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Abstract

In this paper, an iterative method is constructed to solve the linear matrix equation AXB = C over skew-symmetric matrix X.
By the iterative method, the solvability of the equation AXB = C over skew-symmetric matrix can be determined automatically.
When the equation AXB = C is consistent over skew-symmetric matrix X, for any skew-symmetric initial iterative matrix X1,
the skew-symmetric solution can be obtained within finite iterative steps in the absence of roundoff errors. The unique least-norm
skew-symmetric iterative solution of AXB =C can be derived when an appropriate initial iterative matrix is chosen. A sufficient and
necessary condition for whether the equation AXB = C is inconsistent is given. Furthermore, the optimal approximate solution of
AXB = C for a given matrix X0 can be derived by finding the least-norm skew-symmetric solution of a new corresponding matrix
equation AX̃B = C̃. Finally, several numerical examples are given to illustrate that our iterative method is effective.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper the following notations are considered and used. Let Rm×n denote the set of all m × n real matrices,
SSRn×n denote the set of all n × n real skew-symmetric matrices in Rn×n. We denote by the superscripts T and +
the transpose and Moore–Penrose generalized inverse of matrices, respectively. In matrix space Rm×n, define inner
product as: 〈A, B〉 = tr(BTA) for all A, B ∈ Rm×n, ‖A‖ represents the Frobenius norm of A. R(A) represents the
column space of A. vec(·) represents the vector operator. i.e., vec(A) = (aT

1 , aT
2 , . . . , aT

n )T ∈ Rmn for the matrix
A = (a1, a2, . . . , an) ∈ Rm×n, ai ∈ Rm, i = 1, 2, . . . , n. A ⊗ B stands for the Kronecker product of matrices A and B.
For more notations we refer to [3].

In this paper, we will consider the following two problems.
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Problem I. For given matrices A ∈ Rm×n, B ∈ Rn×p, C ∈ Rm×p, find matrix X ∈ SSRn×n such that

AXB = C. (1)

Problem II. When Problem I is consistent, let SE denote the set of skew-symmetric solutions of Problem I, for a given
matrix X0 ∈ Rn×n, find X̂ ∈ SE such that

‖X̂ − X0‖ = min
X∈SE

‖X − X0‖. (2)

In fact, Problem II is to find the optimal approximately skew-symmetric solution to a given matrix X0 ∈ Rn×n.
Problem I has been considered in the case of special solution structures, e.g. symmetric, triangular or diagonal

solution X.We refer to Dai [5], Eric Chu [2], Don [4], Magnus [6], Morris and Odell [8], Bjerhammer [1] for more
details. Mitra [7] considered common solutions to a pair of linear matrix equations A1XB1 = C1, A2XB2 = C2. In
these literatures, the problem was discussed by using matrices decomposition such as the singular value decomposition
(SVD), the generalized SVD (GSVD), the quotient SVD (QSVD) and the canonical correlation decomposition (CCD).
However, these methods are difficult to be applied to solve Problem II, and the representation of solutions of Problems
I and II are complicated. Huang and Yin [11,12] recently solve the constrained inverse eigenproblem and associated
approximation problem for anti-Hermitian R-symmetric matrices and the matrix inverse problem and its optimal
approximation problem for R-symmetric matrices. Recently, Peng et al. [9] have constructed an iteration method to
solve the linear matrix equation AXB = C over symmetric matrix X. Peng [10] has shown an iterative method to solve
the minimum Frobenius norm residual problem: min ‖AXB −C‖ with unknown symmetric matrix X. In this paper, we
will consider the skew-symmetric solution of the linear matrix equation AXB = C, we construct an iterative method
by which the solvability of Problem I can be determined automatically, the solution can be obtained within finite
iterative steps when Problem I is consistent, and the solution of Problem II can be obtained by finding the least-norm
skew-symmetric solution of a new matrix equation AX̃B = C̃.

