

Projection operators nearly orthogonal to their symmetries ${ }^{*}{ }^{*}$

Sam Walters

Department of Mathematics \& Statistics, University of Northern B.C., Prince George, B.C. V2N 4Z9, Canada

A R T I C L E I N F O

Article history:

Received 28 June 2016
Available online xxxx
Submitted by H. Lin

Keywords:

Hilbert space
Norm approximation
C^{*}-algebras
Automorphisms
Projections
Orthogonality

A B S T R A C T

For any order 2 automorphism α of a C^{*}-algebra A (a symmetry of A), we prove that for each projection e such that $\|e \alpha(e)\| \leq \frac{9}{20}$, there exists a projection q with $q \alpha(q)=0$ satisfying the norm estimate

$$
\|e-q\| \leq \frac{1}{2}\|e \alpha(e)\|+4\|e \alpha(e)\|^{2}
$$

In other words, if e is a projection that is "nearly orthogonal" to its symmetry $\alpha(e)$ in the sense that the norm $\|e \alpha(e)\|$ is no more than $\frac{9}{20}$, then e can be approximated by a projection q that is exactly orthogonal to its symmetry in a fairly optimal fashion. (Optimal in the sense that the first term in the estimate satisfies $\frac{1}{2}\|e \alpha(e)\| \leq\|e-q\|$ for any such q.)
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of this paper is to obtain a fine estimate for the norm difference $\|e-q\|$ in terms of the norm $\|e \alpha(e)\|$ of a projection e relative to a symmetry α (order 2 automorphism), where q is a projection that is orthogonal to its symmetry (i.e. $q \alpha(q)=0$). The norm $\|e \alpha(e)\|$ measures the degree to which e is or is not orthogonal to its symmetric image $\alpha(e)$. It is shown that for all C^{*}-algebras this degree does not have to be too small in order that the projection e can be approximated by a projection q that is exactly orthogonal to its symmetry. We show the existence for such fine approximation when the norm $\|e \alpha(e)\|$ is at most $\frac{9}{20}=0.45$. Further, a bound for the norm $\|e-q\|$ is expressed in terms of a simple quadratic function of $\|e \alpha(e)\|$. The main result is the following.

[^0]Theorem 1.1. Let A be any C^{*}-algebra and α a symmetry of A. If e is a projection in A such that $\|e \alpha(e)\|<$ $\xi(\approx 0.455)$, then there exists a projection q in the C^{*}-subalgebra generated by e, $\alpha(e)$ such that

$$
\begin{equation*}
q \alpha(q)=0, \quad\|e-q\| \leq \frac{1}{2}\|e \alpha(e)\|+4\|e \alpha(e)\|^{2} . \tag{1.1}
\end{equation*}
$$

Theorem 1.2. Let e be any projection operator and u any Hermitian unitary operator on Hilbert space such that $\|e u e\|<\xi(\approx 0.455)$. Then there exists a projection operator q such that

$$
q u q=0, \quad\|e-q\| \leq \frac{1}{2}\|e u e\|+4\|e u e\|^{2} .
$$

Further, q is in the C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$ generated by e, ueu*.
The number $\xi \approx 0.4550898$ is the positive root of $x^{2}\left(2+4 F\left(x^{2}\right)\right)=1$ (where F is defined by (2.1) below). It is clear that Theorem 1.2 follows from 1.1 (since the symmetry on $\mathcal{B}(\mathcal{H})$ in this case is $\alpha(x)=u x u^{*}$).

The precision of the inequality (1.1) is recognized by noting that the norm $\|e-q\|$ is always at least the first term on the right side:

$$
\begin{equation*}
\frac{1}{2}\|e \alpha(e)\| \leq\|e-q\| \tag{1.2}
\end{equation*}
$$

for any projection q that is orthogonal to its symmetry $(q \alpha(q)=0)$. Indeed, this is easy to see from the equality

$$
e \alpha(e)=(e-q) \alpha(q)+e \alpha(e-q)
$$

which gives (1.2). The theorem therefore estimates the norm $\|e-q\|$ from its minimum value (over such q 's) to within a quadratic order of magnitude:

$$
\frac{1}{2}\|e \alpha(e)\| \leq\|e-q\| \leq \frac{1}{2}\|e \alpha(e)\|+4\|e \alpha(e)\|^{2}
$$

In order to improve our estimates, we used the following anticommutator norm formula that we proved in [2].

