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a b s t r a c t

Due to the inherent characteristics of resource-constrained sensors, communication overhead is always a
major concern in wireless sensor networks (WSNs). Data aggregation is an essential technique to reduce
the communication overhead and prolong network lifetime. Since data aggregation results are usually
used to make critical decisions, the accuracy of final aggregation results is very important. Furthermore,
as wireless sensor networks are increasing being deployed in security-critical applications, we should
take security into consideration as well. Therefore, for such applications, data aggregation protocols must
be highly energy efficient and highly accurate while being able to prevent an adversary from stealing pri-
vate data held by each sensor node. In this paper, we propose an energy-efficient and high-accuracy
(EEHA) scheme for secure data aggregation. The main idea of our scheme is that accurate data aggrega-
tion is achieved without releasing private sensor readings and without introducing significant overhead
on the battery-limited sensors. We conduct extensive simulations to evaluate the performance of EEHA.
Our analysis and simulations show that EEHA is more efficient and accurate than the existing scheme.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Wireless sensor networks are becoming increasingly popular in
many applications [1–4] such as military surveillance and civilian
usage. A wireless sensor network is composed of hundreds or thou-
sands of tiny resource-constrained sensors, equipped with non-
rechargeable batteries. For such sensors, transmission is much
more energy consuming than computation. Therefore, the amount
of communication overhead should be kept as low as possible, in
order to extend the lifetime of wireless sensor networks (WSNs).

Large sensor networks usually generate substantial amounts of
data, and as in many cases, there is high redundancy in their raw
data. Hence, it is important to design efficient data processing tech-
nique to reduce redundant data and the amount of transmission.
Data aggregation [6–10] is an essential paradigm to eliminate data
redundancy and save energy. During a typical data aggregation
process, sensor nodes are organized into a tree hierarchy rooted
at the base station (BS). The non-leaf nodes act as aggregators, fus-
ing data collected from their child nodes and forwarding the aggre-
gated results towards the BS. In this way, only aggregated data are
returned to the base station, rather than the summation of the data
ll rights reserved.

0718030 and 60973117, and
of Ministry of Education of
generated in each node. Compared with the centralized approach
where all raw data are returned, data aggregation can reduce com-
munication overhead significantly and hence increase the lifetime
of WSNs.

Aggregation accuracy is desired for the final decision which is
based on the aggregation result, especially for some sensitive
applications where a small difference of result may lead to com-
pletely different decisions. In applications such as battlefield sur-
veillance and forest fire monitoring, such variation deviating
from the accurate result may lead to very severe consequences.
Therefore, aggregation accuracy is an important criterion for data
aggregation scheme.

Because of the low-cost and flexibility, the sensor network has
the potential to change the way of people communicating with envi-
ronment and the others. Wireless sensor networks have become a
popular platform for pervasive computing. For example, sensor net-
works may be deployed in personal environment, such as houses and
human body. People might not agree to participate in these applica-
tions without privacy protection. Therefore, data aggregations in
such application should address privacy-preservation.

Therefore, such environments pose a particularly challenging
set of constrains for the protocol design: data aggregation must
be achieved with communication overhead as low as possible
and aggregation accuracy as high as possible while without private
data released. However, sensor networks have their inherent limi-
tation: energy constraints, due to the small-size and low-cost
sensor nodes; security vulnerability, due to the open nature of
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wireless communication channels and the lack of physical protec-
tion of individual sensor nodes.

Extensive research has been conducted to overcome these limita-
tions. He et al. [5] proposed the scheme of Slice-Mix-AggRegaTe
(SMART) for additive aggregation functions, which guarantees data
privacy through data ‘‘slicing and assembling” technique. In the
SMART scheme, each sensor node needs to slice its sensor reading
randomly into a certain number (say, n) of pieces, and one piece is
kept on itself, the remaining n � 1 pieces are securely distributed
to n � 1 neighbor sensor nodes, which results in high communica-
tion overhead and more message collisions. In this paper, we intro-
duce an energy-efficient and high-accuracy scheme for secure data
aggregation for WSNs, in which the ‘‘slicing and assembling” tech-
nique is only implemented to leaf nodes of the aggregation tree,
and the other nodes just send one message for aggregation. Hence,
the communication overhead is greatly reduced as the number of
nodes which slice their primitive data are much less than that in
SMART. Less communication overhead leads to less message colli-
sions, sequentially achieving a higher level of aggregation accuracy.
In this paper, we design the energy-efficient and high-accuracy
(EEHA) scheme with comprehensive consideration of the three fac-
tors, which are communication overhead, aggregation accuracy
and privacy protection, and try to explore the tradeoff among them.

