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1. Introduction
In the recent paper [1], Malyshev obtained the following formula for the 2-norm distance rsep(A)
from a complex n x n matrix to a closest matrix with a multiple eigenvalue:

rsep(A) = min max op,_1(G(y)). (1)
reC y>0

Here,
M=A  yl
6l = < o - A)'
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and oy,_1(G(y)) is the penultimate singular value of the matrix G, assuming that the singular values
are numbered in decreasing order. Ikramov and Nazari in [3] introduced a correction for Malyshev's
formula when A be a normal matrix. Lippert in [4] has presented a generalization for Malyshev’s
problem, finding | AM|, optimal perturbations of M such that M — AM has two given eigenvalues.
In 2005, Gracia [2] extended formula (1) for two prescribed eigenvalues, in the following theorems.
Define

_(ml —-A yl
F“”‘( 0 d-A)
Theorem 1. Let y* > 0 be a local optimizer of function f(y) = o2,_1 (F(y)). Suppose
" =f(y" >0,

then there exists a pair of normalized singular vectors associated with the singular value o* of F (y*), namely
a left vector

u
u=< 1), up, uy € C?
5]

and a corresponding right vector

V= iF(y*)*u = <v1), Vi, vy € C?
a* Va

such that

Re(ujvp) =0. (2)
Moreover, the matrices

U=@ u), V=1 vo) (3)
satisfy the relation

UU = V. “)

Theorem 2. If y* in Theorem 1 is a positive number, then both matrices in (3) have rank 2. The matrix
B =A+ A, where

A =o*UVT, (5)
is the closest (with respect to the 2-norm) matrix to A having eigenvalues »; and , and
4]z = o™ (6)

Below, we discuss some issues related to the computer implementation of this method. It turns out
that the case of a general matrix A is substantially different from that of a normal matrix A.

2. Normal matrix

Let A be a normal matrix. We illustrate by a specific example. If

7 0 0 0 1
0 8 1 0 2
A=10 1 1 1 0},
0o 0 1 4 1
1 2 0 1 7

and Aq = 0,1, = 2, we found the values

y* =1.05800, o* =1.84331.
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The singular value o;,_5 (F(y*)) equals 1.84382. These two values are approximately the same, namely
om-1(F(y™) = o2n_2(F(y™)).

Thus, in the optimal matrix F(y*), the value o* is iterated.
Let u@n-1 y@n-1) gpnd y@n-2) y(@n-2) pe the pairs of singular vectors of F(y*) associated with opp_1
and oy,_7, respectively, that MATLAB gives us. An attempt to use any of these pairs for implementing

the construction described in Theorem 2 leads to catastrophic results. Namely, for the matrix A @n-D _
—g*U@n-Dy@n-D7 e obtain

142D = 1.49826 x 1012,
while A%"2 = _5*y@n-2y@n-2t has the norm
14%"2 | = 6.26340 x 1012,

It is easy to find the reason why equality (6) is violated in both cases. Calculating ujv,, we obtain for
the pair @1 y@n-1

—0.14488
and for the pair u@n-2) y@n-2)
0.60502.

In any case above, equality (2), even approximately does not hold. It follows that equality (4) is
violated.
The situation can be rectified as follows. Consider the number

0" =on1(F(y™)

as a double singular value of F(y*) and the vectors u@"=1 and u?"=2 3s an orthonormal basis in the
left singular subspace associated with o*. In this subspace, we look for a normalized vector

u=ou® 4 pulnA o 4112 =1, (7)
and combined with the associated right singular vector
V= OW(Zn—l) _I_'BV(ZH—Z) (8)

in order to satisfy relation (2).
From (2) we have

Re(wiv,) = 0. 9)
Substituting (7) and (8) into (9), we achieve the relation

@ pB)ReW <g) =0, (10)
in which
@n-1* @n-1)  Qn-1)* (2n-2)
W:(u1n vy u vyt ) a1
(2n-2)y*. 2n-1) n-2)* 2n-2) |’
ui e ui vt
and
ReWyq Wiz + Wa)/2
e ((Wu +Wa)/2  ReWs (12)

The existence of a nontrivial solution for Eq. (10) is ensured by the fact that the Hermitian matrix
(10) is indefinite. In fact, let us call g(y) = o2n_2(F(y)). Let u; = uy be the eigenvalues of the matrix
ReW. Then the right derivatives of the functions f and g at y* are equal to u, and ¢

f& ™ =pn g0 =mn1,
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respectively. Since f is decreasing and g is increasing at right of y*, we deduce that
uy <0 and wuq > 0.

The numbers o and g can be found, for example, in the following manner. Let
W; = PMP*, M = diag(u1, 12),

be the spectral decomposition of W. Set

9+

and recast (10) as
uily? +u2l8? =0, |y 4182 =1. (14)
The pair

1 1
( |zl )2 ( [l )2
w1l +lp2l /) 7 \wal+ ezl

is a solution to system (14). (Recall again that w1 and pu, are numbers of different signs.) Using (13),
we obtain the corresponding pair o, .
In the example above with matrix A, this technique yields

o =—0.89822, B =-0.43955.

For the corresponding singular vectors (7) and (8), we have
uivy = —1.45717 x 10716

The matrix 4 constructed from these vectors has the norm
1.84350,

which is in very good agreement with o *. Finally, we found

Ul — 0.09189  0.21587 VAV — 0.09191 0.21590
—\0.21587 0.90811)" —\0.21590 0.90809)/°

it follows that U*U ~ V*V.
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