

 :ارائه شده توسط

ه فا �� سايت ��

� مرجع �� ه شده جديد�� �� مقا�ت ��

ت معت � �# از ن%$

http://tarjomefa.com/

C O M P U T E R S C I E N C E R E V I E W () –

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/cosrev

Survey

A survey on parallel and distributed multi-agent
systems for high performance computing
simulations

Alban Rousset∗, Bénédicte Herrmann, Christophe Lang, Laurent Philippe
Femto-ST Institute CNRS/UFC – Faculté des Sciences et des Techniques, 16 Route de Gray 25030 Besançon cedex,
France

H I G H L I G H T S

• We survey Parallel and Distributed Multi-Agents Systems for HPC.

• We analyze the platform properties for distribution support.

• We have implemented a reference model to assess the impact of the properties on the simulation development.

• We assess the performance impact on the simulation scalability.

A R T I C L E I N F O

Article history:

Received 8 October 2015

Received in revised form

30 June 2016

Accepted 2 August 2016

Keywords:

Multi-agent simulation

Parallelism

MAS

High performance computing

A B S T R A C T

Simulation has become an indispensable tool for researchers to explore systems without

having recourse to real experiments. Depending on the characteristics of the modeled sys-

tem, methods used to represent the system may vary. Multi-agent systems are often used

to model and simulate complex systems. In any cases, increasing the size and the pre-

cision of the model increases the amount of computation, requiring the use of parallel

systems when it becomes too large. In this paper, we focus on parallel platforms that sup-

port multi-agent simulations and their execution on high performance resources as paral-

lel clusters. Our contribution is a survey on existing platforms and their evaluation in the

context of high performance computing. We present a qualitative analysis of several multi-

agent platforms, their tests in high performance computing execution environments, and

the performance results for the only two platforms that fulfill the high performance com-

puting constraints.
c⃝ 2016 Elsevier Inc. All rights reserved.

Contents

1. Introduction ... 2

2. MAS based simulations .. 3

∗ Corresponding author.
E-mail addresses: alban.rousset@femto-st.fr (A. Rousset), benedicte.herrmann@femto-st.fr (B. Herrmann),

christophe.lang@femto-st.fr (C. Lang), laurent.philippe@femto-st.fr (L. Philippe).

http://dx.doi.org/10.1016/j.cosrev.2016.08.001
1574-0137/ c⃝ 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.cosrev.2016.08.001
http://www.elsevier.com/locate/cosrev
http://www.elsevier.com/locate/cosrev
mailto:alban.rousset@femto-st.fr
mailto:benedicte.herrmann@femto-st.fr
mailto:christophe.lang@femto-st.fr
mailto:laurent.philippe@femto-st.fr
http://dx.doi.org/10.1016/j.cosrev.2016.08.001

2 C O M P U T E R S C I E N C E R E V I E W () –

3. PDMAS and HPC ... 4

4. Existing PDMAS platforms .. 4

5. Qualitative analysis .. 5

5.1. Method .. 5

5.2. Analysis ... 6

6. Analysis of distribution support ... 9

6.1. Method .. 9

6.2. Reference model .. 9

6.3. Distribution ... 10

6.3.1. D-MASON ... 10

6.3.2. RepastHPC .. 11

6.3.3. Flame.. 11

6.3.4. Pandora .. 12

6.3.5. Communication.. 12

6.3.6. D-MASON ... 12

6.3.7. RepastHPC .. 12

6.3.8. Flame.. 12

6.3.9. Pandora .. 13

6.4. Coherency/Synchronization... 13

6.4.1. D-MASON ... 13

6.4.2. RepastHPC .. 13

6.4.3. Flame.. 14

6.4.4. Pandora .. 14

6.4.5. Load balancing ... 14

6.4.6. D-MASON ... 14

6.4.7. Flame.. 14

6.4.8. RepastHPC .. 14

6.4.9. Pandora .. 14

6.5. Synthesis of the parallel properties ... 14

7. Performance evaluation.. 14

7.1. Experimental settings .. 14

7.2. Performance results ... 15

8. Synthesis .. 16

8.1. RepastHPC ... 17

8.2. Flame... 17

8.3. D-MASON .. 17

8.4. Pandora.. 17

9. Conclusion.. 18

Acknowledgment.. 19

References .. 19

1. Introduction

In the field of simulation, to improve the confidence in a
result, we often need to overcome the limits of a model, for
instance by increasing its size (simulate larger systems) or its
accuracy (smaller discretization of the system). Increasing the
size of a model or improving its accuracy has however a direct
impact on the amount of computations necessary to animate
the model. More computing resources are thus needed and
centralized systems are often no longer sufficient to run
these simulations. The use of parallel resources allows us to
overcome the resource limits of centralized systems and thus
to increase the size and the accuracy of the simulatedmodels.

There are several ways to model a system [1]. For example,
the time behavior of a large number of physical systems is
based on differential equations. In this case the discretization
of a model allows, most of the time, its representation as
a linear system. It is then possible to use existing parallel

libraries to take advantage of many computing nodes and
run large simulations. On the other hand it is not possible
to model every time-dependent system with differential
equations. This is for instance the case of complex systems
as defined in [2] where the complexity of the dependencies
between the phenomena that drive the entity behaviors
makes it difficult to define a global law modeling the entire
system. For this reason multi-agent systems (MAS) are often
used to model complex systems. MAS are based on an
algorithmic description of individuals, agents, that simulate
the expected behavior. Then the platform is in charge
of animating the model, i.e. running the agent behaviors,
either using a periodic time discretization, time steps, or
a list of scheduled events. MAS thus propose a bottom-up
modeling approach as opposed to the top-down approach
of formal models. From the viewpoint of increasing the
size or accuracy of simulations, multi-agent systems are
constrained to the same rules as other modeling techniques.

C O M P U T E R S C I E N C E R E V I E W () – 3

There however exists less support for parallel execution of
multi-agent models compared to the large set of parallel
libraries available for linear systems. The interest for
parallel multi-agent platforms has recently increased. This
is for instance the case in the simulation of individual
displacements in a city/urban mobility [3,4]. By offering
more resources, parallel platforms allow to run larger agent
simulations and thus to obtain results or behaviors that were
not possible to obtain with smaller number of agents.

In this article, we focus on multi-agent simulation plat-
forms that run on parallel distributed environments such as
high performance clusters and supercomputers in comput-
ing centers. The contribution of the article is a survey on
parallel distributed multi-agent simulation platforms and a
performance assessment of the HPC (High Performance Com-
puting) compliant platforms. This survey is based on an ex-
tensive bibliographical work done to identify the existing
platforms. We assess these platforms from both qualitative
and performance view points and propose a classification
of the platforms from their description in articles. Last, we
test the compliance of the platforms to HPC execution en-
vironments and we compare performance of the only two
platforms (i.e. FLAME and RepastHPC) that fulfill the require-
ments. To reach this goal we run them on a HPC cluster with
a representative model.

The article is organized as follows. In Section 2 we intro-
duce the context of agents and multi-agent systems (MAS)
in general. In Section 3, we give the context of parallel dis-
tributed multi-agent systems (PDMAS), an overview of HPC
platforms and the constraints set when running applications.
Then, in Section 4, we present the different multi-agent plat-
forms found in our bibliographical research. In Section 5, we
describe the method used to classify platforms and we pro-
pose an extensive study of their qualitative properties. In Sec-
tion 6, we present the qualitative comparison of the different
PDMAS followed, in Section 7, by the benchmark based on the
implementedmodel. We finish the paper with conclusion and
future work.

2. MAS based simulations

Similarly to the object concept in object oriented develop-
ment, the agent concept has been proposed to ease the de-
velopment of dedicated software. The concept of agent has
been extensively studied for several years and in different do-
mains. One of the first definition of the agent concept is due
to Ferber [5]: “An agent is a real or virtual autonomous entity, op-
erating in an environment, able to perceive and act on it, which can
communicate with other agents, which exhibits an independent be-
havior, which can be seen as the consequence of his knowledge, its
interactions with other agents and goals it need to achieved” and
has been generalized by Woolridge [6]. It is used in a large
number of software related fields as robotics and artificial in-
telligence, but also in more general fields such as psychol-
ogy [7] or biology [8].

The agent concept covers different practical implemen-
tations. The more widespread ones are management agents
and simulation agents. Management agents are implemented
as autonomous software entities that, for instance, manage

a hardware platform. Management agents are, for example,
used in the SNMP network management protocol to gather
real time information on the platform state. In the follow-
ing we refer to implementations based onmanagement agent
as agent based applications. On the other hand a simulation
agent intends to simulate a real behavior in a simulation soft-
ware. It is usually a piece of software code that encapsulates
the behavior of an autonomous entity. Simulation agents are
used in multi-agent models to simulate a large set of entities.
Simulating a system using the multi-agent paradigm aims at
identifying global behaviors or tendencies from individual be-
haviors. This is a bottom-up approach of representing a sys-
tem composed of individuals. In the following we will refer to
for the implementation of amodel with agents asmulti-agent
simulations. In this paper we concentrate onmulti-agent sim-
ulations rather than on agent based applications.

Developing a multi-agent simulation hence requires the
definition of algorithms that simulate the individual behav-
iors. These algorithms are then run by a simulator to repro-
duce the individual behaviors on the simulation data. Two
main schedule approaches are used by the platforms to ani-
mate the model. The “time step” schedule approach assumes
a regular discretization of the simulated time in steps. At each
time step the activatable behaviors of the agents are run. In
the “event based” schedule approach, agents are activated by
events scheduled on the time scale. Note that time driven
simulations can be developed with event driven platforms by
programming periodical events that run the agent behavior.
Representative data, outputs of the simulation, are computed
by animating the model, i.e. iterating on time, as for a large
range of simulation software.

As stated, in the definition, agents operate on an environ-
ment and interact with each other. In the multi-agent simula-
tion context, the environment usually represents data shared
by agents. For instance an environment may represent a ge-
ographic area in which the agents move. From an implemen-
tation point of view this implies that the simulator provides
an access to these shared data. This could be either imple-
mented by defining global data or with specific access pro-
cedures. Interactions between agents may represent direct
interactions as wolves eating sheep or social interactions
when two persons know each other. These interactions can
either be done through the environment or through direct
calls.

A multi-agent system (MAS) platform, is a generic plat-
form that provides the necessary support to run simulations
based on agents. MAS platforms are designed to make the
development and assessment of multi-agent models easier.
Among some well known platforms we can cite Repast Sim-
phony [9], Mason [10], NetLogo [11] and Gama [12]. Their inter-
faces provide services such as agent life cycle management,
communication between agents, agent perception or environ-
ment management. The properties of MAS largely differ de-
pending on the models they target: programming language,
ease of development, user interface, etc.

There already exist several works proposing a survey on
multi-agent platforms [13–16]. These works however only
describe the basic properties of the studied MAS and do not
define a true comparison framework. Only [17] proposes a
classification based on criteria.

