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Abstract

Pre-swirl nozzles are used to deliver the cooling air to the rotating turbine blades in the cooling systems of gas turbine engines.
This paper considers the case where the cooling air flows radially outward, between two corotating discs, to create a free vortex in
the inviscid core between the boundary layers on the discs. A thermodynamic analysis is used to relate the temperature increase of
the cooling air to the adiabatic work term (which reduces the air temperature) and to the heat transfer from the discs to the air
(which increases the temperature). The Reynolds analogy has been used to determine an expression for the adiabatic-disc tem-
perature and to draw conclusions about the moment coefficient and average Nusselt number. An important parameter is f3,, the
ratio of the tangential velocity of the pre-swirl air to the speed of the rotating disc, and the Reynolds analogy shows that the moment
coefficient is zero when 8, = f, ., a critical pre-swirl ratio, and that the average Nusselt number is a minimum when 8, = , ., an
optimal pre-swirl ratio. Computations made using a steady-state axisymmetric elliptic-flow solver, incorporating a low-Reynolds-
number k—e turbulence model, are in good agreement with the pressure distribution, adiabatic-disc temperature and local Nusselt
numbers predicted by the theoretical models. The computed values of f8, ., agree with the theoretical values, and the computations
also confirm the occurrence of a minimum average Nusselt number. For f§, < f, . the computed temperature of the cooling air
decreases as 8, increases; for 8, > f8, .., whether the temperature decreases or increases depends on the relative magnitude of the

adiabatic work term and the heat transfer from the discs. © 2001 Elsevier Science Inc. All rights reserved.

1. Introduction

In many gas turbines, the blade-cooling air is supplied from
stationary pre-swirl nozzles, and a simplified diagram of the
so-called ‘““‘cover-plate pre-swirl system” is shown in Fig. 1. By
swirling the air in the direction of rotation of the turbine disc,
the relative temperature of the air entering the blade-cooling
passages is reduced. Pre-swirl systems have been studied by a
number of research workers, and the reader is referred to the
work of Meierhofer and Franklin (1981), EI-Oun and Owen
(1989), Chen et al. (1993a,b), Popp et al. (1996), Wilson et al.
(1997), Pilbrow et al. (1999) and Karabay et al. (1999, 2000).
More general cases of rotating-disc flows can be found in
Owen and Rogers (1989, 1995).

The work described below uses the so-called ‘“‘simple ro-
tating cavity” between the rotating disc and the cover-plate as
a simplified model of the complete pre-swirl cover-plate sys-
tem. The aims of the paper are to provide a theoretical
framework for pre-swirl systems and to show the effects of the
flow parameters on the velocity, pressure and Nusselt numbers
in the rotating cavity. Whilst the complete system is more
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complex, the simple cavity provides insight into this compli-
cated problem.

The axisymmetric computational model is described in
Section 2, and Sections 3 and 4 deal, respectively, with the
fluids dynamics and thermodynamics of the problem. In Sec-
tion 5, the Reynolds analogy is used to determine the effect of
swirl on the adiabatic-disc temperature and on the local and
average Nusselt numbers for the simple cavity. The Reynolds
analogy is also used in Section 6, where the effect of the pre-
swirl ratio on the moment coefficients and the heat transfer is
examined; in particular, a critical pre-swirl ratio, at which the
moment coefficient is zero, and an optimal pre-swirl, at which
the average Nusselt number is a minimum, are discussed.
Conclusions are presented in Section 7.

2. Computational model

The geometry of the simple rotating cavity and the com-
putational grid used in this study are shown in Fig. 2, and the
dimensions are: a =r, =r = 100 mm, r, =r, =200 mm,
b =206 mm, Ar,=22mm, s= 10 mm (G =s/b = 0.0485,
a/b=0.485, x;/x; = 0.5).

The ranges of flow parameters used in the computations
were: 0.1 < Ar < 0.4, 0.6 x 10° < Rey < 1.8 x 10°, 5800 < C,,
< 23000, 0 < B, < 6. The values of Ar and f, determine the
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Notation

a inner radius of cavity
b outer radius of cavity
Cn moment coefficient
Gy pressure coefficient

Cp, Cy specific heat at constant pressure and constant
volume, respectively

nondimensional mass flow rate (= m/ub)

total enthalpy (=c, T+ (1/2)(V+V; +V)+
Kp/p)

gap ratio (= s/b)

turbulent kinetic energy; thermal conductivity

0 (perfect gas), 1 (incompressible flow) in
expression for H

moment

mass flow rate

local Nusselt number (= rgs/(k(Ts — T;,4)))

static pressure

Prandtl number (= uc,/k)

turbulent Prandtl number

convective heat flux from disc to air

rate of heat transferred to fluid

radial, tangential and axial coordinates

heat flux

recovery factor

rotational Reynolds number (= pQb*/u)

axial width of rotating cavity

temperature

total velocity

friction velocity (= /tw/p)

time-averaged radial, circumferential, and
axial components of velocity

rate of work done by fluid

nondimensional radial coordinate (= r/b)

distance normal to the wall

nondimensional distance (= pyU./u)
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o ratio of pre-swirl ratios (= B,/ cit)
p swirl ratio (= V,/Qr)

By pre-swirl ratio (= V,,/Qr,)

