J. Math. Anal. Appl. $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

ELSEVIER

Contents lists available at ScienceDirect

YJMAA:20718

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Projection operators nearly orthogonal to their symmetries $\stackrel{\star}{\approx}$

Sam Walters

Department of Mathematics & Statistics, University of Northern B.C., Prince George, B.C. V2N 4Z9, Canada

ARTICLE INFO

Article history: Received 28 June 2016 Available online xxxx Submitted by H. Lin

Keywords: Hilbert space Norm approximation C*-algebras Automorphisms Projections Orthogonality ABSTRACT

For any order 2 automorphism α of a C*-algebra A (a symmetry of A), we prove that for each projection e such that $\|e\alpha(e)\| \leq \frac{9}{20}$, there exists a projection q with $q\alpha(q) = 0$ satisfying the norm estimate

$$||e - q|| \le \frac{1}{2} ||e\alpha(e)|| + 4 ||e\alpha(e)||^2.$$

In other words, if e is a projection that is "nearly orthogonal" to its symmetry $\alpha(e)$ in the sense that the norm $\|e\alpha(e)\|$ is no more than $\frac{9}{20}$, then e can be approximated by a projection q that is exactly orthogonal to its symmetry in a fairly optimal fashion. (Optimal in the sense that the first term in the estimate satisfies $\frac{1}{2} \|e\alpha(e)\| \leq \|e-q\|$ for any such q.)

@ 2016 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of this paper is to obtain a fine estimate for the norm difference ||e - q|| in terms of the norm $||e\alpha(e)||$ of a projection e relative to a symmetry α (order 2 automorphism), where q is a projection that is orthogonal to its symmetry (i.e. $q\alpha(q) = 0$). The norm $||e\alpha(e)||$ measures the degree to which e is or is not orthogonal to its symmetric image $\alpha(e)$. It is shown that for all C*-algebras this degree does not have to be too small in order that the projection e can be approximated by a projection q that is exactly orthogonal to its symmetry. We show the existence for such fine approximation when the norm $||e\alpha(e)||$ is at most $\frac{9}{20} = 0.45$. Further, a bound for the norm ||e - q|| is expressed in terms of a simple quadratic function of $||e\alpha(e)||$. The main result is the following.

Please cite this article in press as: S. Walters, Projection operators nearly orthogonal to their symmetries, J. Math. Anal. Appl. (2016), http://dx.doi.org/10.1016/j.jmaa.2016.09.013

[☆] Research partly supported by a grant from NSERC. *E-mail address:* walters@unbc.ca.

URL: http://hilbert.unbc.ca.

 $[\]label{eq:http://dx.doi.org/10.1016/j.jmaa.2016.09.013} 0022-247X/© 2016$ Elsevier Inc. All rights reserved.

S. Walters / J. Math. Anal. Appl. $\bullet \bullet \bullet$ ($\bullet \bullet \bullet \bullet$) $\bullet \bullet \bullet - \bullet \bullet \bullet$

Theorem 1.1. Let A be any C*-algebra and α a symmetry of A. If e is a projection in A such that $||e\alpha(e)|| < \xi(\approx 0.455)$, then there exists a projection q in the C*-subalgebra generated by $e, \alpha(e)$ such that

$$q\alpha(q) = 0, \qquad \|e - q\| \le \frac{1}{2} \|e\alpha(e)\| + 4 \|e\alpha(e)\|^2.$$
(1.1)

Theorem 1.2. Let e be any projection operator and u any Hermitian unitary operator on Hilbert space such that $||eue|| < \xi (\approx 0.455)$. Then there exists a projection operator q such that

$$quq = 0,$$
 $||e - q|| \le \frac{1}{2} ||eue|| + 4 ||eue||^2.$

Further, q is in the C*-subalgebra of $\mathcal{B}(\mathcal{H})$ generated by e, ueu*.

The number $\xi \approx 0.4550898$ is the positive root of $x^2(2+4F(x^2)) = 1$ (where F is defined by (2.1) below). It is clear that Theorem 1.2 follows from 1.1 (since the symmetry on $\mathcal{B}(\mathcal{H})$ in this case is $\alpha(x) = uxu^*$).