Theorem 1.3. (See [2].) For any two projection operators f, g on Hilbert space, one has

$$
\|f g+g f\|=\|f g\|+\|f g\|^{2} .
$$

We note that a C^{*}-algebra A that possesses a symmetry contains non-trivial α-orthogonal positive elements. For example, pick a Hermitian element h such that $\alpha(h) \neq h$ and let $x=h-\alpha(h)$, a nonzero Hermitian element such that $\alpha(x)=-x$. The positive part $a=\frac{1}{2}(|x|+x)$ of x is non-zero (since the spectrum of x contains positive and negative real numbers) and clearly satisfies $a \alpha(a)=0$. If further, the hereditary C^{*}-subalgebra generated by a, namely $\overline{a A a}$, contains projections then these will automatically be α-orthogonal projections. In particular, if A has real rank zero ${ }^{1}$ and has a symmetry, then it contains many α-orthogonal projections.

Theorem 1.1 can be applied in particular to the flip automorphism $U \rightarrow U^{-1}, V \rightarrow V^{-1}$ of the rotation C*-algebra A_{θ} generated by unitaries U, V subject to the commutation relation $V U=e^{2 \pi i \theta} U V$ - or, indeed, to the flip on any higher dimensional noncommutative torus. The result can also be applied to the noncommutative Fourier transform $U \rightarrow V \rightarrow U^{-1}$ restricted the fixed point subalgebra of A_{θ} under the flip.

[^1]Our work is somewhat related to some results in [1] concerning semiprojective group actions (G, A, α), except that our C^{*}-algebra A is not assumed to be semiprojective, nor the action, and that we give a new and precise quantitative result for the action (which is not dealt with in [1]).

2. Proof of Main Theorem

Write $\chi=\chi_{\left[\frac{1}{2}, \infty\right)}$ for the characteristic function of $\left[\frac{1}{2}, \infty\right)$. The following lemma is a slightly finer version of a well-known result, and for the sake of being complete we detailed its proof in the Appendix. We denote by $C^{*}(x, y)$ the C^{*}-subalgebra generated by elements x, y. We consider the function of a real variable

$$
\begin{equation*}
F(x)=\frac{1}{1+\sqrt{1-4 x}} \tag{2.1}
\end{equation*}
$$

which is increasing for $0 \leq x \leq \frac{1}{4}$ and has range $\left[\frac{1}{2}, 1\right]$.
Lemma 2.1. Let A be a C^{*}-algebra and $a \in A$ be a Hermitian element such that $\delta:=\left\|a^{2}-a\right\|<\frac{1}{4}$. Then the projection $p=\chi(a)$ exists in $C^{*}(a)$ and satisfies

$$
\|a-p\| \leq 2 \delta F(\delta)
$$

Lemma 2.2. The inequality $\|b-1\| \leq\left\|b^{2}-1\right\|$ holds for any positive element b in a unital C^{*}-algebra.
Proof. Since $1 \leq(b+1)^{2}$ and $b-1$ is Hermitian, we get

$$
(b-1) 1(b-1) \leq(b-1)(b+1)^{2}(b-1)
$$

or $0 \leq(b-1)^{2} \leq\left(b^{2}-1\right)^{2}$. Taking norms gives

$$
\|b-1\|^{2}=\left\|(b-1)^{2}\right\| \leq\left\|\left(b^{2}-1\right)^{2}\right\|=\left\|b^{2}-1\right\|^{2}
$$

hence the result.
Proposition 2.3. Let f and g be projections in a C^{*}-algebra A such that $t:=\|f g\|<\frac{1}{2}$. Then the projection $p=\chi\left(y^{2}\right)$ exists, where $y=g-f$, and has the following properties:

$$
\begin{align*}
g \leq p, \quad f & \leq p, \quad y p=y \tag{2.2}\\
\left\|y^{4}-y^{2}\right\| & \leq t^{2} \tag{2.3}\\
\left\|y^{2}-p\right\| & \leq 2 t^{2} F\left(t^{2}\right) \tag{2.4}\\
\left\|y^{3}-y\right\| & \leq 2 t^{2} F\left(t^{2}\right) \tag{2.5}\\
\||y|-p\| & \leq 2 t^{2} F\left(t^{2}\right) \tag{2.6}\\
\|(f+g)-p\| & \leq t+t^{2}+2 t^{2} F\left(t^{2}\right) \tag{2.7}
\end{align*}
$$