Ary radial width of blade-cooling slot

e turbulent energy dissipation rate

y ratio of specific heats (= c,/cy)

r swirl (= rVp)

r turbulent flow parameter (= C, /Re%g)
u dynamic viscosity

p density

(2] nondimensional temperature difference
T shear stress

Q angular speed of disc

Superscript

1 bulk-average value

Subscripts

ad adiabatic value

av radially weighted average

b blade-cooling air

crit critical value (of f,)

e edge of source region

eff effective value

fd free-disc value

min minimum value

o total value in stationary frame of reference;
value when f§, = 0

opt optimal value (of )

p pre-swirl air

] disc surface

t total value in rotating frame of reference

00 value in core outside boundary layers

* value at stagnation point (where i, = 1)

1 inlet to cavity (at radial location, and

downstream, of pre-swirl nozzles)
2 outlet from cavity (at radial location, and
downstream, of blade-cooling holes)

flow structure, and the ranges of these parameters cover values
of interest to the gas-turbine designer. In addition to At and
By, Rey has a strong effect on the magnitude of the Nusselt
numbers; in an engine, Rey is likely to be an order-of-magni-
tude larger than the values considered here, but that is thought
unlikely to affect the flow structure or the main findings of this
paper.

The steady-state, axisymmetric elliptic-flow solver de-
scribed by Karabay et al. (1999) and Pilbrow et al. (1999)
was used for the computations described here. The Morse
(1988, 1991) low-Reynolds-number k—e turbulence model,
including modifications suggested by its author, was used to
close the primitive-variable form of the Reynolds-averaged
Navier-Stokes and energy equations, and the Launder and
Sharma (1974) turbulence-model was used to provide initial
values for the Morse model. Incompressible flow was as-
sumed (which is appropriate for the ranges of the parameters
considered here), and turbulent heat transfer was represented
using a turbulent Prandtl number equal to 0.9 for air and 1
for the Reynolds analogy. The discretised finite-volume
equations were solved using the SIMPLEC pressure-correc-
tion technique with multigrid convergence acceleration, and
hybrid differencing was used to approximate convective
fluxes.

A suitable angular speed, Q, was used for the rotating
surfaces to give the required rotational Reynolds number, Re,,
and computations were carried out in a stationary reference

frame. Uniform values of ¥, and ¥, were prescribed at the
radial inlet at » = a, in order to give the required inlet values of
flow rate and pre-swirl ratio. Global continuity was ensured by
prescribing a uniform axial velocity at the outlet, at » = r, in
the right-hand disc. Zero normal-derivative conditions were
used for the tangential velocity and fluid enthalpy at the outlet,
allowing the total temperature of the ““blade-cooling air” to be
computed. The remaining velocity components at flow
boundaries were taken to be zero, and no-slip conditions were
used at solid surfaces. Both discs were given the same tem-
perature profiles and a zero heat-flux condition was imposed at
the outer-shroud surface.

Low-Reynolds-number k—e turbulence models require a
very fine grid near walls, and the 67 x 111 (axial and radial)
grid used here satisfied the condition, suggested by Morse
(1991, 1988) that y+ < 0.5 for the near-wall grid points. The
grid expanded away from the walls as a geometric progression
with expansion factors of around 1.22. Uniform spacing was
used in the central region (see Fig. 2(b)), and the grid was
refined in the region around r = r, so that eight points resolved
the outlet slot in the disc. Computations were also carried out
on a 93 x 111 grid, and the results suggested that the com-
putations described below were not affected by the grid reso-
lution. Computing times were around two CPU hours using a
Silicon Graphics R10000 processor.

Further details are given by Karabay (1998) on whose thesis
most of this paper is based.
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Fig. 1. Schematic diagram of pre-swirl systems: (a) cover-plate system; (b) direct-transfer system. (——) primary flow; (- - -) secondary flow; ()

rotating; (7)) stationary.

3. Fluid dynamics of the rotating cavity
3.1. Theoretical flow structure

Owen and Rogers (1995) showed that, for a rotating cavity
with a radial outflow of fluid, the flow structure is mainly
controlled by two parameters, the pre-swirl ratio 8, and the
turbulent flow parameter Ar, both of which are defined in the
nomenclature.

For sufficiently large values of Ar, the flow inside the ro-
tating cavity shown in Fig. 2 will behave as a free vortex.
Under these conditions, V. oc 7~!, where Vj ., is the tangen-
tial component of velocity outside the boundary layers on the
rotating discs. As V. = f8,Qr, at the outlet of the pre-swirl

nozzles (where r = ry), it follows that, for an ideal free vortex,

() (2 o

where x is the nondimensional radial coordinate. Of particular

importance is the nondimensional radius, x,, where
Vpo = Qr,. It follows from Eq. (3.1) that
Xy = ﬁ]lj/le. (32)

For a rotating flow in which the Coriolis forces dominate over
the inertial forces, the flow in the boundary layers is radially
inward when V., > Qr and outward when V., < Qr. Thus
there is a stagnation point on the rotating discs where

V. = Qr; this occurs where x = x,, and for free-vortex flow x,
is given by Eq. (3.2).

Owen and Rogers solved the momentum-integral equations
for swirling flow in a rotating cavity and computed values for
the nondimensional extent of the source region, x.. From these
computed values, they obtained a correlation which, for the
rotating cavity with radial outflow considered here, can be
expressed as

£\ 2% X 1.57
&) () -
Xe Xe

= (3.3)
where x. is the value of x. when the flow enters without swirl
(B, = 0) and x, is given by Eq. (3.2). It can be shown that

Xeo = 1.37573/5. (3.4)

Eq. (3.3) is only valid for cases where the source region does
not fill the cavity, that is for x. < 1. It is invalid for cases where
B, is so large that Vj ., > Qr throughout the cavity as, under
these conditions, the flow will always be radially inward in the
boundary layers on the discs and recirculating flow will occur
throughout the cavity. To ensure that V. /Qr is less than
unity at » = b, it follows from Eq. (3.2) that ﬁpx% must be less
than unity. With the proviso that ﬁpr < 1, it can be shown
using Eq. (3.3) that the source region will fill the cavity (that is,
xe = 1) when

Jr = 0437[1 — (BT, (3.5)
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Fig. 2. (a) Schematic representation of the simple cavity; (b) grid
distribution used in computation.