The precision of the inequality (1.1) is recognized by noting that the norm ||e - q|| is always at least the first term on the right side:

$$\frac{1}{2} \|e\alpha(e)\| \le \|e - q\| \tag{1.2}$$

for any projection q that is orthogonal to its symmetry $(q\alpha(q) = 0)$. Indeed, this is easy to see from the equality

$$e\alpha(e) = (e-q)\alpha(q) + e\alpha(e-q)$$

which gives (1.2). The theorem therefore estimates the norm ||e-q|| from its minimum value (over such q's) to within a quadratic order of magnitude:

$$\frac{1}{2} \|e\alpha(e)\| \leq \|e-q\| \leq \frac{1}{2} \|e\alpha(e)\| + 4 \|e\alpha(e)\|^2.$$

In order to improve our estimates, we used the following anticommutator norm formula that we proved in [2].

Theorem 1.3. (See [2].) For any two projection operators f, g on Hilbert space, one has

$$||fg+gf|| = ||fg|| + ||fg||^2$$

We note that a C*-algebra A that possesses a symmetry contains non-trivial α -orthogonal positive elements. For example, pick a Hermitian element h such that $\alpha(h) \neq h$ and let $x = h - \alpha(h)$, a nonzero Hermitian element such that $\alpha(x) = -x$. The positive part $a = \frac{1}{2}(|x| + x)$ of x is non-zero (since the spectrum of x contains positive and negative real numbers) and clearly satisfies $a\alpha(a) = 0$. If further, the hereditary C*-subalgebra generated by a, namely \overline{aAa} , contains projections then these will automatically be α -orthogonal projections. In particular, if A has real rank zero¹ and has a symmetry, then it contains many α -orthogonal projections.

Theorem 1.1 can be applied in particular to the flip automorphism $U \to U^{-1}, V \to V^{-1}$ of the rotation C^* -algebra A_{θ} generated by unitaries U, V subject to the commutation relation $VU = e^{2\pi i \theta} UV$ – or, indeed, to the flip on any higher dimensional noncommutative torus. The result can also be applied to the noncommutative Fourier transform $U \to V \to U^{-1}$ restricted the fixed point subalgebra of A_{θ} under the flip.

2

 $^{^1\,}$ That is, each Hermitian element can be approximated by a Hermitian with finite spectrum.

Please cite this article in press as: S. Walters, Projection operators nearly orthogonal to their symmetries, J. Math. Anal. Appl. (2016), http://dx.doi.org/10.1016/j.jmaa.2016.09.013

Our work is somewhat related to some results in [1] concerning semiprojective group actions (G, A, α) , except that our C*-algebra A is not assumed to be semiprojective, nor the action, and that we give a new and precise quantitative result for the action (which is not dealt with in [1]).

2. Proof of Main Theorem

Write $\chi = \chi_{[\frac{1}{2},\infty)}$ for the characteristic function of $[\frac{1}{2},\infty)$. The following lemma is a slightly finer version of a well-known result, and for the sake of being complete we detailed its proof in the Appendix. We denote by $C^*(x,y)$ the C*-subalgebra generated by elements x, y. We consider the function of a real variable

$$F(x) = \frac{1}{1 + \sqrt{1 - 4x}} \tag{2.1}$$

which is increasing for $0 \le x \le \frac{1}{4}$ and has range $[\frac{1}{2}, 1]$.

Lemma 2.1. Let A be a C*-algebra and $a \in A$ be a Hermitian element such that $\delta := ||a^2 - a|| < \frac{1}{4}$. Then the projection $p = \chi(a)$ exists in C*(a) and satisfies

$$||a - p|| \le 2\delta F(\delta).$$

Lemma 2.2. The inequality $||b-1|| \le ||b^2-1||$ holds for any positive element b in a unital C*-algebra.