Proof. Let $b=g+f$, a positive element, and let $y=g-f$, a Hermitian element with $-1 \leq y \leq 1$. We have

$$
y^{2}=g+f-g f-f g
$$

(a positive element with $|y| \leq 1$) and

$$
\begin{aligned}
y^{4}= & (g+f-g f-f g)(g+f-g f-f g) \\
= & g+g f-g f-g f g+f g+f-f g f-f g \\
& -g f g-g f+g f g f+g f g-f g-f g f+f g f+f g f g \\
= & g+f-g f-f g-g f g+g f g f-f g f+f g f g .
\end{aligned}
$$

Thus

$$
y^{2}-y^{4}=g f g-g f g f+f g f-f g f g .
$$

This can be written as the sum of two orthogonal positive elements

$$
y^{2}-y^{4}=u^{*} u+u u^{*}
$$

where $u=f g-f g f$ satisfies $u^{2}=0$. The norm of $y^{2}-y^{4}$ is therefore just $\left\|u^{*} u\right\|=\|u\|^{2}$. Since $\|u\| \leq$ $\|f g\|<\frac{1}{2}$, we get ${ }^{2}$

$$
\left\|y^{2}-y^{4}\right\| \leq\|f g\|^{2}=t^{2}<\frac{1}{4}
$$

which in particular gives (2.3). Lemma 2.1 therefore gives the existence of the spectral projection $p:=\chi\left(y^{2}\right)$ satisfying

$$
\left\|y^{2}-p\right\| \leq 2 t^{2} F\left(t^{2}\right)
$$

which gives (2.4). Note that y^{2} commutes with g and f, so that p also commutes with g and f. Thus $p g$ is a projection under g and p.

It is easy to see that

$$
g\left(y^{2}-p\right) g+g f g=g-p g
$$

hence

$$
\|g-p g\| \leq\left\|g\left(y^{2}-p\right) g\right\|+\|f g\|^{2} \leq 2 t^{2} F\left(t^{2}\right)+t^{2} \leq 3 t^{2}<1 .
$$

Therefore g and $p g$ are equivalent projections in the commutative C^{*}-algebra generated by them, so they must be equal $p g=g$; hence $g \leq p$. In exactly the same way, one shows $f \leq p$. In particular, p acts as the identity for y : $p y=y p=y$. This establishes (2.2).

From Theorem 1.3 and the above estimates one gets

$$
\begin{align*}
\|(f+g)-p\| & \leq\left\|(f+g)-y^{2}\right\|+\left\|y^{2}-p\right\|=\|f g+g f\|+\left\|y^{2}-p\right\| \tag{2.8}\\
& \leq\|f g\|+\|f g\|^{2}+2 t^{2} F\left(t^{2}\right) \tag{2.9}
\end{align*}
$$

giving (2.7).
Since p is the identity for y, Lemma 2.2 gives inequality (2.6):

$$
\||y|-p\| \leq\left\|y^{2}-p\right\| \leq 2 t^{2} F\left(t^{2}\right)
$$

Also, $\left\|y^{3}-y\right\|=\left\|y\left(y^{2}-p\right)\right\| \leq\left\|y^{2}-p\right\|$ which gives (2.5), since $\|y\| \leq 1$.