That is, free-vortex flow will occur throughout the cavity when
/At exceeds the value given by Eq. (3.5); this is usually the case
in most practical pre-swirl systems.

3.2. Computed flow structure

Fig. 3 shows the effect of At and f, on the computed
streamlines in the rotating cavity for Re; = 0.903 x 10°. Also
shown, for §, > 1, are the contours where V; ., /Qr = 1 and the
edges of the source region, given by Eq. (3.3), for those cases
where x, < 1.

Referring to the streamlines for Ar = 0.1, the following
observations can be made:

e For f, =2 and 3, recirculation occurs in a separation zone;

the edge of this zone is at x = 0.66 for f, =2 and x = 0.76
for B, = 3. These locations correspond to the point where

Vioo/Qr =1 on the disc: this is consistent with the state-
ment made in Section 3.1 that radial inflow occurs in the
boundary layers when ¥ .. /Qr > 1.

e For i, = 1and 2, Eq. (3.3) gives x. = 0.75 and 0.89, respec-
tively, which are consistent with the behaviour of the
streamlines: for x > x., the flow stratifies and nonentraining
Ekman-type layers are visible.

Eq. (3.5) implies that the source region should fill the cavity
for 4y = 0.1 and 0.4 when f, > 4 and 0.35, respectively, and
the computed streamlines shown in Fig. 3 are consistent with
these results.

Computed velocities (not shown here) reveal that, outside
the boundary layers on the disc, there is little axial variation of

the tangential component of velocity, and Vj ., /Qr is virtually
invariant with z and depends mainly on r. Referring to Eq.
(3.1), for an ideal free vortex, Vy ., /Qr o x2. It is therefore
instructive to plot the computed values of Vj ., /Qr against x~%:
a free vortex will appear as a straight line passing through the
origin at x2 = 0.

Fig. 4 shows the effects of ir and f, on the computed
variation of V. /Qr with x> (at the mid-axial plane,
z/s = 0.5), for Re, = 0.903 x 10°, together with the ideal free
vortex according to Eq. (3.1) with x; = 0.48. Except for the
results for B, = 0, the computations approximate to free-vor-
tex flow over most of the cavity, but the computed values of
Vy/Qr tend to be lower than those for the ideal free vortex.
Experimental evidence for these free-vortex flows is given by
Karabay et al. (1999, 2000) who used laser Doppler ane-
mometry (LDA) to measure the velocities inside a pre-swirl
rotating-disc rig.

By analogy with Eq. (3.1), an effective free vortex can be
obtained using an effective pre-swirl ratio, f, ., such that

Voo X1\ 2
% = ﬁp&ff(;I) . (36)
The effective free-vortex curves shown in Fig. 4 were obtained
using the computed value of Vj .,/Qr at a suitable radius: a
value of x =0.67 (x> =2.22) was arbitrarily chosen. For
B, > 0, these curves show a good fit to the computed results
over most of the cavity except near the inlet at x; = 0.485
(x7? = 4.24) and near the periphery at x = 1. The results for
/r=0.1 and 8, =1 show a departure between the effective
free vortex and the computed values of ¥, ./Qr at x ~ 0.7,
this is where the source region ends and Ekman-type layers
begin. This marks the end of free-vortex flow, and similar
departures can be seen for f§, = 1 for all values of /1 shown in
the figure.

The effective free-vortex curves can be used in conjunction
with Eq. (3.6) to calculate 8, .. The values determined in this

way were found to depend strongly on f8, but varied only
weakly with At. The following correlation was obtained for
x; =048505<f, <4and 0.1 < /r < 0.4

Boeir = 1.0348, — 0.0435.. (3.7)

Fig. 5 shows the computed values of f, . together with the
correlated variation given by Eq. (3.7), which provides a good
fit to the computed values. The fact that B, < f, when
B, > 1 for the simple cavity is attributed to the recirculation
region near the inlet. There is a transfer of angular momentum
between the fluid flowing radially outwards in the core and
that flowing inwards in the boundary layers on the discs. This
transfer creates an initial loss of momentum in the core fluid;
radially outward of the recirculation region, the angular mo-
mentum of the core fluid is conserved, which results in a free
vortex with an effective swirl ratio lower than that at inlet. The
size of the recirculation region and the size of the losses in-
crease as f3, increases; this loss mechanism appears to be only
weakly affected by Ar, but it is expected to depend on the inlet
geometry.

Karabay et al. (2000) presented measurements for f, 4
obtained for the “whole pre-swirl rotating-disc system’ (see
Fig. 1(a)) in which there is an axial flow into the rotating
cavity. Their empirical correlation, which agreed closely with
their computations for the whole system, is also plotted in
Fig. 5. The fact that the experimental values of S, are
smaller than those given by Eq. (3.7) is attributed to the in-
creased losses that occur in the whole system with an axial inlet
compared with those for the simple cavity in which the flow
enters radially.
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Fig. 3. Effect of varying 8, and /r on computed streamlines with Re, = 0.903 x 10°: (- - -) B = 1; (—) end of the source region (Eq. (3.3)).