Proof. Since $1 \le (b+1)^2$ and b-1 is Hermitian, we get

$$(b-1)1(b-1) \le (b-1)(b+1)^2(b-1),$$

or $0 \le (b-1)^2 \le (b^2-1)^2$. Taking norms gives

$$||b-1||^2 = ||(b-1)^2|| \le ||(b^2-1)^2|| = ||b^2-1||^2$$

hence the result. $\hfill\square$

Proposition 2.3. Let f and g be projections in a C*-algebra A such that $t := ||fg|| < \frac{1}{2}$. Then the projection $p = \chi(y^2)$ exists, where y = g - f, and has the following properties:

$$g \leq p, \quad f \leq p, \quad yp = y \tag{2.2}$$

$$\|y^4 - y^2\| \le t^2 \tag{2.3}$$

$$\|y^2 - p\| \le 2t^2 F(t^2) \tag{2.4}$$

$$\|y^3 - y\| \le 2t^2 F(t^2) \tag{2.5}$$

$$|||y| - p|| \leq 2t^2 F(t^2) \tag{2.6}$$

$$\|(f+g) - p\| \le t + t^2 + 2t^2 F(t^2)$$
(2.7)

Proof. Let b = g + f, a positive element, and let y = g - f, a Hermitian element with $-1 \le y \le 1$. We have

$$y^2 = g + f - gf - fg$$

(a positive element with $|y| \leq 1$) and

Please cite this article in press as: S. Walters, Projection operators nearly orthogonal to their symmetries, J. Math. Anal. Appl. (2016), http://dx.doi.org/10.1016/j.jmaa.2016.09.013

3

S. Walters / J. Math. Anal. Appl. $\bullet \bullet \bullet$ ($\bullet \bullet \bullet \bullet$) $\bullet \bullet \bullet - \bullet \bullet \bullet$

$$\begin{split} y^4 &= (g + f - gf - fg)(g + f - gf - fg) \\ &= g + gf - gf - gfg + fg + f - fgf - fg \\ &- gfg - gf + gfgf + gfg - fg - fgf + fgff + fgfg \\ &= g + f - gf - fg - gfg + gfgf - fgf + fgfg. \end{split}$$

Thus

4

$$y^2 - y^4 = gfg - gfgf + fgf - fgfg$$

This can be written as the sum of two orthogonal positive elements

$$y^2 - y^4 = u^* u + u u^*$$

where u = fg - fgf satisfies $u^2 = 0$. The norm of $y^2 - y^4$ is therefore just $||u^*u|| = ||u||^2$. Since $||u|| \le ||fg|| < \frac{1}{2}$, we get²

$$\|y^2 - y^4\| \le \|fg\|^2 = t^2 < \frac{1}{4}$$

which in particular gives (2.3). Lemma 2.1 therefore gives the existence of the spectral projection $p := \chi(y^2)$ satisfying

$$\|y^2 - p\| \le 2t^2 F(t^2)$$

which gives (2.4). Note that y^2 commutes with g and f, so that p also commutes with g and f. Thus pg is a projection under g and p.

It is easy to see that

$$g(y^2 - p)g + gfg = g - pg_g$$

hence

$$||g - pg|| \le ||g(y^2 - p)g|| + ||fg||^2 \le 2t^2 F(t^2) + t^2 \le 3t^2 < 1.$$

Therefore g and pg are equivalent projections in the commutative C*-algebra generated by them, so they must be equal pg = g; hence $g \leq p$. In exactly the same way, one shows $f \leq p$. In particular, p acts as the identity for y: py = yp = y. This establishes (2.2).

From Theorem 1.3 and the above estimates one gets

$$\|(f+g) - p\| \le \|(f+g) - y^2\| + \|y^2 - p\| = \|fg + gf\| + \|y^2 - p\|$$
(2.8)

$$\leq \|fg\| + \|fg\|^2 + 2t^2 F(t^2) \tag{2.9}$$

giving (2.7).