4 C O M P U T E R S C I E N C E R E V I E W () –

3. PDMAS and HPC

Most of MAS platforms do not natively implement a sup-
port to run multi-agent simulations in parallel. Possible ap-
proaches to distribute or parallelize a simulation include the
development of a dedicatedmodel as in [18] or the implemen-
tation of a wrapper from scratch [19]. These approaches are
however complex as they require parallel programming skills
while most of multi-agent models are developed by non-
specialist programmers. Although some works [20,21] pro-
pose approaches to facilitate the distribution of multi-agent
systems, tuning a parallel simulation, agent or not, to effi-
ciently run it on a parallel machine requires specific skills.
For this reason it is easier to rely on a Parallel and Dis-
tributed MAS (PDMAS). A PDMAS provides the necessary sup-
port to easily use and operate agent simulations on parallel
resources. Note that, as for other parallel simulations, a par-
allel multi-agent model, with specific optimizations and cor-
rectly tuned for a given parallel machine, will probably reach
the best performances.

Compared to the large number of MAS, only few Paral-
lel and Distributed MAS provide a native support for parallel
execution of models. This support usually includes the col-
laboration between executions on several physical nodes, the
distribution of agents between nodes, the communication be-
tween agents, the synchronization between several process-
ing nodes, and so on. One of the objectives of this survey is
to highlight the properties of the existing PDMAS regarding
parallelism.

During our analysis of the literature, we did not find any
survey about parallel multi-agent platforms except the pa-
per written by Coakley et al. [22]. This work surveys PDMAS
based on qualitative criteria such as the implementation lan-
guage but it does not provide any performance comparison
of the studied platforms. For this reason we propose in this
paper a full comparison of the existing platforms and of their
compliance with HPC platforms. The method used is based
on four steps. First we gathered information on existing plat-
forms with search engines, see Section 4. Second, from the
papers describing these platforms, we did a quantitative anal-
ysis based on several criteria, see Section 5. Third we imple-
mented a reference model to assess the model development
and validate the quantitative criterion, see Section 6. Fourth,
we tested the performance of the model on a HPC platform,
see Section 7. Note that the quantitative and development
analyses provide a larger scope than the performance section
as they consider platforms and criteria not only linked to HPC.

Access to distributed or parallel resources is nowadays
becoming more and more common for scientists who want
to run large models. Several types of hardware platforms
can be used to improve the performance of an application
and today the most widespread parallel platforms are shared
memory machines, distributed memory machines andmany-
core cards (Graphical Processing Unit or GPU and Xeon Phi).
Each kind of machine has its own programming model. On
the one hand shared memory platforms propose a general
purpose programming model but they are limited in number
of cores. On the other hand many-core cards propose a high
number of cores but must be programmed with dedicated
languages. Distributed memory machines and the MIMD

(Multiple Instructions Multiple Data) programming model are
the most used for large simulations because they propose in
the same time a general programming model and they can
scale up to several thousands of cores. In the PDMAS context,
they can support large models and simulations that scale up
in terms of number of agents.

Although there does not exist a standardized definition,
HPC resources usually refer to a set of computers tightly cou-
pled by a high speed network, a cluster or a supercomputer.
They are specialized platforms that set limits to the appli-
cation to be run. Due to their price HPC resources are usu-
ally available in computing centers where they are shared
among users through a resourcemanager. In these computing
centers applications are run in batch mode which prevents
the use of interfaces and of other interactive behaviors. On
the other hand the resources provide specialized hardware as
high speed networks (e.g. InifiniBand) and powerful cores that
can support the execution of large models. In the remainder
of the paper, and in particular in the performance evaluation
section, we focus on HPC resources.

4. Existing PDMAS platforms

As already stated we started this study by a bibliographical
search, using keywords on search engines and following
links cited in the studied articles. This bibliographical search
allowed us to establish a first list of ten existing platforms
or projects of PDMAS platforms. To our knowledge this list
is complete and their is no other available and functional
platform that provides a generic support for PDMAS. We
succinctly present each of these platforms in the following.

D-MASON (Distributed Mason) [23,24] is developed by the
ISISLab at University of Salerno. D-MASON is the distributed
version of the Mason multi-agent platform. The authors
choose to develop a distributed version of Mason to provide a
solution that overcome the limitations on maximum number
of agents without rewriting already developed simulations.
D-MASON uses ActiveMQ JMS (Java Messaging Service) and
MPI (Message Passing Interface) as a base to implement
communications and distribution. D-MASON uses the Java
language to implement the agent model.

Flame [22] is developed by the University of Sheffield.
Flame was designed to allow a wide range of agent models.
Flame provides a formal framework that can be used to create
models and tools. Implementing a Flame simulation is based
on the definition of X-Machines [25] which are defined as fi-
nite state automaton with memory. From this specification
the framework can automatically generate simulation pro-
grams with parallelization based on MPI. In addition, agents
can send and receive messages at the input and the output of
each state.

Jade [26] is developed by the Telecom laboratory of Italia.
The aims of Jade are to simplify the implementation of
distributed multi-agent models across a FIPA compliant [26]
middle-ware. The platform provides a set of tools that
makes the debugging and the deployment phases easier. The
platform can be distributed across multiple computers and
its configuration can be controlled from a remote GUI. Agents
are implemented in Java while the communications may use

C O M P U T E R S C I E N C E R E V I E W () – 5

several transport layers as Java-RMI, HTTP or IIOP to support
FIPA compliant messages.

Pandora (Distributed Mason) [27] is developed by the Su-
percomputing center of Barcelona. It is explicitly programmed
to allow the execution of scalable multi-agent simulations.
According to the literature, Pandora is able to treat thousands
of agents with complex actions. Pandora also provides a sup-
port for a geographic information system (GIS) in order to run
simulations where agents have spatial coordinates. Pandora
uses the C++ language to define and to implement the agent
models. For the communications, Pandora automatically gen-
erates MPI code from the Pandora library.

RepastHPC [28] is developed by the Argonne National
Laboratory. It is part of a series of multi-agent simula-
tion platforms: RepastJ and Repast Simphony. RepastHPC
is specially designed for high performance environments.
RepastHPC uses the same concepts (grid, network) as the core
of Repast Simphony to represent agent environment but they
are adapted to parallel environments. The C++ language is
used to implement agent models but the ReLogo language,
a derivative of the NetLogo language, can also be used. The
RepastHPC platform relies on MPI using the Boost library [29]
For the communications.

PDES-Mas [30,31] is developed by Distributed Systems
Lab at the University of Birmingham. PDES-Mas is a frame-
work and a system (simulation kernel) for the distributed
simulation of agent-based systems. PDES-MAS adopts a stan-
dard discrete event simulation approach with optimistic syn-
chronization. Each agent is modeled as an Agent Logical
Process (ALP). The environment, called the shared state, is
maintained by a dynamically and transparently reconfigured
tree-structured set of additional logical processes, the Com-
munication Logical Processes (CLP), which cluster agent mod-
els and shared state. PDES-Mas uses MPI as a communication
layer.

SWAGES [32] is developed by the University of Notre Dame
(USA). SWAGES provides automatic dynamic parallelization
and distribution of simulations in heterogeneous computing
environments to minimize simulation times. This framework
is generally divided into server-side and client-side compo-
nents. SWAGES allows to develop agent simulations with any
of the available programming languages in Poplog, adding ex-
ternal function calls to C or Java if necessary. The communi-
cation library used is XML-RPC and SSML.

Ecolab [33] is developed by the University of New South
Wales. Ecolab is an agent based modeling systems for C++
programmers. Ecolab is strongly influenced by the design of
Swarm. Ecolab uses MPI as a communication layer.

MACE3J [34] is developed by the university of Illinois. MACE
3J is a Java-based MAS simulation, integration, and devel-
opment test-bed. MACE3J runs on multiprocessor worksta-
tions and in large multiprocessor cluster environments. The
MACE3J design is multi-grain, but gives special attention to
simulating very large communities of large-grain agents. It
exhibits a significant degree of scalability. No information has
been found on the used communication layer.

ABM++ is developed by the Los Alamos National
Laboratory. The ABM++ framework allows to implement agent
based models using C++ and provide an interface to access
the MPI communication layer. It provides the necessary

functions to runmodels on distributedmemory architectures,
as the possibility to serialized objects into message buffers to
move them between nodes.

5. Qualitative analysis

Using the documentation supplied for each platform we
made a qualitative analysis of their properties and of the sup-
port provided to implement models. This qualitative analy-
sis first concentrates on general properties that are useful
when developing a model, as the programming language or
the way agents are synchronized.We also analyze the support
provided by the platforms to implement parallel models. We
however do not assess the support provided in this section
and we limit our analyze to the information given in avail-
able documentations. From these information we select the
platforms that fall in the scope of our study, i.e. multi-agent
simulations.

5.1. Method

We present here the criteria used to compare and analyze
each platform. Three sets of criteria are defined to assess the
platforms.

The first set mainly concerns agent development and
properties of agent entities in the platform. These criteria in-
tend to give information on how agents are implemented and
represented. With these criteria we aim at characterizing the
programming model proposed by the platform. The used cri-
teria are:

1. Programming language: the language used to develop
models. Note that some platforms propose a different lan-
guage for the simulation definition (interactions, agent
state) than for the agent behavior definition.

2. Agent representation: the concept used to represent
agents in the programming language. Every platform,
as a support to multi-agent models, proposes the agent
paradigm. As most platforms are implemented with an
object oriented language this paradigm is usually based
on the object paradigm. Depending on the platform im-
plementation, agents may be represented not only by an
object but also by another set of data that complete the
agent description.

3. Agent state: the agent state is usually made of the agent
local data. This criterion gives the agent state representa-
tion in platform.

4. Agent behavior: the behavior is the dynamic part of the
agent. The representation of the agent behavior may take
different shapes which are of importance when imple-
menting a model.

5. Agent identification: agents are identified in a simulation.
This identification is necessary to send messages or to in-
teract with other agents. As agents will be distributed in a
parallel environment, a suitable agent identification is im-
portant.

The second set of criteria groups the general properties
of the platforms regarding the simulation and the guaranties
provided. These criteria are:

6 C O M P U T E R S C I E N C E R E V I E W () –

1. Agent synchronization:multi-agent simulations are driven
by a scheduler that animates the model, i.e. the scheduler
is in charge of running the agent behavior on the events.
As previously presented two main time discretizations are
usually considered: time driven and event driven.

2. Simultaneous events: in sequential MAS events and
agent behaviors are processed one after another. In
parallel platforms, like PDMAS, several runs are done
simultaneously.