3.3. Calculated pressure distribution

The flow in the core outside the boundary layers is con-
sidered to be inviscid, and the velocity and pressures are as-
sumed to depend only on the radius. The Navier-Stokes
equations then reduce to
Ldp Vo 4%

e

p dr r > odr (38)

For free-vortex flow in the core, where ¥ o, r~1, it follows
that:
ldp 1d

— = — = — 2 2 . .
) dr 2 dr(Vd),oo + Vroc) (3 9)

For an adiabatic perfect gas, where p/p’ is constant, the left-
hand side of Eq. (3.9) can be integrated from » = r|, the inner
radius of the cavity (r; = a), where p = p,, such that

" 1dp ( 9 )Pl (p>(v1)/‘/
——dr= — |— = —15. 3.10
/m p dr 7—1/)p | \p (3.10)

The local pressure coefficient, C,,, can be defined as

&= (vzl> (1/2;2192%{(%)(“)”1}' G

In the limit as p — py, Eq. (3.11) reduces to the incompressible
form

PP
OErY (12

Eq. (3.9) can be integrated to give

C. =
p )
o

(3.13)

where the radial component of velocity can be approximated
by

m

Vo = —— 3.14
’ 2nprs ( )
or, in nondimensional form,
Vo0 C, V?

= = (3.15)

Qr  2nGRey rir’

Using this equation, together with Eq. (3.6), in (3.13) gives

C, = {ﬁ;efer (2“(?1;%>Z<2>4}{1 - (%‘)2} (3.16)

where B, . can be calculated from Eq. (3.7).

Fig. 6 shows comparisons between Eq. (3.16) and the
computed radial variation of C, for Re,=0.9 x 105,
21 =0.1,0.22, and 0.4, and 8, = 1, 2 and 3. The effect of /7 is
relatively weak, and C;, is controlled principally by 8, .+ (and
hence by f8,) for the conditions used here.
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4. Thermodynamics of pre-swirl systems

For this analysis, station 1 is the inlet to the simple cavity at
ri =rp, = a, 2 is inside the blade-cooling passages at the outlet
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Fig. 6. Effect of Ar on computed and calculated pressure coefficients
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B, = 3. Calculation (Eq. (3.16)): O.
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of the cavity at r, = ry,, and the velocities and temperatures at
stations 1 and 2 are bulk-average values.

The steady-flow energy equation for the system can be
written as

O — Wy = tiney(Tyr — Toy), (4.1)

where Oy, is the rate of heat transferred to the air between
stations 1 and 2, W}, the rate of work done by the air, 71, the
mass flow rate of the air, and T, and Tj, are the total tem-
peratures of the air at stations 1 and 2 in a stationary frame of
reference.

If Q is the angular speed of the rotating cavity and M is the
moment exerted by the air on the rotating surfaces, then

Wi, = MQ. (4.2)

As M is equal to the rate of change of angular momentum of
the air, it follows that:

Wi, = —mQ(rVys — nVy,), (4.3)
where

Vor = B,Qr (4.4)
and

Vo = Qrs. (4.5)

Eq. (4.1) can then be rewritten as

le 22 "

Cp(To‘sz()‘]):f‘F.Q r 11— p 2 |- (46)
i 3

In the stationary frame, the total temperature, Tp,, can be

written for a perfect gas as

cpTor = cph + %(Vrz + V¢2 +V2),, 4.7)

where 7, is the static temperature at the outlet. It is more
appropriate, however, to use T;,, the total temperature in the
rotating frame, which is the value that would be measured by
a total-temperature probe located in a blade-cooling passage
where V,, = Qr,. It is this value that controls the heat
transfer from the turbine blades to the cooling air. (Eq. (4.5)
implies that the air inside the cooling passage is in solid-body
rotation at » =r,. In general, immediately upstream of the
passage, V, # Qr,; additional work is done on, or by, the air
inside the passage until solid-body rotation is achieved at
some downstream location. Consequently, as Karabay et al.
(2000) pointed out, the accurate measurement of T, is diffi-
cult to achieve. For the computations discussed below, the
“additional work” was added to the computed total tem-
perature.)
By definition

epTia = T+ 312+ V72), (4.8)
and it follows that:

CpTl_z = CpTo,z — %QZI’%. (49)
For consistency with Karabay et al. (1999), the blade-cooling
effectiveness, @y, is defined as

_ &lfor = Tia) *2Tt~2) : (4.10)

(1/2)Q%r3
This is the nondimensional temperature difference between the
stationary pre-swirl nozzles and the rotating blade-cooling
passages, and a positive value of @, signifies that the pre-swirl
system is effective in reducing the total temperature of the
cooling air.

Using Egs. (4.9) and (4.10), Eq. (4.6) can be rewritten as

@bzzﬁﬁ e (4.11)
P (1/2)mQr3

For the adiabatic case, where Q12:0 and O, = Oy,
Eq. (4.11) reduces to

rz
Ovaa =25B,— 1, (4.12)
s

which is the result obtained by Karabay et al. (1999). This
shows that, for a given value of Tj; in an adiabatic system, T},
decreases as 3, increases.