This paper is organized as follows. In Section 2, we will solve Problem I by construct an iterative method, i.e., for an
arbitrary initial matrix X1 ∈ SSRn×n, if there exists a positive integer k, such that Rk �= 0 and Qk = 0, then Problem
I is inconsistent, where Rk and Qk (k = 1, 2, . . .) are defined in Algorithm 2.1. If Problem I is consistent, then for
an arbitrary initial matrix X1 ∈ SSRn×n, we can obtain a solution X ∈ SSRn×n of Problem I within finite iterative
steps in the absence of roundoff errors. Let X1 = ATHTBT − BHA, where H is an arbitrary matrix in Rp×m, or more
especially, let X1 =0 ∈ SSRn×n, we can obtain the unique least-norm solution of Problem I. Then in Section 3, we give
the optimal approximate solution of Problem II by finding the least-norm skew-symmetric solution of a corresponding
new matrix equation. In Section 4, several numerical examples are given to illustrate the application of our iterative
methods.

2. The solution of Problem I

In this section, we will first introduce an iterative method to solve Problem I, then prove that it is convergent.

Algorithm 2.1. Step 1: Input matrices A ∈ Rm×n, B ∈ Rn×p, C ∈ Rm×p;
Step 2: Choose an arbitrary matrix X1 ∈ SSRn×n, compute

R1 = C − AX1B,

P1 = ATR1B
T,

Q1 = 1

2
(P1 − P T

1 ),

k := 1;

Step 3: If R1 = 0, or R1 �= 0 and Q1 = 0, then stop; Else go to step 4;
Step 4: Compute

Xk+1 = Xk + ‖Rk‖2

‖Qk‖2 Qk ,
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Rk+1 = C − AXk+1B,

Pk+1 = ATRk+1B
T,

Qk+1 = 1

2
(Pk+1 − P T

k+1) + tr(Pk+1Qk)

‖Qk‖2 Qk;

Step 5: If Rk+1 = 0, or Rk+1 �= 0 and Qk+1 = 0, then stop; Else, let k : =k + 1, go to step 4.

Obviously, it can be seen that Qi ∈ SSRn×n, Xi ∈ SSRn×n, where i = 1, 2, . . . .

Lemma 2.1. For the sequences {Ri}, {Pi} and {Qi} generated in Algorithm 2.1, we have

tr(RT
i+1Rj ) = tr(RT

i Rj ) + ‖Ri‖2

‖Qi‖2 tr(QiPj ). (3)

Proof. Noting that QT
i = −Qi , by Algorithm 2.1, we have

tr(RT
i+1Rj ) = tr[(C − AXi+1B)TRj ]

= tr

[(
C − A(Xi + ‖Ri‖2

‖Qi‖2 Qi)B

)T

Rj

]

= tr

[
(C − AXiB)TRj − ‖Ri‖2

‖Qi‖2 (AQiB)TRj

]

= tr(RT
i Rj ) − ‖Ri‖2

‖Qi‖2 tr(BTQT
i ATRj )

= tr(RT
i Rj ) − ‖Ri‖2

‖Qi‖2 tr(QT
i ATRjB

T)

= tr(RT
i Rj ) − ‖Ri‖2

‖Qi‖2 tr(QT
i Pj )

= tr(RT
i Rj ) + ‖Ri‖2

‖Qi‖2 tr(QiPj ). �

Lemma 2.2. For the sequences {Ri} and {Qi} generated by Algorithm 2.1, and k�2, we have

tr(RT
i Rj ) = 0, tr(QT

i Qj ) = 0, i, j = 1, 2, . . . , k, i �= j . (4)

Proof. Since tr(RT
i Rj ) = tr(RT

j Ri) and tr(QT
i Qj ) = tr(QT

j Qi) for all i, j = 1, 2, . . . , k, we only need prove that

tr(RT
i Rj ) = 0, tr(QT

i Qj ) = 0 for all 1�j < i�k. We prove the conclusion by induction and two steps are
required.

