendation algorithms can be
categorized into two types. The first type is learning-based
recommendation, in which the algorithm aims to maximize
the rate of user response, such as user click or conversation.
The recommendation problem is then naturally formulated as
a prediction problem. It utilizes a prediction algorithm to com-
pute the probability of the user response on each item. Then,
it recommends the one having the greatest probability. Most
prediction algorithms can be utilized in the recommendation,
such as naive Bayes classification, linear regression, logistic
regression and matrix factorization [44], [45].

The second type of recommendation algorithm focuses on
the relevance of items or users, rather than the user response.
Lots of algorithms proposed for promoting products to online
users [46], [47], [48], [49] belong to this type. They can
be categorized as item-based [13], [28], [29] and user-based
algorithms [50], [48], [46], [47]. Our work in this dissertation
is item-based. Every ticket is regarded as an item in our
scenario. The difference between our work and traditional
item-based algorithms is that, in e-commerce, products are
maintained by reliable sellers, or some other procedures to
assure the quality of selling products. The recommendation
algorithms usually do not need to consider the problem of
fake or low-quality products. But in service management, false
tickets are unavoidable. The tickets with ticket resolutions are
recorded in the database of the ticketing system. In some real-
world ticketing systems, false tickets are the majority of all
tickets. Moreover, when a ticket arrives, the recommendation
algorithm does not know this alert is real or false in advance.
The traditional recommendation algorithms do not take into
account the types of tickets and as a result would recommend
misleading resolutions.

Meanwhile, An accurate distance metric in feature space
is highly essential in real-world applications. Good distance
metrics are important to many data mining tasks, especially
in image classification and content-based image retrieval [51],
[18]. Metric learning partially overcomes the difficulties of
feature extraction and similarity measurement in those do-
mains. Metric learning requires learning a distance metric for
the input space of data from a given collection of a pair of
similar/dissimilar points that preserves the distance relation
among the training data. In addition, many machine learning
algorithms, such as KNN, heavily rely on the underlying
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distance metric for the input instances. Previous work [52],
[53], [54], [55], [56] has shown that appropriately designed
distance metrics can significantly benefit KNN-based algo-
rithms compared to the standard Euclidean distance.

9 CONCLUSION
This paper studies the problem of resolution recommendation
for monitoring tickets in an automated service management.
We analyze three sets of monitoring tickets collected from a
production service infrastructure and identify a vast number
of repeated resolutions for monitoring tickets. Based on our
prior work of KNN-based recommendation, we improve the
similarity measure by utilizing both the event and resolution
information from historical tickets via a topic-level feature
extraction using the LDA (Latent Dirichlet Allocation) model.
In addition, a more effective similarity measure is learned
using metric learning when resolution categories are available.

There are several avenues for future research. First, we plan
to investigate and develop intelligent classification techniques
to automatically label resolutions [57], [58]. Second, our
current recommendation system uses KNN-based algorithms
due to their simplicity and efficiency. We will investigate and
develop other advanced algorithms to improve the recommen-
dation performance. Finally, we also plan to use an active
query strategy to fully automate resolution recommendations.
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