Fig. 7 shows a comparison between the computed values
of Oy.q for the simple cavity, using the solver described in
Section 2, and the variation given by Eq. (4.12) for
r1/ra = 0.5. As Eq. (4.12) is exact, any differences between this
equation and the computation are caused by numerical errors;
it can be seen from Fig. 7 that these errors are small. (It
should be noted that, in a gas turbine the dynamic tempera-
ture, (1/2)Q%3/c,, can be around 50°C, and so the accurate
determination of @y ,q4 is important for the design of cooling-
air systems.)

In general, heat may be transferred to the cooling air from
all bounding surfaces. In the experiments of Pilbrow et al.
(1999), the principal heat transfer was from the heated disc,
and the other surfaces were quasi-adiabatic. It is therefore
convenient to define the average Nusselt number, Nu,,, as

Gsavb

Nu'v :7’
‘ k(Tb - TS-ad)av

(4.13)

where
o

qs‘av T[(bz _ az) .
a and b being the inner and outer radii of the heated disc, and
the subscript ‘av’ referring to the radially-weighted average.
(For the case where the cover-plate and shroud are not adia-
batic, Eq. (4.13) would have to take account of the heat
transfer from these surfaces.) The adiabatic-disc temperature,

T a4, 1s defined in Section 5.
It is also convenient to define

_ CP(TS _ TS-,ﬂd)av
(/2@

(4.14)

(4.15)

s,av

0.6
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Fig. 7. Comparison between computed and theoretical variation of
Oyag With f, for ri/ry = 0.5, Rey = 0.903 x 10°, ir = 0.3: (—) Eq.
(4.12); (®) computed values.
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Using this definition, Eq. (4.11) becomes

Nu,,
@b = @b‘ad Tf(l 2 ) PI‘C @s.aw (416)
where Pr is the Prandtl number of the fluid.

In order to use Eq. (4.16) to find AT, where AT = T, — Ty,
it is necessary to know Nu,, and @;,,, which depend on the
geometry of the pre-swirl system and on the thermal and flow
conditions. The Reynolds analogy can be used to address this
problem, as discussed below.

5. Heat transfer: application of the Reynolds analogy to free-
vortex flows

Considerable insight into the relationship between the flow
and heat transfer in a rotating cavity can be given by the
Reynolds analogy, the salient details of which are given in
Appendix A. Of interest here are the relationships between the
heat flux and the shear stress, and between the average Nusselt
number and the moment coefficient, for the special case where
there is a free vortex in the core outside the boundary layers on
the rotating discs. The definition of the adiabatic-disc tem-
perature is particularly important for pre-swirl rotating-disc
systems, as discussed below.

5.1. Adiabatic-disc temperature

The adiabatic disc-temperature given, for Pr =1, in Ap-
pendix A can be extended to the case where Pr # 1 by the use
of a recovery factor, R. Egs. (A.11a) and (A.11b) can be, re-
spectively, written as

g Voo \
Toaa = T +RT(1—%) (5.1a)
P
and
QZ 2 2
Ts.ad Tb* +R?(1—%) (Slb)
p

Eq. (5.1a) is the same as that used by Chew and Rogers (1988),
which is a generalisation of the result derived by Owen (1971).
The recovery factor is assumed to be a function of the Prandtl
number, and R =1 when Pr= 1. In the literature, it is cus-
tomary to assume that R = Pr'/3 for fluids with Prandtl num-
bers of the order of unity; for air, with Pr = 0.71, this gives
R =0.892.

As, in general, T, and T;, are unknown, it is convenient to
express Egs. (5.1a) and (5.1b) in terms of 7j 1, which is usually
known. This can be done using either

V2
To1 =Ty 5.2
T, 2cp (5.22)
or
%2
T =T, =, 5.2b
0,1 + T+ 2, ( )

With the use of Egs. (3.1) and (3.2), Egs. (5.1a) and (5.1b) can
be, respectively, expressed as

2 2
Toaa — Toy = b {Rx2 (1 - R)oxix> — 2RBx7} (5.3a)
and

2b2
Tiaa — Tor = {Rx2 (1+R)Bx1}. (5.3b)

ForR=1or [)’p = 0, Egs. (5.3a) and (5.3b) are identical.

Fig. 8 shows comparisons between Egs. (5.3a) and (5.3b)
and the computed adiabatic-disc temperatures for
Rey =0.906 x 105 and Ar=0.3. In Fig. 8(a), where
Pr =R =1, the agreement between the theoretical and com-
puted results is very good. In Fig. 8(b), where Pr = 0.71 and
R =0.892, the agreement between Eq. (5.3a) and the compu-
tations is again very good, but Eq. (5.3b) diverges from the
computations, and from Eq. (5.3a), as f§, increases and as x?
decreases.

For flow over a stationary surface, where the free-stream
velocity is U, the recovery factor is often regarded as the
ratio of the “frictional temperature” increase, T;.q — Ts, tO
the “adiabatic compression”, U2 /2¢,. In a rotatmg frame of
reference, U2 could be replaced by (Qr— V¢OC) , in which
case the recovery factor used in Eq. (5.1a) is consistent with
that for a stationary surface. In the authors’ earlier publi-
cations, Eq. (5.3b) was used for the adiabatic-disc tempera-
ture. In the future, Eq. (5.3a) will be used, although the
differences in the evaluated Nusselt numbers are likely to be
very small.