Step 1: we will show that

tr(RT
i+1Ri) = 0, tr(QT

i+1Qi) = 0, i = 1, 2, . . . , k − 1. (5)

To prove this conclusion, we also use induction.
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For i = 1, by Lemma 2.1 and Algorithm 2.1, noting that QT
1 = −Q1, it follows that

tr(RT
2 R1) = tr(RT

1 R1) + ‖R1‖2

‖Q1‖2 tr(Q1P1)

= ‖R1‖2 + ‖R1‖2

‖Q1‖2 tr

(
Q1P1

2
+ (Q1P1)

T

2

)

= ‖R1‖2 + ‖R1‖2

‖Q1‖2 tr

(
Q1P1

2
+ P T

1 QT
1

2

)

= ‖R1‖2 + ‖R1‖2

‖Q1‖2 tr

(
Q1

P1 − P T
1

2

)

= ‖R1‖2 + ‖R1‖2

‖Q1‖2 tr(Q1Q1)

= ‖R1‖2 − ‖R1‖2

‖Q1‖2 tr(QT
1 Q1) = 0

and

tr(QT
2 Q1) = tr

⎡⎣(P2 − P T
2

2
+ tr(P2Q1)

‖Q1‖2 Q1

)T

Q1

⎤⎦
= − tr

(
P2 − P T

2

2
Q1

)
+ tr(P2Q1)

‖Q1‖2 tr(QT
1 Q1)

= − tr

(
P2Q1 + (Q1P2)

T

2

)
+ tr(P2Q1)

= − tr

(
P2Q1 + P2Q1

2

)
+ tr(P2Q1) = 0.

Assume (5) holds for i = s − 1, i.e., tr(RT
s Rs−1) = 0, tr(QT

s Qs−1) = 0. Noting that QT
s = −Qs , by Lemma 2.1 we

have

tr(RT
s+1Rs) = tr(RT

s Rs) + ‖Rs‖2

‖Qs‖2 tr(QsPs)

= ‖Rs‖2 − ‖Rs‖2

‖Qs‖2 tr(QT
s Ps)

= ‖Rs‖2 − ‖Rs‖2

‖Qs‖2 tr

[
QT

s Ps + (PsQ
T
s )T

2

]

= ‖Rs‖2 − ‖Rs‖2

‖Qs‖2 tr

(
QT

s

Ps − P T
s

2

)
= ‖Rs‖2 − ‖Rs‖2

‖Qs‖2 tr

[
QT

s

(
Qs − tr(PsQs−1)

‖Qs−1‖2 Qs−1

)]
= ‖Rs‖2 − ‖Rs‖2

‖Qs‖2 tr

[(
QT

s Qs

)
− tr(PsQs−1)

‖Qs−1‖2 tr(QT
s Qs−1)

]
= ‖Rs‖2 − ‖Rs‖2

‖Qs‖2 tr(QT
s Qs) = 0
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and

tr(QT
s+1Qs) = tr

⎡⎣(Ps+1 − P T
s+1

2
+ tr(Ps+1Qs)

‖Qs‖2 Qs

)T

Qs

⎤⎦
= tr

[(
−Ps+1 − P T

s+1

2
+ tr(Ps+1Qs)

‖Qs‖2 QT
s

)
Qs

]

= tr

(
−Ps+1Qs − P T

s+1Qs

2

)
+ tr(Ps+1Qs)

‖Qs‖2 tr(QT
s Qs)

= − tr

[
Ps+1Qs + (QsPs+1)

T

2

]
+ tr(Ps+1Qs)

= − tr

[
Ps+1Qs + (Ps+1Qs)

T

2

]
+ tr(Ps+1Qs)

= − tr(Ps+1Qs) + tr(Ps+1Qs) = 0.