3. Reproducibility: simulating a model must be a determin-
istic process and we should always get the same result
with a given set of parameters. Reproducibility is a manda-
tory property in MAS to be confident in the results. Note
however that this criterion can reach its limit in a parallel
context. Running simulations on different machines with
different speeds make it difficult to implement an abso-
lute reproducibility: (1) the order of agent activation may
differ when they do not run on the same node as nodes
are not synchronized, (2) the order in which messages are
delivered to agents depends on the network propagation of
thesemessages and on the relative advance of some nodes
on the agent schedule.

4. Random numbers: agent behaviors often rely on random
choices and a random number generator is usually pro-
vided with multi-agent platforms. The properties of the
random number generator are of importance when choos-
ing a multi-agent platform. Note also that the random
number generation may introduce some bias in the repro-
ducibility of simulations [35].

The third set of criteria groups the platform character-
istics regarding parallelism. As this survey considers paral-
lelism support in platforms these criteria are of importance.
There are several ways of implementing a PDMAS and the im-
plementation choices impact the platform scope and quality.
While centralized MAS are based on one instance of the plat-
form, PDMAS are composed of several platform instances, one
per node usually, that collaborate to represent the global sys-
tem. This collaboration lays on synchronizations and commu-
nications between the instances. Properties of the considered
PDMAS and Facilities provided to themodel developer depend
on the way these collaborations are realized. The considered
criteria are:

1. Agent interaction: in some models agents need to interact
with one another. These interactions may be limited to the
agent perception field or not. In a parallel context, interac-
tions between agents are more difficult to implement than
in a centralized context as agents cannot always directly
access to the memory representation of other agents. For
this reason this criterion expresses the support given by
the platform regarding communications between agents.

2. Communication layer: most of the platforms rely on al-
ready existing communication layers. The communication
layer properties have an impact on the platform properties
and thus onmodel implementation. Some communication
layers as MPI are more HPC oriented while others as RMI
are less efficient andmore suited for less coupled architec-
tures as networks of workstations.

3. Synchronization: in a multi-agent simulation run, the
scheduler must guarantee that the event processing
order respects the simulated time order. On parallel
machines each node runs at its own speed, it is not phys-
ically synchronized with the others. This leads to differ-
ent physical time while running the same time step. On
the other hand, the number of agents in each platform in-
stance may differ and may impact the time taken to run
a time step. As a result the agent scheduler on different
instances may be in different time steps if no synchro-
nization is introduced, without having the possibility to
synchronize on the physical time. According to [36] there
are several ways to synchronize simulation instances. The
conservative synchronization imposes each instance to be
in the same time step, i.e. a synchronization step as a
global barrier must be done on each node at the end of
each time step. The optimistic synchronization relaxes the
constraint of every node running in the same time step
and uses a roll-back mechanism when causality errors are
detected. The optimistic synchronization avoids blocking
situations and thus provides possible performance gains
compared to the conservative one. This gain could how-
ever be reduced, canceled or even inverted depending on
the number of causality errors to be handled. Note also
that the optimistic synchronization scheme only works if
it is not always the same node that runs slower than the
others. In this case, the global running time of the simula-
tion depends on the running time of the slower node and
is thus not impacted by this optimization.

4. Load balancing: to get good performances from a simula-
tion run, all the processors allocated by the resource man-
ager must be efficiently used, i.e. used asmuch as possible.
In PDMAS the processors are mainly used to run agent be-
haviors. The load of a node then depends on the number
of agents it has to run and on the behavior of the agents.
When the load is not balanced between the nodes, some
nodes are idle and waiting for the others, for instance on
the time step synchronization. As a result the performance
of the whole system is usually not very good. The load bal-
ance may be managed by the application or automatically
by the PDMAS. The load balancing criterion refers to an
automatic load balancing function in the platform.

5. Architecture: there are several possible platform architec-
tures to distribute the processes on the processors and
manage information exchanges between these processes.
This criterion is set to distributed if all the processes are
autonomous and participate to the simulation. It is set to
master/slave if only one process starts the others to run the
simulation.

6. Scalability: this criterion refers to the possibility of running
large simulations, in terms of number of used processors
or cores. This is an important criterion as it measures the
ability of the platform to scale with the number of simu-
lated agents.

5.2. Analysis

Table 1 gives a synthetic representation of the comparison for
the agent development and the properties of the agent entity
in the platform. Most platforms use classical languages such

C O M P U T E R S C I E N C E R E V I E W () – 7

Table 1 – Agent development and the properties of the agent entity in the platforms.

Platform Programming
language

Agents representation Agents state Agents behavior Agent
identification

RepastHPC C++/RLogo Objects Variables Methods Unique ID
D-MASON Java Objects Variables Methods Unique ID
Flame XMML/C CSXM/C [37,22,38] Acyclic State

Machine [22]
Transition/State/Functions [38,22] Unique ID

Pandora C/C++ Objects Variables Methods Unique ID
JADE Java Objects Variables Methods Unique ID
PDES-MAS C/C++ Objects/Agent Logical Process

(ALP)
Variables Methods Unique ID

Ecolab
GraphCode

C++ Objects Variables Methods Unique ID

SWAGES Poplog/Java [32] Objects Variables Methods Unique ID
MACE3J Java Objects Variables Methods Unique ID
ABM++ C/C++ Objects Variables Methods Unique ID

as C–C++ or Java to define agents, except the Flame platform
which uses the XMML language. The XMML language is
an extension of the XML language designed to define X-
Machines. Note that the RepastHPC platform implements, in
addition to the C++ programming language, the widespread
Logo agent language. The Repast-Logo or R-Logo is the Repast
implementation of Logo for C++. It allows to simplify the
simulation implementation at the price of a lower power of
expression compared to C++.

Agents are usually defined as objects with methods rep-
resenting behaviors and variables representing states. All
agents are identifiable in the simulation using a unique iden-
tification. An agent container gathers all the agents. This con-
tainer is cut and distributed in the case of parallel execution.
The agent implementation is different for the Flame platform
that does not use the object concept to define an agent but
rather uses automata called X-Machines and more precisely
Communicating X-Machine [37]. In a X-Machine, a behavior
is represented by a state in the automaton and the execu-
tion order between behaviors is represented by transitions.
This difference changes the programming logic of amodel but
induces no limitation compared to other platforms because
agents are encoded in the C language.

Table 2 groups criteria about the general properties of the
platforms regarding the simulation and the guaranties pro-
vided. While most platforms implement a time model to an-
imate the simulation time discretization, the JADE platform
rather targets the support of agent based applications on dis-
tributed resources. It thus does not need to provide any time
nor synchronization support and it is flagged Not APplica-
ble (NAP) for this criterion in the table. On the other hand
recent works have proposed a control framework for time-
dependentmulti-agent systems [39] on JADEwhich prove that
this platform can be completed to manage time.

For the agent synchronization, event or time driven, all
platforms use the time-driven approach except RepastHPC
and PDES-MAS which are based on the event-driven approach
and JADE that does not provide time nor synchronization
support as previously explained. RepastHPC also allows to fix
a periodicity to each scheduled event, so that we can easily
produce time-driven simulations.

In parallel platforms as PDMAS several runs are done
simultaneously, note that only Flame does not support
simultaneous event executions.

Simulating a model must be deterministic, that is to say,
different runs with the same set of parameters should always
produce the same results. Most platforms, take reproducibil-
ity into account. Platforms for which we did not find any in-
formation on the reproducibility property are marked as Not
AVailable (NAV) for this property. Note however that the re-
producibility concern is complex in a parallel context (see for
instance the issue on randomnumbers generation in [35]) and
the property given in the table only reflects what is given in
the papers.

The most used random number generator is Mersenne
Twister. For different platforms, we did not find any data
about pseudo random number generation. They are marked
as Not Available (NAV) for this property.

Table 3 summarizes the criteria of the platform charac-
teristics regarding parallelism. Globally we can note that all
studied platforms meet the demands for the development of
parallel simulations.

All platforms allow agents to communicate either inter-
nally with agents on the same node, or externally, with copy
of agents on different nodes. The D-MASON and Pandora
platforms propose remote agent method invocations to com-
municate with other agents while the other platforms use
messages to communicate between agents.

The communication layers of most platforms are based
on MPI. This is not surprising for platforms targeting HPC
systems as this library is mainly used on these computers.
Note that the D-MASON platform is based on the JMS
communication service despite it is not the most scalable
solution for distributed environments. An MPI version of
D-MASON is in development. Finally, the Jade platform
communication support is based on transport protocols as
Java-RMI, HHTP or IIOP that do not fit parallel applications
as they are based on synchronous calls and cannot make an
efficient use of high performance networks (e.g. InfiniBand).

To efficiency exploit the power of parallel resources the
computing load must be balanced among the nodes. There
are different ways to balance the computing load. It can
be balanced at the beginning of the simulation (Static) or
adapted during the execution (Dynamic). A dynamic load
balancing is usually better as it provides a better adaptation in
case of load variation during the model execution, but it can
also be subject to instability. Most platforms use dynamic load

8 C O M P U T E R S C I E N C E R E V I E W () –

Table 2 – Properties of the platforms regarding the simulation and the guaranties provided.

Platform Agent synchronization Simultaneous
events

Reproducibility Random numbers

RepastHPC Event-driven Yes [22] Yes Mersenne Twister [40]
D-MASON Time-driven Yes [22,41] Yes Mersenne Twister
Flame Time-driven No [22] NAV Marsaglia [42]
Pandora Time-driven Yes Yes [27] NAV
JADE NAP NAP NAV NAV
PDES-MAS Event-driven Yes Yes NAV
Ecolab GraphCode Time-driven Yes [22,33] No UNU.RAN [43]
SWAGES Time-driven Yes NAV Mersenne Twister
MACE3J Time-driven Yes Yes [34] Own random generator
ABM++ Time-driven Yes NAV NAV

Table 3 – Platform characteristics regarding parallelism.

Platform Agent interaction Communication
library

Synchronization Load
balancing

Architecture Scalability

RepastHPC Local/Remote (Copy of
others) [29]

MPI/Boost lib Conservative Dynamic Distributed 1028 proc.

D-MASON Local/Remote (AOI) [41] JMS ActiveMQ/MPI Conservative Dynamic Master/Slave [41] 36 proc.
Flame Local/Remote

(Agent-agent+Sphere of
influence) [22]

MPI Conservative Static [22] Distributed 432 proc. [38,
22]

Pandora Local/Remote [27] MPI Conservative Dynamic Distributed [27] NA
JADE Local/Remote RMI/IIOP/HHTP/JICP NA NA Distributed [26] NA
PDES-MAS Local/Remote

(Communication Logical
Process and Sphere of
influence)

MPI Optimistic Dynamic Distributed NA

Ecolab
GraphCode

Local/Remote (Copy of
others)

MPI Conservative Dynamic Distributed NA

SWAGES Local/Remote SSML NA NA Distributed 50 proc.
MACE3J Local/Remote (MACE3J

Messaging System,
MMS)

(Objects/Interfaces) Conservative NA Distributed 48 proc.