[^2]We now proceed to prove the main theorem.
Theorem 2.4. Let A be any C^{*}-algebra and α a symmetry of A. If e is a projection in A such that $\|e \alpha(e)\|<$ $\xi(\approx 0.455)$, then there exists a projection q in $C^{*}(e, \alpha(e))$ such that

$$
q \alpha(q)=0, \quad\|e-q\| \leq \frac{1}{2}\|e \alpha(e)\|+4\|e \alpha(e)\|^{2} .
$$

Proof. As in the notation of the proof of Proposition 2.3, with $g=e, f=\alpha(e)$ we let $y=e-\alpha(e)$ denote the Hermitian element such that $\alpha(y)=-y$ (and $\|y\| \leq 1$), and $p=\chi\left(y^{2}\right)$ the associated projection satisfying the properties listed in the proposition. (In particular, we have $p y=y$.)

Let $t=\|e \alpha(e)\|$, and let $d=\frac{1}{2}(|y|+y) \in C^{*}(e, \alpha(e))$ denote the positive part of y. One has $|y|=d+\alpha(d)$, $y=d-\alpha(d)$, and

$$
d \alpha(d)=\frac{1}{4}(|y|+y)(|y|-y)=\frac{1}{4}\left(|y|^{2}-y^{2}\right)=0
$$

so that d is an α-orthogonal positive element. One checks that

$$
d^{2}=\frac{1}{2}\left(y^{2}+y|y|\right), \quad d^{4}=\frac{1}{2}\left(y^{4}+y^{3}|y|\right),
$$

whence from inequalities (2.3) and (2.5) one gets

$$
\begin{aligned}
\left\|d^{4}-d^{2}\right\| & =\frac{1}{2}\left\|\left(y^{4}-y^{2}\right)+\left(y^{3}-y\right)|y|\right\| \\
& \leq \frac{1}{2}\left\|y^{4}-y^{2}\right\|+\frac{1}{2}\left\|y^{3}-y\right\| \leq \frac{1}{2} t^{2}+t^{2} F\left(t^{2}\right) .
\end{aligned}
$$

With $\xi(=0.455 \cdots)$ being the positive root of the equation $\frac{1}{2} t^{2}+t^{2} F\left(t^{2}\right)=\frac{1}{4}$, we have shown that $\left\|d^{4}-d^{2}\right\|<\frac{1}{4}$ when $t<\xi$. Therefore, Lemma 2.1 gives the projection $q=\chi\left(d^{2}\right)$ satisfying $q \alpha(q)=0$ (since $\left.d \alpha(d)=0\right)$, and

$$
\left\|q-d^{2}\right\| \leq t^{2}\left(1+2 F\left(t^{2}\right)\right) F\left(\frac{1}{2} t^{2}+t^{2} F\left(t^{2}\right)\right)
$$

Let us compute

$$
\begin{aligned}
2 e-2 d^{2} & =2 e-\left(y^{2}+y|y|\right)=2 e-\left[(e-\alpha(e))^{2}+y|y|\right] \\
& =2 e-[e+\alpha(e)-e \alpha(e)-\alpha(e) e+y|y|] \\
& =e-\alpha(e)+e \alpha(e)+\alpha(e) e-y|y| \\
& =y-y|y|+e \alpha(e)+\alpha(e) e \\
& =y(p-|y|)+e \alpha(e)+\alpha(e) e
\end{aligned}
$$

where p is the projection of Proposition 2.3 (since $\|e \alpha(e)\|<\frac{1}{2}$ already holds). Using inequality (2.6) and Theorem 1.3 we get

$$
\left\|e-d^{2}\right\| \leq \frac{1}{2} t+\frac{1}{2} t^{2}+t^{2} F\left(t^{2}\right)
$$

Thus,

$$
\begin{align*}
\|e-q\| & \leq\left\|e-d^{2}\right\|+\left\|d^{2}-q\right\| \\
& \leq \frac{1}{2} t+\frac{1}{2} t^{2}+t^{2} F\left(t^{2}\right)+t^{2}\left(1+2 F\left(t^{2}\right)\right) F\left(\frac{1}{2} t^{2}+t^{2} F\left(t^{2}\right)\right) \tag{2.10}\\
& =\frac{1}{2} t+t^{2} G(t) \tag{2.11}
\end{align*}
$$

where

$$
G(t)=\frac{1}{2}+F\left(t^{2}\right)+\left(1+2 F\left(t^{2}\right)\right) F\left(\frac{1}{2} t^{2}+t^{2} F\left(t^{2}\right)\right)
$$

Since G is an increasing function (recall that F is increasing), we can replace it by its maximum over $[0, \xi]$, namely $G(\xi)=3.62 \ldots<4$, and we therefore obtain

$$
\|e-q\| \leq \frac{1}{2} t+t^{2} G(t) \leq \frac{1}{2} t+4 t^{2} .
$$

This completes the proof.