Hence, (5) holds for i = s. Therefore, (5) holds by the principle of induction.
Step 2: Assume that tr(RT

s Rj ) = 0, tr(QT
s Qj ) = 0, j = 1, 2, . . . , s − 1, then we show that

tr(RT
s+1Rj ) = 0, tr(QT

s+1Qj) = 0, j = 1, 2, . . . , s. (6)

In fact, by Lemma 2.1 we have

tr(RT
s+1Rj ) = tr(RT

s Rj ) + ‖Rs‖2

‖Qs‖2 tr(QsPj )

= ‖Rs‖2

‖Qs‖2 tr

[
QsPj

2
+ (QsPj )

T

2

]

= ‖Rs‖2

‖Qs‖2 tr

(
Qs

Pj − P T
j

2

)

= ‖Rs‖2

‖Qs‖2 tr

[
Qs

(
Qj − tr(PjQj−1)

‖Qj−1‖2 Qj−1

)]
= ‖Rs‖2

‖Qs‖2

[
tr(QsQj ) − tr(PjQj−1)

‖Qj−1‖2 tr(QsQj−1)

]
= ‖Rs‖2

‖Qs‖2

[
−tr(QT

s Qj ) + tr(PjQj−1)

‖Qj−1‖2 tr(QT
s Qj−1)

]
= 0

and

tr(QT
s+1Qj) = tr

⎡⎣(Ps+1 − P T
s+1

2
+ tr(Ps+1Qs)

‖Qs‖2 Qs

)T

Qj

⎤⎦
= tr

[(
−Ps+1 − P T

s+1

2
+ tr(Ps+1Qs)

‖Qs‖2 QT
s

)
Qj

]

= tr

(
−Ps+1 − P T

s+1

2
Qj

)
+ tr(Ps+1Qs)

‖Qs‖2 tr(QT
s Qj )
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= − 1

2
tr(Ps+1Qj) + 1

2
tr(P T

s+1Qj)

= − 1

2
tr(Ps+1Qj) + 1

2
tr[(P T

s+1Qj)
T]

= − 1

2
tr(Ps+1Qj) + 1

2
tr(QT

j Ps+1)

= − 1

2
tr(Ps+1Qj) − 1

2
tr(QjPs+1)

= − tr(Ps+1Qj)

= − tr(QjPs+1).

Noting that tr(RT
s+1Rj ) = 0, tr(RT

s+1Rj+1) = 0, by Lemma 2.1 we have

tr(QT
s+1Qj) = − tr(QjPs+1)

= ‖Qj‖2

‖Rj‖2 [tr(RT
j Rs+1) − tr(RT

j+1Rs+1)]

= ‖Qj‖2

‖Rj‖2 [tr(RT
s+1Rj ) − tr(RT

s+1Rj+1)] = 0.

By the principle of induction, (6) holds. Noting that (4) is implied in steps 1 and 2 by the principle of induction, we
complete the proof. �

Lemma 2.3. Suppose X̄ be an arbitrary solution of Problem I, i.e., AX̄B = C and X̄T = −X̄, then

tr[(X̄ − Xk)Qk] = −‖Rk‖2, k = 1, 2, . . . , (7)

where the sequences {Xk}, {Rk}, {Qk} are generated by Algorithm 2.1.

Proof. We proof the conclusion by induction.
For k = 1,

tr[(X̄ − X1)Q1] = tr

[
(X̄ − X1)

P1 − P T
1

2

]

= tr

[
(X̄ − X1)P1

2
+ (X̄ − X1)

TP T
1

2

]

= tr

[
(X̄ − X1)P1

2
+ P1(X̄ − X1)

2

]
= tr[(X̄ − X1)P1]
= tr[(X̄ − X1)A

T(C − AX1B)BT]
= tr[B(C − AX1B)TA(X̄ − X1)

T]
= − tr[B(C − AX1B)TA(X̄ − X1)]
= − tr[A(X̄ − X1)B(C − AX1B)T]
= − tr[(AX̄B − AX1B)RT

1 ]
= − tr[(C − AX1B)RT

1 ]
= − tr(R1R

T
1 ) = −tr(RT

1 R1) = −‖R1‖2.
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Assume (7) holds for k = s. Since

tr[(X̄ − Xs+1)Qs] = tr

[
(X̄ − Xs − ‖Rs‖2

‖Qs‖2 Qs)Qs

]