ABM++ Local/Remote (Copy of
others)

MPI Conservative NA Distributed NA

balancing except the Jade and Flame platforms. In [44] the
authors propose a way to use dynamic load balancing with
the Flame platform.

Last, several architectures could be used to distribute the
processes on the processors. The most used architecture
is distributed, all the processes are autonomous. Only
D-MASON uses a Master/Slave architecture. This choice can
be explained as it better fits with the ActiveMQ JMS library
as a communication library. Note that in the latest version of
D-MASON, the communication schema is based on MPI. In
this case the architecture is distributed.

Finally, note that we did not find any information on the
scalability property for several platforms. They are marked as
Not Available (NA) for this property.

For each platform we tried to download the source or ex-
ecutable code and we tried to compile it and test it with
the provided examples and templates. Some of the plat-
forms cannot be further included in our study because
there is no available source code or downloadable executable
(MACE3J [34], JAMES [45], SWAGES [32]), or because only a
demonstration version is available (PDES-MAS [30,31]), or be-
cause there is a real lack of documentation (Ecolab [33]). It

was not possible to develop a model for these platforms and
thus to assess their parallel characteristics and performance.
These platforms are then not considered in the remaining of
the paper.

From this first assessment we can note that some
platforms have rather been designed to support multi-
agent simulations, i.e. animating a model composed of
numerous entities (agents) that implement an individual
behavior, whereas others are more focused on supporting
the distribution of agent based applications, i.e. applications
based on components (agents) that provide a service
like equipment monitoring or interoperability management.
Hence, during the model implementation we noted that the
Jade platform seems to be more oriented for equipment
monitoring rather than to implement model simulations and
run them on a large platforms. The Jade web site presents it
as a base for “peer-to-peer agent based applications”. It is indeed
not HPC compliant [46] as it cannot be run in batch mode.
Note that implementing a medium size model above JADE is
however possible as shown in [47]. Jade is then not included
in the rest of the comparison that concentrates on the D-
MASON, Flame, Pandora and Repast-HPC platforms.

C O M P U T E R S C I E N C E R E V I E W () – 9

6. Analysis of distribution support

Developing a parallel multi-agent simulation is not an easy
job and taking advantage of the platform support may greatly
ease it. Our objective here is to assess the support proposed by
the platforms for running large simulations. For this reason
we concentrate on the distribution characteristics of the
platforms to define evaluation criterion. To better understand
the way these characteristics may impact a simulation
development and to validate that they are operational, we
also assess the development of amodel on the four remaining
platforms.

6.1. Method

The evaluated criteria mainly focus on the distribution
properties of the platforms. When implementing a model to
distribute a simulation we face four main issues:

1. Distribution: this criterion refers to how agents are
distributed on the processors or nodes. As we run in
parallel the global set of agents must be split between the
processors to benefit from the whole processing power.
The agent distribution is done by the platform but this
distribution greatly influences the performance so it is
important to notice how this distribution is done.

2. Communication: this criterion refers to the implementa-
tion of the communication layer of the platform. As for all
parallel applications an efficient communication scheme
is needed for the performance and the scalability of the
simulations.

3. Coherency/synchronization: when agents are run in par-
allel we need to manage concurrent accesses to common
data. The data coherency or access synchronization and
their properties are a necessary knowledge when imple-
menting a model as they define the limits of the platform
support. If no synchronization is provided then concurrent
data accesses should be avoided in the model, or managed
by the model developer.

4. Load balancing: this criterion refers to an automatic load
balancing function provided by the platform. This is the
dynamic part of the agent distribution as it re-distributes
agents during the simulation run. This implies that plat-
form is able to move agents from one node to another dur-
ing the simulation run. This is usually referred to as agent
migration. This implies for the platform to move the agent
data between the nodes and to be able to redirect commu-
nications. As for distribution, load balancing and its imple-
mentation is thus an important criterion to consider.

These properties are important to understand how to
efficiently implement models and what are the constraints
imposed to the model design. In addition, these criteria are
a way to show the scope of each platforms regarding their
distribution support. Truly and deeply understanding and
assessing these properties can however not be done by just
reading the research papers and documentations. For this
reason, we have implemented the same reference model on
each of the four platforms. By implementing this model we
did one step further in the understanding of the platform use
and of their properties. We have also been able to check how
far their claims are true. As we were able to implement our
model for the four platforms, we can then consider that they
truly offer a functioning parallel multi-agent support.

6.2. Reference model

Agent based simulations are usually designed with an en-
vironment that defines position coordinates or contextual
data [48]. The simulator iteratively applies the agent behav-
iors on their own data and on the environment data. Note
that, although some agent based simulations, as social net-
work models, do not include an environment, the reference
model has to use situated agents as three out of the four
assessed platforms base their distribution facility on the
agent coordinates in the environment. On the other hand this
choice may limit the conclusions of the paper to models tied
to a grid based environment.

The proposed reference model is based on three impor-
tant behaviors for each agent: perception, communication be-
tween agents and/or with the environment and mobility. We
chose these behaviors as they are representative of general
behaviors found in multi-agent models and match the agent
definition given by Ferber (see Section 2).

Fig. 1 gives an AML [49] (Agent Modeling Language)
representation of our reference model.1 The Environment is
represented by a square grid. Agents (Person) are mobile
and move randomly. A vision characterized by the “radius”
property is also associated with each agent. It represents the
limited perception of the agent on the environment.

Each agent behavior is composed of 3 sub-behaviors that
are executed at each time step in the following order:

1. The walk behavior allows agents to move in a random di-
rection on the environment, in one of its 8 Moore neighbor
cells in the grid (or less if the agent is close to a border).
This behavior is used to test the mobility and the percep-
tion of the agents. As the agents walk through the envi-
ronment they discover other agents and other parts of the
environment. Interactions and communications with the
environment are tested with this behavior.

2. The interact behavior allows agents to interact. The agent
sends a message to all the agents in their perception field.
The message is only composed of the agent id and an in-
teger value. This behavior intends to simulate communi-
cations between agents and to assess the communication
support of the platforms.

3. The compute behavior simulates the workload generated by
running the agent inner algorithms. This behavior com-
putes a one dimensional forward “Discrete Fourier Trans-
form (DFT)” [50] on a table.

Some of the settings of the reference model are common
to all the experiments presented in Section 7. The size of the
grid environment is 2000 × 2000. The perception radius for
the agents is set to 3. All the random laws (choice of neighbor
cell and the initialization of the DFT table) used are uniform
laws. The size of the DFT table is set to 128.

Using this reference model and implementing it on the
four platforms we get a better understanding of their prop-
erties. In the following, we synthesis the properties of each
platform regarding the four defined criteria for distribution.

1 The implementations of the model on the four assessed
platforms are available at http://dx.doi.org/10.6084/m9.figshare.
1562356.

http://dx.doi.org/10.6084/m9.figshare.1562356
http://dx.doi.org/10.6084/m9.figshare.1562356
http://dx.doi.org/10.6084/m9.figshare.1562356
http://dx.doi.org/10.6084/m9.figshare.1562356
http://dx.doi.org/10.6084/m9.figshare.1562356
http://dx.doi.org/10.6084/m9.figshare.1562356
http://dx.doi.org/10.6084/m9.figshare.1562356
http://dx.doi.org/10.6084/m9.figshare.1562356
http://dx.doi.org/10.6084/m9.figshare.1562356

10 C O M P U T E R S C I E N C E R E V I E W () –

Fig. 1 – AML representation of the reference agent model.

(a) Y distribution. (b) XY distribution.

Fig. 2 – Grid distribution in the D-MASON platform.

6.3. Distribution

Distribution is the basis of a parallel model. The way the
distribution is implemented directly affects, on the one hand,
the model development complexity and, on the other hand,
the execution performance.

6.3.1. D-MASON
From the distribution view point, D-MASON is a generic plat-
form as agents could have or could not have a position in a
Cartesian space representing the environment. The environ-
ment is divided into cells, or partitions, that are assigned to
processors to distribute the simulation. D-MASON proposes
three ways to distribute a simulation over several cores. Two
ways are based on field partitioning or grid partitioning and
the last one is based on network partitioning. Overlapping ar-
eas (Area of Interest or AOI) are defined to guarantee the con-
tinuity of agent perception through node borders.

Field or Grid partitioning. Fig. 2 represents the two distribu-
tion mechanisms available in D-MASON for grid partitioning.
The “Y Distribution” consists in dividing the environment in
horizontal cells on the Y axis as shown in Fig. 2(a). The “XY
Distribution” consists in dividing the environment in square
cells using the X and Y axes as shown in Fig. 2(b).

The grid environment is distributed by cutting its cells
and mapping them on the nodes of the execution platform.
To provide a continuous environment, D-MASON uses

Fig. 3 – Example of Area of Interest in a Y distribution.

overlapping zones, also called “Area of Interest” (AOI) as
shown in Fig. 3. This mechanism consists in locally copying
a part of each neighbor cell or adjacent partition. The
overlapping zone offers the opportunity for agents to keep a
global perception field even when their environment is cut
between several nodes. To maintain the continuity each cell
exchanges information with its direct neighbors before each
time step.

During the distribution phase only the environment is
considered for dividing the simulation. Agents are not taken

Novin Pendar
Highlight

C O M P U T E R S C I E N C E R E V I E W () – 11

Fig. 4 – Schema of a grid projection on 4 processors in RepastHPC [29].

into account for this phase. Agents density is however taken
into account for the load balancing phase.

Network partitioning. Network field is a way to represent a
graph structure in the simulation. To distribute a graph over
several processors, frameworks like ParMetis [51] or Metis
are used. ParMetis is an MPI based parallel framework that
implements algorithms for partitioning unstructured graphs,
meshes and so on. ParMetis extends the functionality of
Metis to distributed and large scaled graphs. We did not find
more information about the network partitioning mechanism
which was added in a recent update of the platform.

It is important to note that, in the D-MASON platform, we
can use different types of layer in the same simulation. In
other terms, a spatial distribution could be used for the en-
vironment while a network partitioning is used to represent
interaction between agents. In that case, the distribution is
only based on the field partitioning.

To distribute agent simulations, RepastHPC uses a mecha-
nism called “Projection”, adapted from the Repast S platform.
It represents the environment inwhich the agents evolve. Pro-
jections can be of two types, either grid or network. The pro-
jections are used to impose a structure to the agents in which
they can evolve. Overlapping areas (or area of recovery) are
defined tomanage the continuity of agent perception through
node borders.

6.3.2. RepastHPC
Distribution in RepastHPC as several similarities with the D-
MASON proposition: grid projections are roughly equivalent
to grid partitioning and a network projection is equivalent to
a network partitioning.

Projection Grid. The Grid Projection represents agents in a
Cartesian space. To distribute a model over several proces-
sors, the environment is divided into cells of equal size. These
cells are regularly distributed on the processors. Each proces-
sor is responsible for a sub-part of the grid. The sub-parts of
the grid are connected with overlapping areas.