3. Appendix

Lemma 3.1. Let A be a C^{*}-algebra and $a \in A$ be a Hermitian element such that $\left\|a^{2}-a\right\|<\frac{1}{4}$. Then the projection $p=\chi(a)$ exists in $C^{*}(a)$ and satisfies

$$
\|a-p\| \leq 2\left\|a^{2}-a\right\| F\left(\left\|a^{2}-a\right\|\right)
$$

Recall that $\chi=\chi_{\left[\frac{1}{2}, \infty\right)}$ is the characteristic function of $\left[\frac{1}{2}, \infty\right)$, and we note that the projection p does not in general act like an identity for a.

Proof. Let $\delta=\left\|a^{2}-a\right\|$, so that the spectrum $\operatorname{Sp}\left(a^{2}-a\right)$ of $a^{2}-a$ is contained in the interval $[-\delta, \delta]$. Let $f(x)=x-x^{2}$. Then by the spectral mapping theorem

$$
f(\operatorname{Sp}(a))=\operatorname{Sp}(f(a))=\operatorname{Sp}\left(a-a^{2}\right) \subseteq[-\delta, \delta] .
$$

As $\delta<\frac{1}{4}$, we have $\frac{1}{2} \notin \operatorname{Sp}(a)$ so that the projection $p=\chi(a)$ exists in $C^{*}(a)$. Now if $t \in \operatorname{Sp}(a)$, then $-\delta \leq f(t) \leq \delta$ whose solutions are easily checked to be one of the intervals

$$
\begin{align*}
& \frac{1}{2}(1-\sqrt{1+4 \delta})<t<\frac{1}{2}(1-\sqrt{1-4 \delta}), \tag{3.1}\\
& \frac{1}{2}(1+\sqrt{1-4 \delta})<t<\frac{1}{2}(1+\sqrt{1+4 \delta}) . \tag{3.2}
\end{align*}
$$

Therefore, if we let $g(x)=x$, then $\|a-p\|=\|g(a)-\chi(a)\|=\|g-\chi\|_{\operatorname{sp}(a)}$. For t in the first interval (3.1) we have $|g(t)-\chi(t)|=|t|$, and for t the second interval (3.2) we have $|g(t)-\chi(t)|=|t-1|$. It can be checked that in either case we have $|g(t)-\chi(t)|<\frac{1}{2}(1-\sqrt{1-4 \delta})$. Therefore,

$$
\|a-p\| \leq \frac{1}{2}(1-\sqrt{1-4 \delta})=\frac{2 \delta}{1+\sqrt{1-4 \delta}}=2 \delta F(\delta),
$$

as desired.

Acknowledgments

This research was partly supported by a grant from NSERC (Natural Science and Engineering Council of Canada).

References

[1] N.C. Phillips, A. Sorensen, H. Thiel, Semiprojectivity with and without a group action, J. Funct. Anal. 268 (4) (2015) 929-973, ArXiv.org/abs/1403.3440.
[2] S. Walters, Anticommutator norm formula for projection operators, preprint, ArXiv.org/abs/1604.00699, 2015,7 pages.

[^0]: मे Research partly supported by a grant from NSERC. E-mail address: walters@unbc.ca.
 URL: http://hilbert.unbc.ca.
 http://dx.doi.org/10.1016/j.jmaa.2016.09.013
 0022-247X/© 2016 Elsevier Inc. All rights reserved.

[^1]: ${ }^{1}$ That is, each Hermitian element can be approximated by a Hermitian with finite spectrum.

[^2]: ${ }^{2}$ We point out that norm differences of higher powers of y such as $\left\|y^{4}-y^{8}\right\|,\left\|y^{6}-y^{12}\right\|$ can be greater than $\left\|y^{2}-y^{4}\right\|$, as can be shown for 2 by 2 matrices.