5.2. Local Nusselt numbers

Any temperature difference, AT say, can be used in the
definition of the Nusselt number, but there will be an incon-
sistency unless ¢; = 0 when AT = 0; the only consistent defi-
nition is where AT = T, — T; 4. It should also be noted that, for
engine operating conditions, the magnitude of the right-hand
side of Egs. (5.3a) and (5.3b) can be around 50°C: there can be
a significant difference between the use of 7;; (which the un-

wary may choose) and 7,4 (which is used here).

ForPr=1, Eqs (A.10b) and (A.11b) in Appendix A can be
combined to give

s (T = Taa) (5.4)
Tgs Qr(l —r2/r2)’
The local Nusselt number is defined as
Nu = ﬁ (5.5)
and it follows from Egs. (5.4) and (3.2) that:
Nu = —Re, 32;,2 #2/;@

— Re, ;;’222 - 1 T (5.6)

Fig. 9 shows comparisons between the computed local Nusselt
numbers, for 0 < f, <3 and Pr =1, and those obtained from
the Reynolds analogy. The latter values of Nu were calculated
from Eq. (5.6) using the computed values of 7, and, for
B, > 1, the value of x? was calculated from Eq. (3.2). The
computations were obtained for the conditions given in Fig. 8,
and the surface temperatures on the disc correspond to the
quadratic distributions necessary for the Reynolds analogy
(see Eq. (A.3)).

It can be seen that, apart from the results near x = x,, the
agreement between the computed Nusselt numbers and those
obtained from the Reynolds analogy is mainly very good. (The
shear stress 7, is greater than or less than zero when x is,
respectively, less than or greater than x., and there is a sin-
gularity in the right-hand side of Eq. (5.6) when x* = x? = fx}.
Accurate computations of Nu are difficult to achieve in this
region.)
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Fig. 9. Comparison between computed and theoretical local Nusselt numbers for Pr =1, Rey = 0.903 x 10° and A1 = 0.3. Computed values: O;

Eq. (5.6): —.
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5.3. Average Nusselt numbers

The temperature of the blade-cooling air is strongly affected
by the average Nusselt number, Nu,,, as Eq. (4.16) shows, and
the Reynolds analogy (for Pr=1) can be used to derive an
expression for Nuy,.

From Eq. (5.4)

2 b
qs,av:m/ ”%d”

_2Cp b rzf(})s(Ts - Tsad)
= 2 === dr. 5.7
Q(b* — a?) /a r2—r? d (57)
From Eq.(A.3) in Appendix A
@ 1\, ,
n-r.=2(c-3)e-n. (53)

where for a perfect gas, C is an arbitrary constant. Using Eq.
(A.11b) it follows that:

QZ
L= Taa=_—(C— D —r). (5.9)
P

Hence, from Eq. (5.7)

20 b
Gsav = —m(C — 1)/ rrg.dr. (5.10)
Also

2 b
(Ts — Toad) oy = Y_a / r(Ty — Tiaa)dr

207(C-1) (bt —at (P —dP)
_cp(bz—az){ I } (5.11)

Hence, using Egs. (3.2), (5.10) and (5.11) in Eq. (4.13), it fol-
lows that:

ReyCry

(1l — (a2/b)){1 + (a?/b?) = 2B, (r7/b?)}’
where C,, is the moment coefficient for the rotating disc, which
is given by

co— —on [7 Py dr

T (1/2)p@2%bS

It should be noted that 7, is negative when Vo, < Qr (that is,
when x > x,), and vice versa.

Substituting Egs. (4.12), (5.9) and (5.12) into Eq. (4.16)
gives

2 2
Oy = {2%[310 - 1} - {4(07 1) ReoCm } (5.14)

2
5 Cy

Nu,, = (5.12)

(5.13)

where @y is the nondimensional difference in the total tem-
perature of the blade-cooling air, as defined in Eq. (4.10).

6. Effect of B, on disc moments and heat transfer for free-vortex
flows

6.1. Moment coefficients

Knowing something, theoretically or experimentally, about
the fluid mechanics, the engineer usually employs the Reynolds
analogy to predict something about the heat transfer. For
example, if the moment coefficient were known, the average
Nusselt number could be estimated. However, Eq. (5.12) can

be used to give insight into the fluid mechanics itself: in par-
ticular, it provides useful information about Cy,.

It is reasonable to assume that Nu,, must always be a finite
quantity: referring to Eq. (4.13), if Nu,, were infinite, then the
average heat flux, ¢ ,,, would also be infinite for any nonzero
value of the average temperature difference, (7; — T;a4),,- Re-
ferring to Eq. (5.12), if Nu,, is to remain finite then C,, must
equal zero when the denominator is zero. It is convenient to
define a critical pre-swirl ratio, f§ such that C,, = 0 when
B, = By uit> and it follows that:

p.crit>

@+ b
Bp,crit = 27},%

(From Eq. (3.2), this occurs when r? = 1/2(a? + b%).)

Eq. (6.1) is a logical consequence of Eq. (5.12). Eq. (5.12)
was derived from the Reynolds analogy, which is only strictly
valid when the conditions stated in Appendix A are satisfied.
However, as Eq. (5.13) shows, C,, depends on 7,4, which in
turn depends on the fluid dynamics and not, apart from any
minor effects of property variations in the fluid, on the heat
transfer. Therefore, if the statement that C, =0 when
By, = Byt 18 true when the Reynolds-analogy conditions ap-
ply, it must also be true when they do not apply. Consequently,
Eq. (6.1) is valid regardless of the Prandtl number of the fluid
or the thermal conditions of the flow. In particular, f; de-
pends only on the geometry (a, b and ) and not on the flow
parameters (Rey, Ar). Paradoxically, despite the assumptions
made in its derivation, Eq. (6.1) is generally valid for a rotating
cavity in which there is free-vortex flow in the core.