Fig. 4 represents a distribution schema of a grid projection
on 4 processors. The grid ranges from coordinate (0,0) to
coordinate (5,7). Processor P1 is responsible for the sub-part

(0.0) × (2.3), P2 is responsible for the portion (3.0) × (5.3) and
so on. In our example, the size of the overlapping areas is set
to 1. In this case, P1 contains an area buffer that includes the
entire column 3 of processor P2 and line 4 of processor P3.

Network Projection. Network Projection [28] is a way to repre-
sent a graph structure. Fig. 5 represents a diagram of a net-
work projection with two agents distributed on 2 processors.

In order to divide the graph on several processors while
maintaining the links between vertices dispatched on differ-
ent processors, a copy of neighbor edges and vertices is made.
Unfortunately, no information is available in the RepastHPC
documentation on how the graph is distributed on multiple
processors so that this projection is hardly usable.

As for D-MASON it is possible to use several projections
for the same model. For instance, a Grid projection for a
geographical environment and a Network projection for agent
interactions.

6.3.3. Flame
Agent distribution in Flame simulation differs from the two
previous distribution as it is performed statically [52]. It is
defined or computed at the beginning of the simulation and
does not change during the execution. Distribution choices
are based on the graph of communications between agents
and aim at optimizing the overhead generated by inter-
processor communications. Two methods can be used to dis-
tribute a simulation in the Flame platform: Geometric (or
Separator) and Round Robin. The distribution method is set
at the beginning of the simulation using a parameter.

Geometric distribution. This distribution spreads agents over
the processors on the basis of their position in a Cartesian
space. The partitioning is based on their coordinates that
could be either in 2D or 3D. Note that in this case the
environment is not cut on a grid basis, it is still considered
as continuous and the partitioning is only driven by their
distribution. The goal of this distribution is to group the
nearest agents as they can potentially communicate together
and generate a lot of communications.

Round Robin distribution. If the agents are not located in a
Cartesian space, Flame provides a distributionmechanism for

12 C O M P U T E R S C I E N C E R E V I E W () –

Fig. 5 – Diagram of network projection in RepastHPC [29].

(a) Schema of distribution. (b) Execution schema.

Fig. 6 – Distribution and execution order in Pandora [53,54].

agents with a Round Robin method: agents are assigned one
by one to each processor in a round. The method does not
take the agent behaviors into account but it is possible to add
a discriminator, such as the agent type, to influence the dis-
tribution. For instance agents of a same type can be grouped
in one or more partitions if these agents communicate more
with agents of their type rather than with another agent type.

6.3.4. Pandora
In the Pandora platform distribution is made by dividing the
environment in several portions like in Grid partitioning of
the D-MASON or RepastHPC platforms. Fig. 6(a) comes from
a presentation of the Pandora platform. It shows that the
distribution is made by dividing the environment and that
overlap zones are used to keep the partial continuity of the
environment even when they are distributed over several
processors.

Note that, except FLAME, all the platforms use a geograph-
ical environment to dynamically distribute the agents. The
simulations and their results will be thus tied to this con-
straint. On the other hand FLAME only provides static distri-
bution of the agents from the initial configuration and does
not balance the load of the nodes during the runs.

6.3.5. Communication
Communication is a key functionality in the platform
interface for parallel models. It is basically proposed as either
remote invocation on agents or asynchronous messages.

6.3.6. D-MASON
Communication between agents usingmessages is not imple-
mented. Communications between agents are carried out by
method calls on the target agents. This functionality is only

available for agents executed on the same processor or in the
overlapping zones. If the target agent is not running on the
same processor nor in the AOI, it is not possible to commu-
nicate with it using a grid field environment. Nevertheless,
using a network field can overcome this limitation. In fact,
network field allows any agent to communicate with another
agent when a link or an edge exists between them.

In addition, D-MASON proposes a way to use global param-
eters over several processors. This can be a useful support to
spread information to all the agents of a simulation.

6.3.7. RepastHPC

Communication using messages is not implemented. Com-
munications between agents are carried out by method calls
on the target agents but are only available for agents called
on the same processor. If the called agent does not run on
the same processor, the caller agent can request a copy. By
this way, calling methods on remote agents are possible. On
the other hand if an agent copy is modified, the changes are
not reported to the original agent. Updating a copy agent from
the original agent is however possible to keep information co-
herency.

6.3.8. Flame

In Flame an agent cannot send a message directly to another
agent. Communications are implemented using “message
boards” or message tables. Each processor owns a message
board that is divided between its agents. Agents can read
(receive) or write (send) messages on their message board
part using the message board API. Agents can send or receive
messages of the different types defined in the XMML file of
the simulation. An agent cannot send and receive messages
in the same behavior or state. It has to be implemented on

C O M P U T E R S C I E N C E R E V I E W () – 13

Fig. 7 – Distribution schema of MessageBoards in
Flame [52].

two separate states. Parallelization of a simulation is based
on the distribution of the message boards as shown in Fig. 7.

As the agents can run on different processors (depending
on the distribution), Flame uses broadcasting as a commu-
nication method instead of trying to locate them. It is how-
ever possible to limit the number of recipients per message
through filters. In this case themessage is simply broadcasted
to a group of agents.

The message board library, or libmBoard, is required to
manage the distribution, the creation, the deletion, the syn-
chronization and the access to messages in MessageBoards.
The libmBoard library uses MPI to communicate between pro-
cessors and uses POSIX threads (pthreads) to handle data
management and inter-process communications.

6.3.9. Pandora
Communications are performed usingMPI andmore precisely
using µsik library [55]. The µsik library is designed to
manage communications between nodes and it is specifically
designed to execute discrete-event simulations on parallel
resources. The Pandora platform automatically generated the
code to avoid the user from writing MPI code. Nevertheless,
the Pandora platform limits inter-agent communications:
agents can only communicate within there perception field
(communication must be local) [53].

6.4. Coherency/Synchronization

The coherency/synchronization property real differs between
the four platforms: each solving the coherency issue in its
own way to provide as much transparency as possible to the
developers.

6.4.1. D-MASON
D-MASON platform implements a conservative synchroniza-
tion that guarantees against causality errors. To achieve
this conservative synchronization, each timestep of the
simulation is divided into 2 steps: (1) Communica-

tion/Synchronization and (2) Simulation run. There is a syn-
chronization barrier at the end of each timestep. Agents in
cell c do not run timestep i until their neighbor cells have not
finished with their simulation timestep i − 1. Then each cell
sends information to its neighbors about agents that are in
the AOI or that will migrate. For timestep i the cell c behavior
is thus computed based on the data of step i−1 of its neighbor
cells.

In the D-MASON platform, the different communication
strategies for synchronization are based on ActiveMQ and
MPI [56]. Early versions of D-MASON use Active MQ JMS with
the “Publisher/Subscriber” paradigm. This paradigm is how-
ever not natively supported by MPI. Authors have then imple-
mented it over MPI. In the D-MASON platform, MPI processes
are assigned to D-MASON Workers and they use “communi-
cation groups” which describe the communications through
the cells.

The synchronization model uses and respects five asser-
tions:

• each cell creates its own topic to publish its updates,
• each cell subscribes to at least one topic (at least one

neighbor cell). A cell cannot start a new simulation
step until it receives updates from all the topics it has
subscribed to,

• subscription is static: each cell executes the subscription
routines only before starting the simulation,

• the publish on a topic wheremultiple fields (i.e. other cells)
are subscribed can only happen when all the updates of
each field are available,

• the publish is invoked only at the end of a simulation step.

With the five above assertions, there are three kinds of
communication strategies for synchronization depending on
the MPI routine used: BCast that uses broadcasting, Gather
that uses gathering of the messages, and Parallel that uses
send and receive in round to ensure a communication
parallelism.

6.4.2. RepastHPC

Synchronization between processors in the RepastHPC plat-
form is performed in four cases according to [29]. First, when
a processor needs one or several copies of agents present on
another processor. This synchronization is required to keep
the simulation in a consistent state. Second, when a proces-
sor has non-local agent or edge copies from another proces-
sor, then the copies must be updated to the latest information
from the original object. Third, the overlapping areas of a grid
should be updated at each time step. And last, when an agent
must be fully migrated from one processor to another. For ex-
ample, when the agent moves into the environment.

Most synchronizationmechanisms are not in charge of the
programmer. Programmers only have to write pattern pack-
age that defines the necessary information to be synchro-
nized in the agents. The pattern package consists of two
methods Provider, used to serialize the data before sending,
and Receiver, used to de-serialize the data when receiving.
These two methods are a way to serialize agent informa-
tion in order to synchronize the data needed when migrating
agent from a processor to another.

14 C O M P U T E R S C I E N C E R E V I E W () –

6.4.3. Flame

Synchronization between processors in the Flame platform is
conservative and is performed through the MessageBoards.
Actually, all the exchanges between agents are performed
using messages so that the synchronization relies on the
MessageBoard synchronization which, in turn, relies on
broadcasting messages to the processors participating to the
simulation. In this way, all processors have a unified view of
the simulation. The synchronization of the MessageBoard is
performed in two steps by first asking for synchronization
and then performing it. In the first step, when a processor
has finished to execute its agents, it locks its MessageBoards
and sends a request for synchronization in a queue. After
this step, it is still possible to make actions which do
not need the MessageBoard. When all processors have
locked their MessageBoards, the next step is performed. In
the second synchronization step messages are exchanged
between MessageBoards. The synchronization phase is a
blocking phase. After these two phases, MessageBoards are
open and the simulation continues.

6.4.4. Pandora

Synchronization in the Pandora platform is conservative [27].
Like in the RepastHPC and D-MASON platforms, data and
agents located in the overlapping areas are copied and sent
to the neighbors every time step in order to keep data
up-to-date. The size of the overlapping zone is defined as
the maximum size of the perception field of any agent
[57,54]. To solve the synchronization problem of overlapping
zones between processors – solve conflicts between agents on
different processors – the Pandora platform uses a different
method than the other platforms. Each portion of the
environment which is distributed over several processors is
also distributed in four equal sub-portions, numbered from
0 to 3, see Fig. 6(b). During the execution phase of agents all
the processors execute sequentially each of the sub-portions.
In other terms, all processors execute the sub-portion 0, then,
the sub-portion 1 and so on. In this way, there is no possibility
of conflicts because all sub-portions are not adjacent. Once
one portion is finished, the modifications of the overlapping
zones are sent to the neighbors. When all the sub-portions
are executed the entire state of the simulation is serialized
and a new timestep can be evaluated.

6.4.5. Load balancing

We present here the information we have found concerning
load balancing in the tested platforms.