= tr[(X̄ − Xs)Qs] − ‖Rs‖2

‖Qs‖2 tr(QsQs)

= − ‖Rs‖2 + ‖Rs‖2

‖Qs‖2 tr(QT
s Qs)

= 0,

then by Algorithm 2.1, we have

tr[(X̄ − Xs+1)Qs+1] = tr

[
(X̄ − Xs+1)

(
Ps+1 − P T

s+1

2
+ tr(Ps+1Qs)

‖Qs‖2 Qs

)]

= tr

[
(X̄ − Xs+1)Ps+1 + (X̄ − Xs+1)

TP T
s+1

2

]
+ tr(Ps+1Qs)

‖Qs‖2 tr[(X̄ − Xs+1)Qs]

= tr

[
(X̄ − Xs+1)Ps+1 + Ps+1(X̄ − Xs+1)

2

]
= tr[(X̄ − Xs+1)Ps+1]
= tr[(X̄ − Xs+1)A

TRs+1B
T]

= tr[(X̄ − Xs+1)A
T(C − AXs+1B)BT]

= tr[B(C − AXs+1B)TA(X̄ − Xs+1)
T]

= − tr[B(C − AXs+1B)TA(X̄ − Xs+1)]
= − tr[A(X̄ − Xs+1)B(C − AXs+1B)T]
= − tr[(AX̄B − AXs+1B)(C − AXs+1B)T]
= − tr[(C − AXs+1B)(C − AXs+1B)T]
= − tr(Rs+1R

T
s+1)

= − tr(RT
s+1Rs+1) = −‖Rs+1‖2.

Therefore, (7) holds for k = s + 1. By the principle of induction the proof is completed. �

Theorem 2.1. Suppose that Problem I is consistent, then for an arbitrary initial matrix X1 ∈ SSRn×n, a solution of
Problem I can be obtained with finite iteration steps in the absence of roundoff errors and the minimum of the steps
marked t0 is within min(mp, n2).

Proof. If Ri �= 0, i = 1, 2, . . . , mp, by Lemma 2.3 we have Qi �= 0, i = 1, 2, . . . , mp, then we can compute
Xmp+1, Rmp+1 by Algorithm 2.1.

By Lemma 2.2, we have

tr(RT
mp+1Ri) = 0, i = 1, 2, . . . , mp
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and

tr(RT
i Rj ) = 0, i, j = 1, 2, . . . , mp, i �= j .

It can be seen that the set of R1, R2, . . . , Rmp is an orthogonal basis of the matrix space Rm×p, which implies that
Rmp+1 = 0, i.e.,Xmp+1 is a solution of Problem I.

When Problem I is consistent, we can verify that the solution of Problem I can be obtained within t0 iterative steps,
where t0 = min(mp, n2). In fact, if n2 �mp and if Ri �= 0, i = 1, 2, . . . , n2, then Qi �= 0, i = 1, 2, . . . , n2, and we
can compute Xn2+1, Rn2+1, Qn2+1 by Algorithm 2.1. Similar to the previous proof, we have Qn2+1 = 0, and then by
Lemma 2.3, we have Rn2+1 = 0, i.e., Xn2+1 is a solution of Problem I. �

From Theorem 2.1, we can easily obtain the following result.

Theorem 2.2. The necessary and sufficient conditions of the inconsistency of Problem I is that there exists a positive
integer k, such that Rk �= 0 and Qk = 0 in the process of Algorithm 2.1.

Proof. Sufficiency: If there exists a positive integer k, such that Rk �= 0 and Qk = 0, by Lemma 2.3, it is easy to see
that Problem I is inconsistent.