Since p is the identity for y, Lemma 2.2 gives inequality (2.6):

$$|||y| - p|| \le ||y^2 - p|| \le 2t^2 F(t^2).$$

Also, $||y^3 - y|| = ||y(y^2 - p)|| \le ||y^2 - p||$ which gives (2.5), since $||y|| \le 1$. \Box

Please cite this article in press as: S. Walters, Projection operators nearly orthogonal to their symmetries, J. Math. Anal. Appl. (2016), http://dx.doi.org/10.1016/j.jmaa.2016.09.013

YJMAA:20718

² We point out that norm differences of higher powers of y such as $||y^4 - y^8||$, $||y^6 - y^{12}||$ can be greater than $||y^2 - y^4||$, as can be shown for 2 by 2 matrices.

We now proceed to prove the main theorem.

Theorem 2.4. Let A be any C*-algebra and α a symmetry of A. If e is a projection in A such that $||e\alpha(e)|| < \xi(\approx 0.455)$, then there exists a projection q in C*(e, $\alpha(e)$) such that

$$q\alpha(q) = 0,$$
 $||e - q|| \le \frac{1}{2} ||e\alpha(e)|| + 4 ||e\alpha(e)||^2.$

Proof. As in the notation of the proof of Proposition 2.3, with $g = e, f = \alpha(e)$ we let $y = e - \alpha(e)$ denote the Hermitian element such that $\alpha(y) = -y$ (and $||y|| \le 1$), and $p = \chi(y^2)$ the associated projection satisfying the properties listed in the proposition. (In particular, we have py = y.)

Let $t = ||e\alpha(e)||$, and let $d = \frac{1}{2}(|y|+y) \in C^*(e, \alpha(e))$ denote the positive part of y. One has $|y| = d + \alpha(d)$, $y = d - \alpha(d)$, and

$$d\alpha(d) = \frac{1}{4}(|y|+y)(|y|-y) = \frac{1}{4}(|y|^2 - y^2) = 0$$

so that d is an α -orthogonal positive element. One checks that

$$d^2 = \frac{1}{2}(y^2 + y|y|), \quad d^4 = \frac{1}{2}(y^4 + y^3|y|),$$

whence from inequalities (2.3) and (2.5) one gets

$$\begin{aligned} \|d^4 - d^2\| &= \frac{1}{2} \left\| (y^4 - y^2) + (y^3 - y)|y| \right\| \\ &\leq \frac{1}{2} \|y^4 - y^2\| + \frac{1}{2} \|y^3 - y\| \leq \frac{1}{2} t^2 + t^2 F(t^2). \end{aligned}$$

With $\xi(=0.455^{\cdots})$ being the positive root of the equation $\frac{1}{2}t^2 + t^2F(t^2) = \frac{1}{4}$, we have shown that $||d^4 - d^2|| < \frac{1}{4}$ when $t < \xi$. Therefore, Lemma 2.1 gives the projection $q = \chi(d^2)$ satisfying $q\alpha(q) = 0$ (since $d\alpha(d) = 0$), and

$$||q - d^2|| \le t^2 (1 + 2F(t^2))F(\frac{1}{2}t^2 + t^2F(t^2)).$$

Let us compute

$$2e - 2d^{2} = 2e - (y^{2} + y|y|) = 2e - [(e - \alpha(e))^{2} + y|y|]$$

$$= 2e - [e + \alpha(e) - e\alpha(e) - \alpha(e)e + y|y|]$$

$$= e - \alpha(e) + e\alpha(e) + \alpha(e)e - y|y|$$

$$= y - y|y| + e\alpha(e) + \alpha(e)e$$

$$= y(p - |y|) + e\alpha(e) + \alpha(e)e$$

where p is the projection of Proposition 2.3 (since $||e\alpha(e)|| < \frac{1}{2}$ already holds). Using inequality (2.6) and Theorem 1.3 we get

$$||e - d^2|| \le \frac{1}{2}t + \frac{1}{2}t^2 + t^2F(t^2).$$

Thus,

$$\|e - q\| \le \|e - d^2\| + \|d^2 - q\|$$

$$\le \frac{1}{2}t + \frac{1}{2}t^2 + t^2F(t^2) + t^2(1 + 2F(t^2))F(\frac{1}{2}t^2 + t^2F(t^2))$$
(2.10)

$$=\frac{1}{2}t + t^2 G(t) \tag{2.11}$$

Please cite this article in press as: S. Walters, Projection operators nearly orthogonal to their symmetries, J. Math. Anal. Appl. (2016), http://dx.doi.org/10.1016/j.jmaa.2016.09.013