6.4.6. D-MASON

Load balancing in the D-MASON platform is performed
dynamically [58]. The proposed method can be used in 2D
and 3D environments. Load balancing is implemented as an
additional step in the timestep, in addition to synchronization
and simulation. At the end of each timestep, a density in
terms of agents is computed on each cell of the environment.
Agents of high density nodes are dispatched on neighbor
nodes to balance the load.

6.4.7. Flame
There is no dynamic load balancing in the Flame platform.
The load balancing is done statically at the beginning of
the simulation with the proposed distributions. Note that
Marquez et al. in [44] propose a load balancing schema for
the Flame platform but it is not yet implemented in the main
release.

6.4.8. RepastHPC
We did not find any information about mechanisms imple-
mented in the RepastHPC platforms to perform the dynamic
load balancing so that this property is not tackled here.

6.4.9. Pandora
Although the Pandora platform is used in different projects
like SimulPast [59], there is a lack of explicit information. The
implementation of the platform and of the mechanisms it
uses are not accurately documented. In particular we did not
find information on the way the load balancing is realized.

6.5. Synthesis of the parallel properties

Table 4 summarizes the properties of the four assessed
platforms regarding the parallelism support.

7. Performance evaluation

The objective of parallelizing a model is either to get better
running performance or to run larger, or more accurate,
models that are too big to fit in the memory of one machine.
The memory size issue is addressed by just adding more
machines: their memory is added to the global amount. The
performance issue is addressed by giving more cores to the
simulation. To prove the efficiency of PDMAS in addressing
these two problems experiments must be conducted to
measure the performance obtained when running larger
models on more cores. We have then run our reference model
on the four previously selected PDMAS. We detail in this
section their performance results and our observations when
running them on HPC resources, i.e. HPC clusters.

7.1. Experimental settings

For the performance evaluation we have implemented the
reference model defined in Section 6.2 on the four functional
platforms: RepastHPC, D-MASON, Flame, Pandora. During
this model implementation, we did not encounter noticeable
difficulties. Note that, thanks to the PDMAS support, the
model does not change whatever the size of the execution
platforms.

We have run the reference model on a 1280 core cluster
using the SGE batch system. Each node of the cluster is a
bi-processors, with Xeon E5 (8*2 cores) processors running at
2.6 Ghz frequency and with 32 Go of memory. The nodes are
connected through a non blocking DDR infinyBand network
organized in a fat tree. The system, and in particular the
network, is shared with other users. The batch system
guaranties that each process runs on its own core without

C O M P U T E R S C I E N C E R E V I E W () – 15

Table 4 – Comparison of synchronization between platforms.

D-MASON RepastHPC Pandora Flame

Communication strategy Publisher/Subscriber Distributed Distributed Distributed
Mechanisms Overlapping zones Overlapping zones Overlapping zones MessageBoards
Overlapping configuration Yes Yes No No
Paradigm Master/Workers Distributed Distributed Distributed
Agent migration Yes Yes Yes No
Synchronization based on t − 1 t − 1 t t − 1
Synchronization management made by Workers Process Process MessageBoards
Potential Communication Model n − n n − n n − n n − n
Communications routines MPI_Bcast, MPI_Gather NA µsik library MB_SyncStart, MB_SyncEnd

sharing it with other processes (no time sharing). Note that
this is a common configuration for assessing the performance
of a parallel execution as HPC clusters in computing centers
are usually shared between users.

When submitting a job the number of requested cores is
given to the scheduler with a Robin option. This optionmeans
that the scheduler tries to dispatch as much as possible the
processes on different nodes. These experimental settings
may generate small variations in the running time so that
we computed these variations on the performance results.
The observed variation is low, less than 0.21% (obtained with
Flame on 128 cores). For that reason, each measure is taken
10 times and we thus just report the mean of these measures
(box plots would not give much more information).

7.2. Performance results

Although we have been able to run the four platforms,
D-MASON, Flame, Pandora, RepastHPC, on a standard work-
station, only three of them (RepastHPC, Flame and D-MASON)
have successfully run on our HPC system. The Pandora simu-
lations have deadlock problems even if we use the examples
that are given with the platform. We were thus not able to
include results in our performance comparison.

When analyzing the execution of the D-MASON simula-
tions we have noticed that the platform uses multiple threads
per processes and that we cannot control the number of
threads during the simulation runs. Batch schedulers as SGE
or SLURM, and more generally batch schedulers used in com-
puting centres, however assume that only one thread is run
per allocated core. Otherwise the additional threads may use
cores that are allocated to other jobs. D-MASON thus does not
respect the HPC constraints and it cannot be compared with
the RepastHPC and Flame platforms. It would compare single
threaded executions with multi-threaded executions which
is not correct. On the other hand we have noticed that D-
MASON generates good performance. It will probably become
an interesting PDMAS platform once the platform reaches
the mandatory maturity level (there are still some bugs and
some constraints on the load balancing could be improved).
For this reason the presented results only consider the Flame
and RepastHPC platforms.

We have realized several executions in order to exhibit the
platform behaviors concerning scalability (Fig. 8), workload
(Fig. 9) and memory consumption (Fig. 10). To assess
scalability we vary the number of nodes used to execute the
simulations while we fix the number of agents. For workload

we fix the number of nodes to 16, 32, 64 and 128 and we vary
the number of agents in the simulation.

Scalability results for a model with 200.000 and 400.000
agents are given in Fig. 8. Note that the first execution is re-
alized on 16 cores. We choose 16 cores because actually, most
of workstations use processors with 8 cores so that these re-
sults may also be applied to a powerful bi-processor desktop.
We can note that both platforms scale well up to 64 cores but
the performance does not progress so well when more cores
are used. RepastHPC results are better than Flame platform:
for 16 cores, RepastHPC is about 2,02 time better than Flame
whereas for 128 cores the difference is about 9,26 times better.
This difference could be explained by the strategy used in the
platform for agent communication. As the reference model is
a communicatingmodel and as Flame uses broadcasts to syn-
chronize informations and communicate, it probably spends
a lot of time in handling messages. In addition, we can note
that, for 400.000 agents, the Flame platform scales well un-
til 64 cores but more cores lead to a performance degrada-
tion. This under-performance could also been explained by
the communication implementation of Flame.

Fig. 9 presents the workload performance of the two plat-
forms for 16, 32, 64 and 128 cores. Load increase is obtained
by setting the inner load of agents (generated by the size of
the DFT calculus) and by increasing the number of agents in
the simulation. The size of the DFT calculus is here set to 128.
Note that the plots do not show results for all the X-axis val-
ues. This is because the platforms cannot run with so much
agents on this number of cores. We can see that Flame does
not scale as well as RepastHPC as less points are plotted in
the figure. For instance, for 128 cores, we have not been able
to run simulations with more than 500.000 agents.

Fig. 9 also shows that RepastHPC really better reacts to load
increase than Flame. Nevertheless, in Fig. 9 for 16 cores, we
can note that the Flame platform offers better results than
RepastHPC for 100.000 agents executed on the same number
of cores. Obviously the used model does not use all the power
of Flame as it is limited in terms of inter-agent communica-
tions. The question to answer is: is it due to the use of the
X-Machines concept or due to the synchronization mecha-
nisms? Another possible reason be the cost of the synchro-
nizations provided by Flame when using remote agents and
that it is not managed in RepastHPC.

Last, Fig. 10 represents the memory consumption of plat-
forms executing a simulation over 16 or 128 cores. In Fig. 10,
for 16 cores, we can notice that Flame uses about 2 times less
memory that RepastHPC. On the opposite, for 128 cores, there

16 C O M P U T E R S C I E N C E R E V I E W () –

(a) Scalability for 200000 agents. (b) Scalability for 400000 agents.

Fig. 8 – Platform scalability from 16 to 128 cores.

(a) Workload with 16 cores. (b) Workload with 32 cores.

(c) Workload with 64 cores. (d) Workload with 128 cores.

Fig. 9 – Platform workload for a DFT computation of 128 in each agent.

is a gap between the memory consumption of the two plat-
forms.While RepastHPC stays approximately constant, Flame
increases really faster. It uses more 57 Go of memory to run
one simulation over 128 cores whereas RepastHPC uses about
39 Go of memory for the same simulation. These results could
be explained by the inner implementation of agents in the
platform and also the way to manage the communications
and the synchronizations during the simulation. It is worth
noting that only RepastHPC reaches 1 millions of agents with-
out any problems and without consuming a lot of memory.

8. Synthesis

In this section we give our experience feedback over the

tested platforms. This experience was gained during the

bibliographical work, the discovery of the platforms, the

implementation of different models and the experiments. It

represents around half a year of accumulated work during

the last two years and more than 250.000 h of computation.

We summarize our impression and our informal opinion on

C O M P U T E R S C I E N C E R E V I E W () – 17

(a) Memory 16. (b) Memory 128.

Fig. 10 – Platforms memory consumption for 16 and 128 cores and DFT of 128.

the positive and negative points for each platform in the
following.

8.1. RepastHPC

RepastHPC is a comprehensive platform which allows the use
of different structures (Networks, Grids). These structures can
be coupled in a same simulation to represent different types
of interactions. Developing is facilitated by the number of
tutorials which explain how to use RepastHPC. These tutorials
are clear and detailed with a lot of steps. RepastHPC proposes
two ways to implement multi-agent simulations: ReLogo and
C++. Using ReLogo to develop a model is very simple but it
does not benefit from some of the features of RepastHPC.
On the other hand using C++ allows to implement more
complex simulations with the drawbacks that good skills in
C++ (notion of templates) are necessary.

There are however some limitations in the platform use as
no communication is allowed between remote agents. This
lack prevents from implementing some models, even simple
ones, that need remote modifications of agents. On the other
hand, RepastHPC will deliver high efficiency and scalability to
read-only models.

After implementing our model on the Repast-HPC plat-
formwe have synthesized our feed back on this platform. The
pro- and con-arguments are given in Table 5.

8.2. Flame

Flame is an interesting platform to develop parallel models as
it uses a different approach compared to other platforms, i.e.
X-Machines or state graphs. Although this approach implies
to learn a new programming language it turns out that it is not
more complex to implement a simulation on Flame than with
the other platforms. Moreover a lot of examples are proposed
that facilitate learning how to implement a simulation using
XMML language. Using the X-Machine allows to hide the
distribution issues to the developer and to transparently run
simulations on parallel computers.

Unlike RepastHPC, the Flame platform allows to remotely
modify agents through the use of messages and Message-
Boards. This functionality is gained at the cost of less perfor-
mance, even for read-only models. Two choices in the Flame

design have lead to less performance, the absence of the over-
lapping area optimization and the systematic use of broad-
cast communications. Note that a new version of the Flame
platform that solves the performance issue is announced [60]
but not yet available at this time.

Table 6 summarizes the pro- and con-arguments for
developing a model with the Flame platform.

8.3. D-MASON

Compared to RepastHPC and Flame, D-Mason is a more
recent platform and its first implementation rather targeted
network of workstations than HPC computers. It is however a
fully featured platform, with a support for different ways of
communication: ActiveMQ or MPI.