Necessity: The inconsistency of Problem I implies that Ri �= 0 for all positive integer i. If Qi �= 0 for all positive
integer i, then Problem I has solutions by Theorem 2.1, which contradict to the inconsistency of Problem I. Therefore,
there exists a positive integer number k, such that Rk �= 0 and Qk = 0. �

From Theorem 2.1 and 2.2, we get the conditions when Algorithm 2.1 can be terminated. To show the least-norm
skew-symmetric solution of Problem I, we first introduce the following result.

Lemma 2.4 (See Peng et al. [9, Lemma 2.4]). Suppose that the consistent system of linear equation My = b has a
solution y0 ∈ R(MT), then y0 is the least-norm solution of the system of linear equations.

By Lemma 2.4, the following result can be obtained.

Theorem 2.3. Suppose that Problem I is consistent. If we choose the initial iterative matrix X1 = ATHTBT − BHA,
where H is an arbitrary matrix in Rp×m, especially, let X1 = 0 ∈ SSRn×n, we can obtain the unique least-norm
skew-symmetric solution of Problem I within finite iterative steps in the absence of roundoff errors by using Algorithm
2.1.

Proof. By Algorithm 2.1 and Theorem 2.1, if we let X1 =ATHTBT −BHA, where H is an arbitrary matrix in Rp×m,
we can obtain the solution X∗ of Problem I within finite iterative steps in the absence of roundoff errors, and the solution
X∗ can be represented that X∗ = ATY TBT − BYA.

In the sequel, we will prove that X∗ is just the least-norm solution of Problem I.
Consider the following system of matrix equations:{

AXB = C,

BTXAT = −CT.
(8)

If Problem I has a solution X0 ∈ SSRn×n, then XT
0 = −X0, AX0B = C, and

BTX0A
T = (AXT

0 B)T = (−AX0B)T = −(AX0B)T = −CT.

Hence, the systems of matrix equations (8) also has a solution X0.
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Conversely, if the systems of matrix equations (8) has a solution X ∈ Rn×n, such that AXB = C, BTXAT = −CT,

let X0 = (X − X
T
)/2, then X0 ∈ SSRn×n, and

AX0B = 1
2A(X − X

T
)B

= 1
2 (AXB − AX

T
B)

= 1
2 [AXB − (BTXAT)T]

= 1
2 [C − (−CT)T] = C.

Therefore, X0 is a solution of Problem I.
So the solvability of Problem I is equivalent to that of the systems of matrix equations (8), and the solution of Problem

I must be the solution of the systems of matrix equations (8).
Let S′

E denote the set of all solutions of the systems of matrix equations (8), then we know that SE ⊂ S′
E , where SE

is the set of all solutions of Problem I. In order to prove that X∗ is the least-norm solution of Problem I, it is enough
to prove that X∗ is the least-norm solution of the systems of matrix equations (8). Denote vec(X) = x, vec(X∗) = x∗,
vec(Y T) = y1, vec(Y ) = y2, vec(C) = c1, vec(CT) = c2, then the systems of matrix equations (8) is equivalent to the
systems of linear equations[

BT ⊗ A

A ⊗ BT

]
x =

[
c1

−c2

]
. (9)

Noting that

x∗ = vec(ATY TBT − BYA)

= (B ⊗ AT)y1 − (AT ⊗ B)y2

= [B ⊗ AT AT ⊗ B ]

[
y1

−y2

]
∈ R

([
BT ⊗ A

A ⊗ BT

]T)
,

by Lemma 2.4 we know that X∗ is the least-norm solution of the systems of linear equations (9). Since vector operator
is isomorphic, X∗ is the unique least-norm solution of the systems of matrix equations (8), then X∗ is the unique
least-norm solution of Problem I. �

3. The solution of Problem II

In this section, we will show that the optimal approximate solution of Problem II for a given matrix can be derived
by finding the least-norm skew-symmetric solution of a new corresponding matrix equation AX̃B = C̃.