Extensive simulations are conducted to compare our scheme
with the existing SMART scheme. The results show that our
scheme can reduce communication overhead and improve aggre-
gation accuracy, while achieving the privacy-preservation.

Compared with SMART scheme, our energy-efficient and high-
accuracy scheme has the following major advantages:

� Efficiency: Our proposed scheme EEHA can protect data privacy
with moderate extra overhead, which is much lower than that
of SMART, hence our scheme has less bandwidth and energy
consumption.

� Accuracy: Experimental results show that our proposed scheme
significantly improves the level of accuracy compared with
SMART.

The rest of the paper is organized as follows: In Section 2, we
overview some related works on secure data aggregation. Section
3 introduces the network model and design goals. In Section 4,
we give a detailed description of our scheme EEHA. Theoretical
analysis and performance evaluation of our scheme are presented
in Section 5. Finally, we summarize our work and give the conclu-
sions in Section 6.

2. Related work

There has been extensive research [11–14] on data aggregation
schemes in different applications. However, these aggregation
schemes have been designed without security in mind. In reality,
the wireless sensor networks may be deployed in a hostile environ-
ment such as battlefield, where an adversary may launch a variety
of attacks. Hence, the secure data aggregation is becoming a hot re-
search problem in some specific applications.

Several secure aggregation algorithms have been proposed for
the single-aggregator model. One early secure information aggre-
gation (SIA) protocol for WSNs called aggregate-commit-prove is
given by Przydatek et al. [15]. In their model, the BS is the only
aggregator, which collects all the authenticated data and computes
an aggregation result over the raw data together with a commit-
ment to the data based on Merkle-hash tree then sends them to
a trustable remote user, who later challenges the aggregator to ver-
ify the aggregation. This scheme provides resistance against adver-
saries who try to tamper with nodes. Also for this single-aggregator
model, Du et al. [18] propose a scheme using multiple witness
nodes as additional aggregators to verify the integrity of the aggre-
gator’s result.

For aggregation models that have more than one aggregator,
Yang et al. [16] proposed SDAP which is a tree based protocol pro-
viding certain level of assurance on the trustworthiness of the
aggregation result. The design of SDAP is based on the principle
of divide-and-conquer and commitment-and-attest. First, SDAP
uses a novel probabilistic grouping technique to dynamically par-
tition the nodes in a tree topology into multiple logical groups
(subtrees) of similar sizes. A commitment-based hop-by-hop
aggregation is performed in each group to generate a group aggre-
gate. The base station then identifies the suspicious groups based
on the set of group aggregates. Finally, each group under suspect
participates in an attestation process to prove the correctness of
its group aggregate. Hu and Evans [20] present a secure aggrega-
tion protocol that is resilient to single device key compromise.
The protocol is resilient to aggregator nodes compromising, as long
as there is no two consecutive colluding compromised aggregator
nodes in the tree.

Besides, there are some schemes for filtering of injected false
data in sensor networks. In [19], Zhu et al. present an interleaved
hop-by-hop authentication protocol, which guarantees that the
base station will detect any injected false data packets when no
more than a certain number t nodes are compromised, where t is
a security threshold. Ye et al. [21] propose a detection scheme
called SEF: a statistical en-route filtering of injected false data,
which allows both the base station and en-route nodes to detect
false data with a certain probability. SEF takes advantage of the
large scale and dense deployment of sensor networks to determine
the truthfulness of each report through collective decision-making
by multiple detecting nodes and collective false-report-detection
by multiple forwarding nodes.