It is very easy to implement a simulation with D-MASON,
all basic methods are already implemented. We do not need
special skills or knowledge on Java to develop a model. In
addition, the use of Maven simplifies the compilation of
the simulations. D-MASON is a very great platform but it
may lack maturity in the HPC cluster environment. As said
previously we did not succeed in running a stable version of
the MPI based platform with our reference model. Note that,
as RepastHPC, D-MASON does not allow the modification of
remote agents and is limited to read-only models.

D-MASON comes with a documentation that explains how
to transform a centralized MASON model into a parallel D-
MASONmodel. There is also a lot of examplemodels that help
the developer understanding the platform functionalities.

After implementing our model on the D-MASON platform
we have synthesized our feed back with pro- and con-
arguments shown in Table 7.

8.4. Pandora

As the previous platforms, Pandora is a full platform to
implement parallel models. A very appreciable functionality
provided by the platform is that the parallel code is
automatically generated. We did not succeed in running a
Pandora model on a cluster but we did it on a standalone
desktop. Nevertheless, more documentation or tutorial
could be appreciable instead of reading code examples

18 C O M P U T E R S C I E N C E R E V I E W () –

Table 5 – Pro- and Con-arguments for the use of the Repast-HPC platform.

Pros Cons

• Documentation, example and comprehensive tutorials • Do not include all cases of communication between agents
• Ease of configuration and flexible scheduler: easily parameterizable
even to perform complex scheduling

• Do not synchronize information with the original agent when a
copy agent is modified

• Does not need special knowledge in MPI
• Large and very responsive community
• Easy configuration and execution on clusters
• Regularly updated

Table 6 – Pro- and con-arguments for developing with the Flame platform.

Pros Cons

• Easy development once the XML syntax is
known

• Difficulty to validate and understand the XMML simulation model

• Focus on the aspect state transition • Cannot send and receive messages in the same state
• Graphically play the simulation after
execution with the Flame viewer (Optional
but appreciated)

• No point to point communication, all communications must go through the MessageBoard.

• XMML Meta-model to validate the
simulation
• Automatic generation of the parallel code
• Easy to switch between sequential and
distributed executions

Table 7 – Synthesis of the use of the D-MASON platform.

Pros Cons

• Simple and intuitive GUI • Do not include all cases of communication between agents
• Facility of compilation: Maven
• Responsive Community
• Regularly updated
• Propose two layers of communications (MPI or ActiveMQ JMS)
• Propose three ways to synchronize using MPI (BCast, Gather and Parallel)

to understand how to develop a simulation. Pandora also
natively integrates GIS support, and the C++ simulation code
is very simple to write.

Pandora does not provide remote communication but,
thanks to its turning synchronization model, it solves the
read–write model problem. This synchronization model how-
ever limits the model environment to 2D Grids and it does not
support, as far as we understand, other environment types as
networks.

Table 8 summarizes the pro- and con-arguments for
developing a model with the Pandora platform.

9. Conclusion

In this article we have presented a comparison of different
parallel multi-agent platforms. This comparison is performed
at two levels, first at a qualitative level using criteria
on the provided support, and second at a quantitative
level, using a reference multi-agent model implementation
and conducting performance evaluation. The qualitative
analysis focuses on the ten platforms we found during our
bibliographical search. A comparison shows the properties
of the studied platforms regarding the development and
implementation of agent entities, the guaranties provided

and the parallelism support. We then concentrate on four
platforms, the ones that are freely available and functional.
For a more in-depth evaluation we have implemented a
reference model which is a communicating model on each
platform. With this implementation we assess the support
provided by the platforms to develop parallel models and we
concentrate on four properties: distribution, communication,
synchronization and load balancing. In the quantitative
evaluation we then assess the performance of the platforms
for running the reference model on a HPC cluster. Only two
platforms, namely RepastHPC and Flame, were able to run in
this environment and respect the corresponding constraints.
The comparison shows a noticeable difference in terms of
scalability between the platforms. RepastHPC offers better
performance results than Flame platform for the reference
model.

When implementing our reference model we have noticed
that the synchronization support of the platforms does not
provide the same level of service: the RepastHPC and D-
MASON platforms do not provide communication support
for remote agents while Flame does it. Note that the
platforms either provide overlapping areas, that optimize
agent accesses to remote data, or message exchanges to
modify remote agents. This support seems to be a key point
in the platform performance. This difference is linked to

C O M P U T E R S C I E N C E R E V I E W () – 19

Table 8 – Pro- and con-arguments for developing with the Pandora platform.

Pros Cons

• Parallel and sequential code generation • Poor documentation
• GIS support • Do not include all cases of communication between agents
• Rapid prototyping • Do not include all cases of synchronization between agents
• Easy to switch between sequential and distributed executions
• Does not need special knowledge in MPI
• Propose analysis tools (Cassandra)

synchronization problems. For this reason, in our future work,
we intend to better examine the efficiency of synchronization
mechanisms in parallel multi-agent platforms. For example
how to implement synchronizations during an execution
and how to improve synchronization mechanisms in parallel
multi-agent systems?

Acknowledgment

Computations have been performed on the supercomputer
facilities of the Mésocentre de calcul de Franche-Comté.

R E F E R E N C E S

[1] R.M. Fujimoto, Parallel and Distribution Simulation Systems,
first ed., John Wiley & Sons, Inc., New York, NY, USA, 1999.

[2] H.A. Simon, The Architecture of Complexity, Springer, 1991.
[3] K. Zia, K. Farrahi, A. Riener, A. Ferscha, An agent-based

parallel geo-simulation of urban mobility during city-scale
evacuation, Simulation 89 (10) (2013) 1184–1214.

[4] B. Bartley, Mobility impacts, reactions and opinions: traffic
demand management options in Europe: the miro project,
Traffic Eng. Control 36 (11) (1995) 596–602.

[5] J. Ferber, J.F. Perrot, Les systèmes multi-agents: vers une
intelligence collective. InterEditions Paris, 1995.

[6] M. Woolridge, M.J. Wooldridge, Introduction to Multiagent
Systems, John Wiley & Sons, Inc., New York, NY, USA, 2001.

[7] G. Carslaw, Agent basedmodelling in social psychology (Ph.D.
thesis), University of Birmingham, 2013.

[8] V. Rodin, A. Benzinou, A. Guillaud, P. Ballet, F. Harrouet, J.
Tisseau, J. Le Bihan, An immune oriented multi-agent system
for biological image processing, Pattern Recognit. 37 (4) (2004)
631–645.

[9] M.J. North, N.T. Collier, J. Ozik, E.R. Tatara, C.M. Macal, M.
Bragen, P. Sydelko, Complex adaptive systems modeling with
repast simphony, Complex Adapt. Syst. Model. 1 (1) (2013)
1–26.

[10] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, MASON: A
new multi-agent simulation toolkit, Simulation 81 (7) (2005)
517–527.

[11] S. Tisue, U. Wilensky, Netlogo: Design and implementation
of a multi-agent modeling environment, in: Proceedings of
Agent, Vol. 2004, 2004, pp. 7–9.

[12] E. Amouroux, T.Q. Chu, A. Boucher, A. Drogoul, Gama: an
environment for implementing and running spatially explicit
multi-agent simulations, in: Agent Computing and Multi-
Agent Systems, vol. 5044, Springer, 2009, pp. 359–371.

[13] R. Tobias, C. Hofmann, Evaluation of free java-libraries for
social-scientific agent based simulation, JASS 7 (1) (2004).

[14] R.H. Bordini, L. Braubach, M. Dastani, A. El Fallah-
Seghrouchni, J.J. Gomez-Sanz, J. Leite, G.M. O’Hare, A. Pokahr,
A. Ricci, A survey of programming languages and platforms
for multi-agent systems, Informatica (Slovenia) 30 (1) (2006)
33–44.

[15] M. Berryman, Review of software platforms for agent based
models. Tech. Rep., DTIC Document, 2008.

[16] B. Heath, R. Hill, F. Ciarallo, A survey of agent-basedmodeling
practices (january 1998 to july 2008), JASSS 12 (4) (2009) 9.

[17] K. Kravari, N. Bassiliades, A survey of agent platforms, J. Artif.
Soc. Soc. Simul. 18 (1) (2015) 11.

[18] S. Vialle, E. Dedu, C. Timsit, Parcel-5/parssap: A parallel
programming model and library for easy development
and fast execution of simulations of situated multi-
agent systems, in: Proceedings of SNPD02 International
Conference on Software Engineering Applied to Networking
and Parallel/Distributed Computing, 2002.

[19] N. Bezirgiannis, Improving performance of simulation
software using haskells concurrency & parallelism (Master’s
thesis), Utrecht University, 2013.

[20] F. Cicirelli, A. Giordano, L. Nigro, Efficient environment
management for distributed simulation of large-scale
situated multi-agent systems, Concurr. Comput.: Pract.
Exper. 27 (3) (2015) 610–632.

[21] M. Lees, B. Logan, R. Minson, T. Oguara, G. Theodoropoulos,
Modelling Environments for Distributed Simulation, Springer
Berlin, Heidelberg, Berlin, Heidelberg, 2005, pp. 150–167.

[22] S. Coakley, M. Gheorghe, M. Holcombe, S. Chin, D. Worth,
C. Greenough, Exploitation of hpc in the flame agent-based
simulation framework, in: Proceedings of the 2012 IEEE 14th
Int. Conf. on HPC and Communication & 2012 IEEE 9th Int.
Conf. on Embedded Software and Systems, HPCC ’12, IEEE
Computer Society, Washington, DC, USA, 2012, pp. 538–545.
http://dx.doi.org/10.1109/HPCC.2012.79.

[23] G. Cordasco, R.D. Chiara, A. Mancuso, D. Mazzeo, V. Scarano,
C. Spagnuolo, A framework for distributing agent-based
simulations, in: Euro-Par Workshops (1)’11, 2011, pp. 460–470.

[24] G. Cordasco, R.D. Chiara, A. Mancuso, D. Mazzeo, V. Scarano,
C. Spagnuolo, Bringing together efficiency and effectiveness
in distributed simulations: The experience with d-mason,
Simulation (2013) 1236–1253.

[25] S. Coakley, R. Smallwood, M. Holcombe, Using x-machines
as a formal basis for describing agents in agent-based
modelling, Simul. Ser. 38 (2) (2006) 33.

[26] F. Bellifemine, A. Poggi, G. Rimassa, Jade–a fipa-compliant
agent framework. in: Proceedings of PAAM, London, Vol. 99,
1999, p. 33.

[27] E.S. Angelotti, E.E. Scalabrin, B.C. Ávila, Pandora: a multi-
agent system using paraconsistent logic, in: Computational
Intelligence and Multimedia Applications, 2001, ICCIMA
2001, IEEE, 2001, pp. 352–356.