 $\mathbf{5}$

YJMAA:20718

S. Walters / J. Math. Anal. Appl. • • • (• • • •) • • • - • • •

where

6

$$G(t) = \frac{1}{2} + F(t^2) + (1 + 2F(t^2))F(\frac{1}{2}t^2 + t^2F(t^2)).$$

Since G is an increasing function (recall that F is increasing), we can replace it by its maximum over $[0, \xi]$, namely $G(\xi) = 3.62... < 4$, and we therefore obtain

$$||e - q|| \le \frac{1}{2}t + t^2 G(t) \le \frac{1}{2}t + 4t^2.$$

This completes the proof. \Box

3. Appendix

Lemma 3.1. Let A be a C*-algebra and $a \in A$ be a Hermitian element such that $||a^2 - a|| < \frac{1}{4}$. Then the projection $p = \chi(a)$ exists in C*(a) and satisfies

$$||a - p|| \le 2||a^2 - a||F(||a^2 - a||).$$

Recall that $\chi = \chi_{[\frac{1}{2},\infty)}$ is the characteristic function of $[\frac{1}{2},\infty)$, and we note that the projection p does not in general act like an identity for a.

Proof. Let $\delta = ||a^2 - a||$, so that the spectrum $\text{Sp}(a^2 - a)$ of $a^2 - a$ is contained in the interval $[-\delta, \delta]$. Let $f(x) = x - x^2$. Then by the spectral mapping theorem

$$f(\operatorname{Sp}(a)) = \operatorname{Sp}(f(a)) = \operatorname{Sp}(a - a^2) \subseteq [-\delta, \delta].$$

As $\delta < \frac{1}{4}$, we have $\frac{1}{2} \notin \operatorname{Sp}(a)$ so that the projection $p = \chi(a)$ exists in $C^*(a)$. Now if $t \in \operatorname{Sp}(a)$, then $-\delta \leq f(t) \leq \delta$ whose solutions are easily checked to be one of the intervals

$$\frac{1}{2}(1 - \sqrt{1 + 4\delta}) < t < \frac{1}{2}(1 - \sqrt{1 - 4\delta}), \tag{3.1}$$

$$\frac{1}{2}(1+\sqrt{1-4\delta}) < t < \frac{1}{2}(1+\sqrt{1+4\delta}).$$
(3.2)

Therefore, if we let g(x) = x, then $||a - p|| = ||g(a) - \chi(a)|| = ||g - \chi||_{\operatorname{Sp}(a)}$. For t in the first interval (3.1) we have $|g(t) - \chi(t)| = |t|$, and for t the second interval (3.2) we have $|g(t) - \chi(t)| = |t - 1|$. It can be checked that in either case we have $|g(t) - \chi(t)| < \frac{1}{2}(1 - \sqrt{1 - 4\delta})$. Therefore,

$$||a - p|| \le \frac{1}{2}(1 - \sqrt{1 - 4\delta}) = \frac{2\delta}{1 + \sqrt{1 - 4\delta}} = 2\delta F(\delta),$$

as desired. $\hfill\square$

Acknowledgments

This research was partly supported by a grant from NSERC (Natural Science and Engineering Council of Canada).

References

- N.C. Phillips, A. Sorensen, H. Thiel, Semiprojectivity with and without a group action, J. Funct. Anal. 268 (4) (2015) 929–973, ArXiv.org/abs/1403.3440.
- [2] S. Walters, Anticommutator norm formula for projection operators, preprint, ArXiv.org/abs/1604.00699, 2015, 7 pages.

Please cite this article in press as: S. Walters, Projection operators nearly orthogonal to their symmetries, J. Math. Anal. Appl. (2016), http://dx.doi.org/10.1016/j.jmaa.2016.09.013