In privacy-preservation domain, Castelluccia et al. [17] propose
a new homomorphic encryption scheme where aggregation is car-
ried out by aggregating the encrypted data at intermediate sensors
without decrypting them, resulting in higher level privacy.
3. System model and design objectives

3.1. Network model

In this paper, we assume that a sensor network consists of a
large number of resource-limited sensor nodes which coopera-
tively accomplish a task. Due to cost constraints these sensors
are not equipped with tamper-resistant hardware. In addition,
there exists a powerful BS that communicate with the querier
which resides outside of the network. In EEHA, the aggregation is
performed over an aggregation tree rooted at the BS. There are
three types of nodes in the sensor network: base station, interme-
diate nodes, and leaf nodes. The base station is the node where
aggregation result is destined. An intermediate node serves as an
aggregator node, which is responsible for forwarding queries,
aggregating the received data and its own sensor reading, then for-
warding the new result to its parent. The leaf nodes adopt the ‘‘slic-
ing and assembling” technique to protect privacy; thus, they are
responsible for decomposing their primitive data into pieces, send-
ing the pieces to different neighbors, then assembling the received
slices to get new results, and sending the new results to their
parents.

Typical aggregation functions include SUM, AVERAGE, COUNT,
MAX, MIN. In this paper, we focus on additive aggregation func-
tions. It is worth noting that using additive aggregation functions
is not too restrictive, since all the typical aggregation functions
and many other functions, including variance, standard deviation
can be reduced to the additive aggregation function SUM.
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3.2. Attack model

Security is becoming a more and more important concern with
the extensive application of sensor networks. A malicious attacker
can launch a variety of attacks to break the data security. And pri-
vacy concern is one of the major obstacles to apply the wireless
sensor network to civilian applications. In this paper, we mainly fo-
cus on the defence of eavesdropping to protect data privacy in
wireless sensor networks.

In an eavesdropping attack, an attacker tries to overhear the
transmission over wireless links to obtain private information.
We assume that the attacker may know the security mechanisms
that are deployed in a sensor network; he may be able to compro-
mise a node through the radio communication channel. Each
node’s data should be only known to itself. Such attacks make pri-
vate data released to adversaries, threatening the privacy of data
held by individual sensor nodes.

Security issues in mobile ad hoc networks are similar to those in
sensor networks, but the defense mechanisms developed for ad
hoc networks are not directly applicable to sensor networks. Ad
hoc network security mechanisms are based on public key cryptog-
raphy. Public key cryptography is too expensive for sensor nodes
because they are extremely resource constrained.
BS

Fig. 1. Aggregation tree construction.
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3.3. Design objectives

The design objective of our scheme is to achieve accurate data
aggregation with moderate extra communication overhead to pre-
serve data privacy. Therefore, a desired data aggregation scheme
should satisfy the following criteria:

Efficiency: Data aggregation is an important energy-efficient
technique, which reduces the resource and power usage by using
in-network processing to reduce the number of messages trans-
mitted. To achieve the goal of protecting data privacy, additional
overhead is unavoidable introduced in privacy-preservation
scheme. However, we should keep that overhead as small as
possible.

Accuracy: Since data aggregation results may be used to make
critical decisions, the accuracy of final aggregation result at root
is very important for data aggregation. Even with the constraint
that data privacy is not released, the accuracy should also be as-
sured. In this paper, we take accuracy as one of the criteria to esti-
mate the performance of privacy-preserving data aggregation
scheme.

Privacy-preservation: To broaden the area of WSNs’ applications,
the privacy of data must be guaranteed, which makes the applica-
tion in civilian field more practical. Therefore, it is meaningful to
develop privacy-preserving data aggregation schemes against
eavesdropping. The private data aggregation scheme should be
able to prevent the adversary from finding out the sensory data
produced by any sensor node. Even though the wireless links are
vulnerable to eavesdropping, a good private data aggregation
scheme should be robust to such attack.
44d

41d

45d

55d

56d

52d

62d

66d

67d

77d

72d

78d

88d

87d

89d
98d

99d

Fig. 2. Slicing.
4. Energy-efficient and high-accuracy secure data aggregation

In this section, we present the details of our proposed scheme:
Energy-Efficient and High-Accuracy (EEHA) Scheme for Secure
Data Aggregation. There are four steps, i.e., aggregation tree con-
struction, slicing, mixing and aggregation which are further de-
scribed as follows.

Step 1. Aggregation tree construction
A common technique for data aggregation is to build an aggre-

gation tree which is the directed tree formed by the union of all the
paths from the sensor nodes to the base station. These paths may
be arbitrarily chosen and are not necessarily shortest paths. The
optimization of the aggregation tree structure is out of the scope
of this paper. There are various methods for constructing the
aggregation tree according to different application requirements.
One method for constructing an aggregation tree is described in
TAG [10]. First of all, the network is organized into a tree rooted
at the base station. The leaves of the tree are denoted by green
nodes in Fig. 1.