Eq. (5.12) can now be rewritten as

1 Re,,,Cm
TE(l - a4/b4) (1 - ﬁp/ﬂp,crit) .

For the cavity considered here, where a = r; = 100 mm and
b =206 mm, Eq. (6.1) gives B, = 2.622. Fig. 10 shows the
computed variation of Cy,/Cp o With Bo/ Bocrit» Where Cry g is the
value of Cy,, when 8, =0 and f,; = 2.622. These computa-
tions, which were made for Rey, = 0.903 x 105 and Ar = 0.3,
are consistent with the value of B, given by Eq. (6.1).
Computations conducted at other values of Re, and it con-
firmed that these flow parameters do not affect the value of
/)) crit*

' It is convenient to correlate the moment coefficient by a
polynomial of the form

Cun/Cumo = 1 + Ay + Ayo® + A3 + - - (6.3)

(6.1)

Nu,, =

(6.2)

where o is the “ratio of the pre-swirl ratios” given by

o= ﬁp/ﬁp,cril (64)

and 4, A,, A; etc. are coeflicients, which are expected to be
functions of Rey and Ar. Fig. 10 shows the linear variation
where

Cn/Cnp=1—1a (6.5)
and the cubic variation where
Cn/Cmpo =1—1.3582a + 0.60350> — 0.2453¢°. (6.6)

In both cases, Cy,/Cno = 0 when o = 1. The cubic curve pro-
vides a good fit to the computed results; the linear variation is
reasonable but, as discussed below, it has disadvantages when
used in Eq. (6.2) to calculate the average Nusselt numbers.

6.2. Average Nusselt numbers

Fig. 11 shows the variation of Nu,, with B, for Re, =
0.903 x 10° and At = 0.3; for the computations, Pr = 1 and the
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thermal boundary conditions satisfied the Reynolds analogy.

Four methods were used to determine Nug, .

(1) Nu,,(1). The local heat flux, ¢, computed from the energy
equation, was integrated to calculate Nu,, from Eq. (4.13).
(i1) Nu,,(ii). The computed value of C,,, was used in the Rey-
nolds analogy, Eq. (6.2), to determine Nu,,.

(111) Nu,,(ii1). The linear fit to Cy, (Eq. (6.5)) was used in the
Reynolds analogy.

(iv) Nu,y(iv). The cubic fit to C,, (Eq. (6.6)) was used in the
Reynolds analogy.

Referring to Fig. 11, the following points may be noted:

e For f,/B, it <0.76 (that is, f, < 2), Nuy,(i) and Nu,,(ii) are
in good agreement, and both reduce as f3, increases.

e For B,/B,ui > 0.76, the agreement between Nu,, (i) and
Nu,,(ii) is not so good. The main reason for this is the sin-
gularity in Eq. (6.2) at 8,/ o = 1: small errors in the com-
puted values of C,, cause large errors in Nu,(ii). Also, as
stated in Appendix A, the Reynolds analogy is strictly valid
only for parabolic flows: as f8, increases, the recirculation
region becomes larger and the flow becomes increasingly el-
liptic. It is considered to be this effect that causes Nu,,(ii) to
diverge from Nu,,(i) at the larger values of 8.

® Nu,/(iii) is invariant with f,.

® Nu,(iv) is in good agreement with Nu,,(ii) except, for the
reasons given above, near the singularity at f,/f, . = 1.
The large differences between Nu,,(iii) and Nu,,(iv), caused
by small differences in Cy, (see Fig. 10), show that this is
an ill-conditioned problem.
Apart from Nu,,(iii), the computations show that there is a
minimum value of Nu,, at some value of f8,. This value will be
referred to as B, ,,, the optimal pre-swirl ratio at which Nu,, is

a minimum. For Nu,,(iii), B, = 1.9, which corresponds to

ﬂp,opt/ﬂp‘crit ~ 0737 (67)

where . is given by Eq. (6.1).

Karabay (1998) conducted computations for air (Pr = 0.71)
and for 0.42x10° <Re, <0.9x 105 0.22< ir <04,
0.31 < a/b < 0.58. Eq. (6.7) provided a reasonable approxi-
mation for f, ., which was found to be invariant with Re; and
Cy. Computations showed that the radial distribution of disc
temperature could have a significant effect on the value of
Bpoopt- All these parameters are likely to affect the cooling-air
temperature, as discussed below.

6.3. Cooling-air temperature

From Egs. (4.16) and (4.12), the total-temperature differ-
ence between the blade-cooling holes and the pre-swirl nozzles
is given by

a*\ Nuyy,
Tiro —To1 = Tf(l - ﬁ) PC, (Ts — Toad)yy

}”% QZ ’,,2
_GE&_QZ%' (6.8)

The first term on the right-hand side of Eq. (6.8) is the heat
transfer term; the second is the adiabatic work term.

Consider the case where Ty, Rey, Cy and the geometric
parameters are fixed. The effect of 8, on the work term is
monotonic: increasing f, reduces T;,. The effect of f, on the
heat transfer term is more complicated: it was shown in Section
6.2 that Nu,, reaches a minimum when B, = f,,,. For
By < Bpopt» the heat transfer and work terms are in conjunc-
tion: T, decreases as f3, increases. For f, > f, . the two
terms are in opposition: whether T;, increases or decreases as
B, increases will depend on the relative magnitude of these
terms.