For a given matrix X0 ∈ Rn×n, since symmetric matrix and a skew-symmetric matrix are orthogonal each other, we
have

‖X − X0‖2 =
∥∥∥∥∥X −

(
X0 + XT

0

2
+ X0 − XT

0

2

)∥∥∥∥∥
2

=
∥∥∥∥∥
(

X − X0 − XT
0

2

)
− X0 + XT

0

2

∥∥∥∥∥
2

=
∥∥∥∥∥X − X0 − XT

0

2

∥∥∥∥∥
2

+
∥∥∥∥∥X0 + XT

0

2

∥∥∥∥∥
2

for any X ∈ SSRn×n.
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When Problem I is consistent, the set of solutions of Problem I denoted by SE is not empty, then linear
equation

AXB = C

is equivalent to the following equation:

A

(
X − X0 − XT

0

2

)
B = C − A

X0 − XT
0

2
B.

Let X̃ = X − (X0 − XT
0 )/2, C̃ = C − A[(X0 − XT

0 )/2]B, then Problem II is equivalent to finding the least-norm
skew-symmetric solution X̃∗ of the matrix equation

AX̃B = C̃. (10)

By using Algorithm 2.1, let initially iterative matrix X̃1 = ATHTBT − BHA, or more especially, let X̃1 = 0 ∈ Rn×n,
we can obtain the unique least-norm solution X̃∗ of the matrix equation (10), then we can obtain the solution X̂ of
Problem II, and X̂ can be represented that X̂ = X̃∗ + (X0 − XT

0 )/2.

4. Examples for the iterative methods

In this section, we will show several numerical examples to illustrate our results. All the tests are performed by
MATLAB 6.5.1.

Example 1. Consider the skew-symmetric solution of the equation AXB = C, where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 −5 7 −9

2 0 4 6 −1

0 −2 9 6 −8

3 6 2 27 −13

−5 5 −22 −1 −11

8 4 −6 −9 −19

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

4 0 8 −5 4

−1 5 0 −2 3

4 −1 0 2 5

0 3 9 2 −6

−2 7 −8 1 11

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

171 −537 74 −29 −281

142 −278 212 −92 −150

196 −523 −59 −111 24

661 −1507 922 −234 −1003

−39 −192 −207 186 −227

−165 −292 −1154 76 422

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We will find the skew-symmetric solution of the matrix equation AXB = C by using Algorithm 2.1. Because of the
influence of the error of calculation, the residual Ri is usually unequal to zero in the process of the iteration, where
i = 1, 2, . . . . For any chosen positive number ε, however small enough, e.g., ε = 1.0000e − 010, whenever ‖Rk‖ < ε,
stop the iteration, and Xk is regarded to be a solution of the matrix equation AXB = C. Choose an initially iterative
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matrix X1 ∈ SSR5×5, such as

X1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 −3 0

0 0 −2 −1 3

−1 2 0 −1 0

3 1 1 0 −4

0 −3 0 4 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

by Algorithm 2.1, we have

X14 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 2.0000 −1.0000 −2.0000 −0.0000

−2.0000 0 2.0000 1.0000 −4.0000

1.0000 −2.0000 0 −1.0000 −0.0000

2.0000 −1.0000 1.0000 0 −4.0000

0.0000 4.0000 0.0000 4.0000 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

‖R14‖ = 3.2646e − 011 < ε.

So we obtain a skew-symmetric solution of the matrix equation AXB = C as follows:

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 2.0000 −1.0000 −2.0000 −0.0000

−2.0000 0 2.0000 1.0000 −4.0000

1.0000 −2.0000 0 −1.0000 −0.0000

2.0000 −1.0000 1.0000 0 −4.0000

0.0000 4.0000 0.0000 4.0000 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Let

X1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

by Algorithm 2.1, we have

X14 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 2.0000 −1.0000 −2.0000 −0.0000

−2.0000 0 2.0000 1.0000 −4.0000

1.0000 −2.0000 0 −1.0000 −0.0000

2.0000 −1.0000 1.0000 0 −4.0000

0.0000 4.0000 0.0000 4.0000 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