Step 2. Slicing
This step is similar to the step 2 of SMART [5]. We adopt the

slicing technique proposed in [5]. First, each leaf i of the tree ran-
domly selects a set of nodes Si ðK ¼ jSijÞ within h hops. For a dense
sensor network, we can take h = 1. We define that the leaf itself is
one element of Si. The primitive data sensed by node i is denoted
by v i. Leaf i then slices its private data v i randomly into K pieces,
which means that the summation of K pieces is equal to v i.

Fig. 2 describes the slicing step, where one of the K pieces is
kept at node i itself, the remaining K � 1 pieces are encrypted
and sent to nodes in Si, we take h = 1 here. We assume that the
key used to encryption is only known to the two nodes who share
the common key. We denote dij as a piece of data sent from node i
to node j. For nodes to which node i does not send any slice, dij ¼ 0.
Thus, v i ¼

PN
j¼1dij, and the final aggregate result can be expressed

as R ¼
PN

i¼1

PN
j¼1dij, where dij ¼ 0; 8j R Si.

The notations we have introduced and will introduce later are
summarized in Table 1.
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Table 1
Summary of notations.

Notation Definition

N The number of sensor nodes in the network
v i Primitive data sensed by node i
dij A piece of data sent from node i to node j
Si The set of neighbor nodes of node i within h hops
K The number of pieces each leaf node slices its primitive data into
ri New result of node i after aggregation
ti The time interval node i wait for before sending new aggregation

result
R The final aggregation result, summation of all the sensor readings

4 44r d

5 45 55r d d

6 56 66r d d

7 67 77 87r d d d
8 78 88 98r d d d

9 89 99r d d

BS

Fig. 3. Mixing.
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Step 3. Mixing
First, all leaves of the aggregation tree wait for certain time,

which guarantees that all slices are received. Then, each leaf de-
crypts the data using its shared key with the sender, sums up all
the received slices and the slice left by itself to get a new result
ri. Fig. 3 shows the mixing step on leaf nodes.

Step 4. Aggregation
After a leaf sums up the received slices to get a new result, it en-

crypts the new result and sends it to its parent. And the intermedi-
ate nodes of the tree may receive slices dij sent by leaves, also may
receive new results ri sent by their children. Each intermediate
sensor node in the aggregation tree performs an aggregation oper-
ation whenever it has heard from all its child nodes or leaf nodes.
So parent nodes should wait for a longer time than child nodes, we
denote the difference as time interval difference Dt, which is set in
aggregation tree construction phase, then each node can compute
its time-out ti. Finally, each intermediate node sums up its own
sensor reading and the received data, encrypts and sends the
aggregation result to its parent when its ti elapsed. The aggregation
is performed along the aggregation tree constructed in step 1, par-
tial results propagate level by level up the tree. Eventually the
aggregation result reaches the root. The final data R at the root is
the summation of all sensor data. Fig. 4 is the illustration of aggre-
gation step.

The pseudo-code of EEHA for every node is described in Algo-
rithm 1.

Algorithm 1. EEHA Algorithm
1r

2r
3r

BS
1: Construct an aggregation tree on top of TAG protocol;
2: Set time interval difference Dt and compute time-out ti;
3: if IsLeafNode then
4: perform slicing operation and wait;
5: if ti elapsed then
6: perform mixing operation and send new result ri to its parent

node;
7: end if
8: end if
9: if IsIntermediateNode then
10: while ti not elapsed and ReceiveMessage do
11: sum up the received data;
12: end while
13: send aggregation result ri to its parent node;
14: end if
1 1 41 4r v d r

2 2 52 62 72 5 6 7r v d d d r r r

3 3 93 8 9r v d r r

1 2 3R r r r

Fig. 4. Aggregation.
5. Simulation study and performance analysis

5.1. Simulation setting

In this section, we evaluate the performance of EEHA and
SMART through theoretical analysis and simulation study. For this
purpose, we implemented these two schemes using ns-2 simula-
tor. We did extensive simulations to compare these two schemes.