[28] N. Collier, M. North, Repast HPC: A Platform for Large-
Scale Agent-Based Modeling, John Wiley & Sons, Inc., 2012,
pp. 81–109. http://dx.doi.org/10.1002/9781118130506.ch5.

[29] N. Collier, Repast hpc manual, 2010. http://repast.
sourceforge.net/docs/repast_hpc.pdf.

[30] T. Oguara, G. Theodoropoulos, B. Logan, M. Lees, C.
Dan, PDES-MAS: A unifying framework for the distributed
simulation of multi-agent systems. Tech. Rep. CSR-07-
7, School of computer science research, University of
Birmingham, 2007.

http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref1
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref2
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref3
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref4
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref6
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref7
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref8
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref9
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref10
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref12
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref13
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref14
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref15
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref16
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref17
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref19
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref20
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref21
http://dx.doi.org/10.1109/HPCC.2012.79
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref24
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref25
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref27
http://dx.doi.org/10.1002/9781118130506.ch5
http://repast.sourceforge.net/docs/repast_hpc.pdf
http://repast.sourceforge.net/docs/repast_hpc.pdf
http://repast.sourceforge.net/docs/repast_hpc.pdf
http://repast.sourceforge.net/docs/repast_hpc.pdf
http://repast.sourceforge.net/docs/repast_hpc.pdf
http://repast.sourceforge.net/docs/repast_hpc.pdf
http://repast.sourceforge.net/docs/repast_hpc.pdf
http://repast.sourceforge.net/docs/repast_hpc.pdf
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref30

20 C O M P U T E R S C I E N C E R E V I E W () –

[31] V. Suryanarayanan, G. Theodoropoulos, M. Lees, Pdes-
mas: Distributed simulation of multi-agent systems, Proc.
Comput. Sci. 18 (2013) 671–681.

[32] M. Scheutz, P. Schermerhorn, R. Connaughton, A. Dingler,
Swages-an extendable distributed experimentation system
for large-scale agent-based alife simulations, Proc. Artif. Life
X (2006) 412–419.

[33] R.K. Standish, R. Leow, Ecolab: Agent based modeling for c++
programmers, 2004. ArXiv Preprint cs/0401026.

[34] L. Gasser, K. Kakugawa, Mace3j: fast flexible distributed sim-
ulation of large, large-grain multi-agent systems, in: Proceed-
ings of the First Inter. Joint Conf. on Autonomous Agents and
Multiagent Systems: Part 2, ACM, 2002, pp. 745–752.

[35] D.R. Hill, Parallel random numbers, simulation, and repro-
ducible research, Comput. Sci. Eng. 17 (4) (2015) 66–71.

[36] B. Logan, G. Theodoropoulos, The distributed simulation
of multiagent systems, Proc. IEEE 89 (2) (2001) 174–185.
http://dx.doi.org/10.1109/5.910853.

[37] A.J. Cowling, H. Georgescu, M. Gheorghe, M. Holcombe, C.
Vertan, Communicating stream x-machines systems are no
more than x-machines, J. UCS 5 (9) (1999) 494–507.

[38] M. Holcombe, S. Coakley, R. Smallwood, A general framework
for agent-based modelling of complex systems, in: Proceed-
ings of the 2006 European Conference on Complex Systems,
European Complex Systems Society, Paris, France, 2006.

[39] F. Cicirelli, L. Nigro, Control centric framework for model
continuity in time-dependent multi-agent systems, Concurr.
Comput.: Pract. Exper. (2016).

[40] M. Matsumoto, T. Nishimura, Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random
number generator, ACM Trans. Model. Comput. Simul.
(TOMACS) 8 (1) (1998) 3–30.

[41] G. Cordasco, R. Chiara, A. Mancuso, D. Mazzeo, V. Scarano, C.
Spagnuolo, A framework for distributing agent-based simula-
tions, in: Euro-Par 2011: Parallel Processing Workshops, Lec-
ture Notes in Computer Science, vol. 7155, 2011, pp. 460–470.

[42] G. Marsaglia, A. Zaman, A new class of random number
generators, Ann. Appl. Probab. (1991) 462–480.

[43] W. Hörmann, J. Leydold, G. Derflinger, Automatic Nonuniform
Random Variate Generation, Springer, 2004.

[44] C. Márquez, E. César, J. Sorribes, A load balancing schema
for agent-based spmd applications, in: International Conf.
on Parallel and Distributed Processing Techniques and
Applications, PDPTA, 2013.

[45] J. Himmelspach, A.M. Uhrmacher, Plug’n simulate, in: Pro-
ceedings of the 40th Annual Simulation Symposium, ANSS
’07, IEEE Computer Society, Washington, DC, USA, 2007,
pp. 137–143. URL http://dx.doi.org/10.1109/ANSS.2007.34.

[46] U.I. Paulo Leitão, C.P. Rückemann, Parallelising multi-agent
systems for high performance computing, in: INFOCOMP
2013: The Third International Conference on Advanced
Communications and Computation, IARIA, Lisbon, Portugal,
2013.

[47] D. Pawlaszczyk, S. Strassburger, Scalability in distributed
simulations of agent-based models, in: Proceedings of
the 2009 Winter Simulation Conference, WSC, 2009, pp.
1189–1200.

[48] D. Weyns, H. Van Dyke Parunak, F. Michel, T. Holvoet, J.
Ferber, Environments for Multiagent Systems State-of-the-
Art and Research Challenges, Springer Berlin, Heidelberg,
Berlin, Heidelberg, 2005, pp. 1–47.

[49] R. Červenka, I. Trenčanskỳ, M. Calisti, D. Greenwood, Aml:
Agent modeling language toward industry-grade agent-
based modeling, in: Agent-Oriented Software Engineering V,
Springer, 2005, pp. 31–46.

[50] M. Frigo, S.G. Johnson, The design and implementation of
fftw3, Proc. IEEE 93 (2) (2005) 216–231.

[51] G. Karypis, K. Schloegel, V. Kumar, Parmetis: Parallel Graph
Partitioning and Sparse Matrix Ordering Library. Version 10,
Dept of Computer Science, University of Minnesota, 1997.

[52] A.L. Chin, A.D. Worth, A.C. Greenough, A.S. Coakley,
M. Holcombe, M. Kiran, Flame: An approach to the
parallelisation of agent-based applications, Work 501 (2012)
63–259.

[53] X. Rubio-Campillo, Pandora: A versatile agent-based mod-
elling platform for social simulation, in: SIMUL 2014, The
Sixth International Conference on Advances in System Sim-
ulation, IARIA, Nice, France, 2014, pp. 29–34.

[54] X. Rubio-Campillo, J.M. Cela, Large-scale agent-based simu-
lation in archaeology: an approach using high-performance
computing, in: BAR International Series 2494. Proceedings of
the 38th Annual Conference on Computer Applications and
Quantitative Methods in Archaeology, Granada, Spain, April
2010, 2013, pp. 153–159.

[55] K.S. Perumalla, µsik-a micro-kernel for parallel/distributed
simulation systems, in: 2005. PADS 2005. Workshop on
Principles of Advanced and Distributed Simulation, IEEE,
2005, pp. 59–68.

[56] G. Cordasco, F. Milone, C. Spagnuolo, L. Vicidomini, Exploiting
d-mason on parallel platforms: A novel communication
strategy, in: Euro-Par Workshops (1)’14, 2014, pp. 407–417.

[57] P. Wittek, X. Rubio-Campillo, Scalable agent-based modelling
with cloud hpc resources for social simulations, in: 2012 IEEE
4th International Conf. on Cloud Computing Technology and
Science, (CloudCom), IEEE, 2012, pp. 355–362.

[58] B. Cosenza, G. Cordasco, R. De Chiara, V. Scarano, Distributed
load balancing for parallel agent-based simulations, in: 2011
19th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing, (PDP), IEEE, 2011,
pp. 62–69.

[59] M. Madella, B. Rondelli, C. Lancelotti, A. Balbo, D. Zurro, X.R.
Campillo, S. Stride, Introduction to simulating the past, J.
Archaeol. Method Theory 21 (2) (2014) 251–257.

[60] S. Coakley, P. Richmond, M. Gheorghe, S. Chin, D. Worth,
M. Holcombe, C. Greenough, Large-scale simulations with
flame, Intell. Agents Data-Intensive Comput. 14 (123) (2015).

http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref31
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref32
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref34
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref35
http://dx.doi.org/10.1109/5.910853
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref37
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref38
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref39
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref40
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref42
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref43
http://dx.doi.org/10.1109/ANSS.2007.34
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref46
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref48
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref49
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref50
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref51
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref52
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref53
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref55
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref57
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref58
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref59
http://refhub.elsevier.com/S1574-0137(15)30043-5/sbref60

� مقا�، از �ی �ه مقا�ت ا �� ن سايت شده �� ��ه فاراي �� در PDFكه #� فرمت ميباشد ��

ان قرار � ايل ميتوانيد #� 6يک �� روی د3ه های ز�� گرفته است. اختيار -, عز�� از در صورت :�

اييد:سا�� مقا�ت � استفاده :� ن<�

ه شده از �� � مقا�ت �� � ه فا ؛ مرجع جديد�� �� ت معت<� خار�B سايت �� �# ,Dن

http://tarjomefa.com/
http://tarjomefa.com/%D8%AF%D8%A7%D9%86%D9%84%D9%88%D8%AF+%D9%85%D9%82%D8%A7%D9%84%D9%87+isi+%D8%A8%D8%A7+%D8%AA%D8%B1%D8%AC%D9%85%D9%87+%D8%B1%D8%A7%DB%8C%DA%AF%D8%A7%D9%86
http://tarjomefa.com/%D8%AC%D8%B3%D8%AA%D8%AC%D9%88-%D8%A8%D9%87-%D8%B1%D9%88%D8%B4-%D8%AA%D8%B1%D8%AC%D9%85%D9%87-%D9%81%D8%A7
http://isidl.com/

	A survey on parallel and distributed multi-agent systems for high performance computing simulations
	Introduction
	MAS based simulations
	PDMAS and HPC
	Existing PDMAS platforms
	Qualitative analysis
	Method
	Analysis

	Analysis of distribution support
	Method
	Reference model
	Distribution
	D-MASON
	RepastHPC
	Flame
	Pandora
	Communication
	D-MASON
	RepastHPC
	Flame
	Pandora

	Coherency/Synchronization
	D-MASON
	RepastHPC
	Flame
	Pandora
	Load balancing
	D-MASON
	Flame
	RepastHPC
	Pandora

	Synthesis of the parallel properties

	Performance evaluation
	Experimental settings
	Performance results

	Synthesis
	RepastHPC
	Flame
	D-MASON
	Pandora

	Conclusion
	Acknowledgment
	References