‖R14‖ = 9.8875e − 011 < ε.
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So we obtain a skew-symmetric solution of the matrix equation AXB = C as follows:

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 2.0000 −1.0000 −2.0000 −0.0000

−2.0000 0 2.0000 1.0000 −4.0000

1.0000 −2.0000 0 −1.0000 −0.0000

2.0000 −1.0000 1.0000 0 −4.0000

0.0000 4.0000 0.0000 4.0000 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Example 2. Consider the least-norm solution of the equation AXB = C in Example 1. Let

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

9 0 −2 5 4 3

8 4 3 0 1 1

3 0 1 6 2 5

2 5 2 8 −5 −3

−6 0 −7 1 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and

X1 = ATHTBT − BHA.

By using Algorithm 2.1, we have

X17 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 2.0000 −1.0000 −2.0000 −0.0000

−2.0000 0 2.0000 1.0000 −4.0000

1.0000 −2.0000 0 −1.0000 0.0000

2.0000 −1.0000 1.0000 0 −4.0000

0.0000 4.0000 −0.0000 4.0000 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

‖R17‖ = 8.1162e − 011 < ε.

So we obtain the least-norm solution of the matrix equation AXB = C as follows:

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 2.0000 −1.0000 −2.0000 −0.0000

−2.0000 0 2.0000 1.0000 −4.0000

1.0000 −2.0000 0 −1.0000 0.0000

2.0000 −1.0000 1.0000 0 −4.0000

0.0000 4.0000 −0.0000 4.0000 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Example 3. Consider the skew-symmetric solution of the equation AXB = C, where

A =
⎛⎜⎝

1 −1 0 3

−1 −3 −4 4

3 1 4 2

⎞⎟⎠ , B =

⎛⎜⎜⎜⎜⎝
2 −1 0 −1

−3 0 1 −1

0 −2 4 1

1 −2 1 1

⎞⎟⎟⎟⎟⎠ ,

C =
⎛⎜⎝

20 3 −22 2

24 24 −72 6

16 −18 28 −2

⎞⎟⎠ .
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Let ε = 1.0000e − 005 and initial matrix X1 = 0. By using Algorithm 2.1, we have

‖R6‖ = 1.0408e + 003, ‖Q6‖ = 1.9143e − 008 < ε.

Therefore, there is no skew-symmetric solution for the matrix equation AXB = C by Theorem 2.2.

Example 4. Let SE denote the set of all skew-symmetric solutions of the matrix equation AXB=C, where the matrices
A, B and C are mentioned in Example 1. Suppose

X0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 4 −1 0

5 3 2 7 4

−1 −2 0 −1 0

2 6 1 8 −4

0 3 1 4 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

we will find X̂ ∈ SE , such that

‖X̂ − X0‖ = min
X∈SE

‖X − X0‖,

i.e., find the optimal approximate solution to the matrix X0 in SE . Let X̃0 =(X0 −XT
0 )/2, X̃=X−X̃0, C̃ =C −AX̃0B,

by the method mentioned in Section 3, we can obtain the least-norm skew-symmetric solution X̃∗ of the matrix equation
AX̃B = C̃ by choosing the initial iteration matrix X̃1 = 0, and X̃∗ is that

X̃14
∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 4.5000 −3.5000 −0.5000 −0.0000

−4.5000 0 0.0000 0.5000 −4.5000

3.5000 −0.0000 0 −0.0000 0.5000

0.5000 −0.5000 0.0000 0 0.0000

0.0000 4.5000 −0.5000 −0.0000 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

‖R14‖ = 7.0170e − 011 < ε = 1.0000e − 010

and

X̂ = X̃14
∗ + X0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 2.0000 −1.0000 −2.0000 −0.0000

−2.0000 0 2.0000 1.0000 −4.0000

1.0000 −2.0000 0 −1.0000 −0.0000

2.0000 −1.0000 1.0000 0 −4.0000

0.0000 4.0000 0.0000 4.0000 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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