In the following simulations, we considered the experiment
model proposed in [5]. We also consider networks with 600 sensor
nodes. These nodes are randomly deployed over a 400 m � 400 m
area. The transmission range of a sensor node is 50 m and data rate
is 1 Mbps. We evaluate EEHA in terms of communication overhead,
aggregation accuracy, efficacy of privacy-preservation, and energy
consumption, comparing with the SMART scheme.
5.2. Performance evaluation

5.2.1. Communication overhead
In our experiments, we implemented the two schemes on the

same already constructed aggregation tree. The aggregation pro-
cess is deployed repeatedly. During this phase, the network topol-
ogy is fixed, and the aggregation tree is also fixed.
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Fig. 5 shows the communication overhead of EEHA and SMART
with K = 3 under different time intervals. We use the total number
of messages communicated during each aggregation round as the
metric.

Simulation results show that the bandwidth consumption of
SMART is higher than that of EEHA. This can be explained by ana-
lyzing the number of exchanged messages in each scheme. In
SMART, with K = 3, each node needs to exchange three messages
for private data aggregation: two messages during the slicing step
and then one message for data aggregation. Hence, for the network
with 600 nodes, the communication overhead is about 1800. In
EEHA, only the leaf nodes of aggregation tree decompose their data
into slices, and send the K � 1 slices to their selected neighbors.
With K = 3, each leaf node needs to exchange three messages
(the same as SMART) in each run. Each internal node needs to send
only one message for data aggregation. The number of leaf nodes is
much smaller than the number of sensor nodes in the whole net-
work, therefore only a small part of network nodes need to send
three messages, the other nodes send one message in EEHA. Com-
paring with SMART where all network nodes send three messages,
EEHA introduces much less amount of transmission.

Consider a network with N sensor nodes, and the percentage of
leaves of the aggregation tree is a in EEHA. Then it’s obvious that
the number of intermediate nodes is ð1� aÞ � N. We adopt the
‘‘slicing and assembling” technique to slice the private data into
K pieces; thus, the communication overhead of the two schemes
is simply

SMART:

N � K ð1Þ

EEHA:

a � N � K þ ð1� aÞ � N ð2Þ

Therefore, the communication ratio between EEHA and SMART
is given by

p ¼ a � N � K þ ð1� aÞ � N
N � K ð3Þ

A smaller p means that EEHA is more efficient relative to
SMART.

p ¼ a � N � K þ ð1� aÞ � N
N � K ¼ aþ 1� a

K
ð4Þ

From (4), we can see that if a is constant, the larger K is, the smaller
p is, which means that when using the same aggregation tree, more
Fig. 5. Communication overhead of EEHA vs. SMART.
slice pieces give better communication efficiency to EEHA relative
to SMART. This is because the fact that more slice pieces make more
messages in the whole network for SMART, make the aggregation of
intermediate nodes more effective for EEHA.

p ¼ a � N � K þ ð1� aÞ � N
N � K ¼ 1� 1

K

� �
� aþ 1

K
ð5Þ

From (5) we can see that if K is constant, the larger a is, the larger p
is. This is because more leaves of the aggregation tree cause more
communication for EEHA as the leaves adopt the ‘‘slicing and
assembling” technique which induces K messages at each leaf,
and the aggregation effect of the intermediate nodes is weakened
as the number of intermediate nodes is reduced with a larger a.

5.2.2. Aggregation accuracy
The accuracy metric is defined as the ratio between the col-

lected summation by the data aggregation scheme used and the
real summation of all individual sensor nodes in [5]. Fig. 6 illus-
trates the accuracy of EEHA and SMART (K = 3) with respect to dif-
ferent time intervals from our simulations.

From Fig. 6 we can observe that the accuracy increases as the
time interval increases. Two reasons contribute to this, which have
already been analyzed in [5]. (1) With longer time interval, the
data messages to be sent within this duration will have less chance
to collide. (2) With longer time interval, the data messages will
have a better chance of being delivered within the deadline.

Besides, we can also observe that EEHA has better accuracy than
SMART. We have demonstrated that the communication overhead
of EEHA is reduced significantly, the amount of transmission is
much less than SMART, hence the chance of occurring collisions
is also decreased, which causes an improvement of aggregation
accuracy.