14 o
] @ 0.90x10°
Tt,Z'TO,I ] —f- 0.6\;:10‘
C) 124 -+ 0.42x10°
10+
8-
6
4
2
o+
0 1 2 3
Bp

Fig. 12. Computed effect of Re, on variation of T, — Ty with §, for
Pr=0.71 and C,, = 1.28 x 10*.
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Fig. 12 shows the computed variation of T;, — Ty with 8.
The computations were conducted for air with one flow rate,
one disc temperature distribution and three values of Rey. The
effects referred to above can be seen: for Rey = 0.9 x 10°, the
work term dominates and 7;, decreases monotonically as By
increases; for Rey, = 0.61 x 10 and 0.42 x 10°, T;, decreases
with B, when B, < B, and increases when 8, > f, ;-

Karabay (1998) carried out similar computations for other
values of Rey and C,, and for other distributions of disc tem-
perature. The trends were similar to those discussed here.

7. Conclusions

The flow and heat transfer in a simplified model of a pre-
swirl rotating-disc system has been studied theoretically and
computationally, and the Reynolds analogy has been used to
throw light on this complicated problem. The computational
ranges of parameters were: 0.1 < Ap < 0.4, 0.6 x 10° < Re, <
1.8 % 10%, 5800 < C,, < 23000, 0 < f, <6 and r//r, =0.5.
Although the rotational Reynolds numbers were significantly
lower than those in the cooling systems of gas-turbine engines,
the resulting flow structures are considered to be representative
of those found in many practical cases. The principal conclu-
sions are summarised below:

e Computed values of the adiabatic-disc temperature, 7,4,
and the local Nusselt number, Nu, are in good agreement
with theoretical relationships derived using the Reynolds
analogy.

e It has been shown theoretically that there is a critical pre-
swirl ratio, B, ., at which the moment coefficient, Cy, is ze-
ro, and there is an optimal pre-swirl ratio, f, ., at which
the average Nusselt number, Nu,,, is a minimum. Computa-
tions have shown that C,, = 0 when f, = f, . they have
also confirmed the existence of a minimum value of Nu,,
when f, = B, opt-

e For B, < B, > the total temperature of the blade-cooling
air, Ti,, decreases as f3, increases. For 8, > f, ., whether
T, decreases or increases as 3, increases depends on the rel-
ative magnitude of the heat transfer and the work terms in
the energy equation.
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Appendix A. The Reynolds analogy for a rotating cavity

The Reynolds analogy given by Owen and Rogers (1995)
can be used to determine the relationships between the shear
stress and heat flux, and between the moment coefficient and
the average Nusselt number, in the rotating cavity considered
in Section 5; it can also be used to determine the adiabatic-disc
temperature. For the conditions specified below, the Reynolds
analogy is exact for boundary-layer flows; it holds approxi-
mately for some elliptic flows. The salient points are given
below.

In rotating boundary-layer flows, there is radial outflow in
the boundary layer on the disc when V., < Qr and radial
inflow when V., > Qr, where 7, is the tangential compo-
nent of velocity in the core outside the boundary layer. The
radius, r, say, where V., = Qr,, corresponds to a stagnation

point on the disc: for » > r,, the flow in the boundary layer is
radially outward; for r < r,, the flow is inward.
The total enthalpy H is defined as

H=c,T+3(V + V) +Kp/p. (A1)

where &' = 0 for a perfect gas and k¥’ = 1 for incompressible
flow. H, is a constant reference enthalpy, chosen as

H,=H(r.,0) = ¢, T,. + 1% + K'p/p. (A2)

The solutions of the boundary layer momentum and energy
equations will be similar for the case where the Prandtl number
is unity and

(i) H —H =CQ( —r), (A3)
(ii) %(H(r7 z)—H,)—0 asz— oo, (A4)
(ii) H(r.,z) = H., (A.3)

where C is an arbitrary constant.
Under the above conditions, it can be shown (see Owen and
Rogers, 1995) that

H—H, _rV(,,—Qrf

= A.
Hy—H, Q@*—1r2)’ (A.6)
H—-Hy Vy—Vyo
= : A7
I_[s - Hec Qr — Vrﬁx: ' ( )
H — H; Ve — Qr
— = A.
Hy—Hy,, Qr—7V; (A8)
and
qs (0T /0z), (A9)

e (@V/0),
Eq. (A.9) can be evaluated by differentiating Eq. (A.7) to give
g (= To) = (1/2)Q7(1 = (Vs /Qr))

. A.10¢
Ths Qr — Vo (A-10a)
Alternatively, using Eq. (A.6)
S TS_TS*_lzgzzl_ 2/r?
4 __om=T) (2L (E/) 0

Ths Qr(l1 = (r7/r%))

The adiabatic-disc temperature, T;,q, can be found by putting
gs to zero in Egs. (A.10a) and (A.10b). This gives

foge Viso \
Ts4ad=Tm+%(1 f%) (A.11a)
P
and
92 2 2
Tstad:Ts,*‘F%(l—:—;). (A.11b)
p

For Pr = 1, which is the case considered here, Egs. (A.11a) and
(A.11b) are equivalent. The case when Pr # 1 is discussed in
Section 5.1.
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