5.2.3. Privacy-preservation
The neighbor nodes or the attacker should not be able to read

the data produced by any node. To address privacy, He et al. [5]
adopt the ‘‘slicing and assembling” technique, where the sensor
node hides its individual data by slicing the data and sending en-
crypted data slices to different neighboring aggregators, then the
aggregators collect and route aggregated result back to the base
station.

In EEHA, the schemes used to protect data privacy are different
for leaf nodes and intermediate nodes. For leaf nodes, sensors need
Fig. 6. Accuracy of EEHA vs. SMART.
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to hide their original readings in the first hop data reporting. We
adopt the ‘‘slicing and assembling” technique mentioned above.
Because the primitive data of leaf nodes are separated into K pieces
and sent to K � 1 different neighbors, even if data are overheard
and decrypted, it is still difficult for the adversary to recover sensi-
tive information. However, for intermediate nodes, we take advan-
tage of the aggregation function to hide the privacy. The privacy of
intermediate nodes is guaranteed by replacing the primitive data
with summation of the received data and its own data to conceal
the original sensor reading. Even if data sent by intermediate nodes
are overheard, they are not the primitive data, sensitive informa-
tion is not released; thus, achieving privacy-preservation.

To strengthen the property of privacy-preserving, we can
change the encryption key each time a massage is encrypted. In or-
der to generate a different encryption key, the encryption key can
be derived as a function of some nonpersistent quantity like a
counter value which changes on every query. To lower the commu-
nication overhead, we can maintain a counter at both transmitting
and receiving ends which is incremented each time the base sta-
tion injected a query. The encryption key will be the function of
counter value at that instant and the master secret shared between
the transmitter and receiver.
5.2.4. Energy consumption
In our experiments, we considered the energy model as follows:

a total available node battery of 100J; 0.660W for sending data;
0.395W for receiving data; 0.035W for idle state. In order to assess
how the communication overhead impacts on energy consump-
tion, Fig. 7 shows the percentage of left energy in the network with
respect to execution time.

From Fig. 7, we can conclude that the SMART scheme consumes
energy much faster. That is because there are more messages ex-
changes in SMART for each run. We know that the energy dissipa-
tion of communication plays an important role in the total energy
consumption. Data transmitting and receiving is the major portion
of power consumption for sensor nodes. So reducing the communi-
cation cost is an efficient way to save energy. As the communica-
tion overhead in our scheme is much less than SMART, the EEHA
scheme is more energy efficient.
5.3. Discussions

In this paper, we design our scheme by comprehensively con-
sidering communication overhead, aggregation accuracy and pri-
Fig. 7. Percentage of left energy of EEHA vs. SMART.
vacy protection, and try to make an appropriate tradeoff among
them.

As mentioned in [5], only if an eavesdropper breaks all outgoing
links and all incoming links of a node s, will it be able to crack the pri-
vate data held by s. Therefore, the more the communication over-
head, the better the privacy-preservation performance. Our
proposed scheme EEHA has reduced communication overhead
significantly which means that the level of privacy is lowed unavoid-
able compared with SMART [5]. But EEHA decreases communication
overhead by 24% and improves accuracy level by 6–11% through
simulation results.

Based on the analysis above, our scheme is more suitable for
applications that have relative loose requirements of privacy-pres-
ervation, but place more emphasis on energy-efficiency and accu-
racy level.
6. Conclusions

In typical wireless sensor networks, sensor nodes are usually re-
source-constrained and battery-limited. And transmission is much
more energy consuming than computation. Therefore, communica-
tion overhead is an important issue in wireless sensor networks.
Data aggregation can reduce the communication overhead and en-
ergy consumption, thereby extending the lifetime of wireless sen-
sor networks. And the aggregation accuracy is very necessary for
sensitive applications such as battlefield surveillance and forrest
fire monitoring. As sensor networks become more widely de-
ployed, especially in military surveillance and civilian usage, how
to protect the privacy of the sensed data are becoming a crucial
concern.

We propose an energy-efficient and high-accuracy (EEHA)
scheme for secure data aggregation in wireless sensor networks.
The goal of EEHA is that the sensor network can obtain an accurate
aggregation result while guaranteeing that no private sensor read-
ing is released to other sensors and that no significant extra over-
head is introduced. Extensive simulations are conducted to
evaluate the proposed scheme. The results show that our scheme
provides privacy protection for raw data and better aggregation
accuracy with an overhead lower than the SMART scheme.
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