
1

Network Processors: Challenges and Trends
Mahmood Ahmadi and Stephan Wong

Computer Engineering Laboratory
Electrical Engineering, Mathematics and Computer Science Department

Delft University of Technology
Mekelweg 4, 2628 CD, Delft, The Netherlands
Tel: +31 15 27 85021, Fax: +31-15-27-84898

{mahmadi, stephan}@ce.et.tudelft.nl

Abstract— The aim of this paper is to provide a survey of net-
work processors (NPs), which are a new type of special micropro-
cessors intended for networking equipment, mainly switches and
routers. We will describe many aspects in the network processor
area. First, we introduce network processors together with their
functionalities and requirements. Subsequently, we describe the ba-
sic definitions and concepts involved in the network processing area.
Second, we describe the architectural specification and implementa-
tion of NPs and present comparison between different commercial
NPs. Third, we describe network processors software tools includ-
ing network processor simulators, benchmarks, and other related
tools. Fourth, we highlight several challenges and trends in net-
work processing area.

Keywords: Network processor, network processor sim-
ulator, benchmark, grid computing

I. Introduction

The bandwidth growth of networks increased al-
most exponentially in the past couple of years and
is expected to continue to do so for years to come.
This has been fueled by emerging new technologies
that are capable of achieving higher bandwidths. Con-
sequently, new applications are being developed that
take advantage of the new capabilities. In turn,
move consumers are starting to use these applications
and thereby increasing the demand for higher band-
width. The technological advances must also be ac-
companied by improved network processing capabili-
ties within routers and switches that connect the net-
works. Therefore, network processors have been in-
corporated within these devices to cope with the con-
tinued increasing demand for higher performance. In
addition, the multitude of applications and services
that require support lead to the introduction of many
different protocols that govern the transmission, for-
warding, and communication of data (in the form of
packets). Therefore, improved flexibility is needed to
cope with the many existing and future protocols.

Consequently, the design of network processors
remains an ongoing research and development effort.
The aim of this paper is to present the recent state-of-
the-art of network processors (requirements, software
tools, existing architectures) and to discuss the future
challenges and trends that we are facing in this field.
By no means we intend to be complete as the field in
still in movement, but we intend to describe the main

recent and possible future developments in the field.

This paper is organized as follows. Section II gives
a description of what constitute a network processor
and present the requirements that such a processor
must meet. Furthermore, several design approaches
will be highlighted followed by a survey of existing
network processors. Section III presents the software
tools used in the design of network processors that
include benchmarks and simulators. Section IV de-
scribes possible future challenges and trends in the
field of network processing. Section V presents the
conclusions of this paper.

II. Network processors

In this section, we first present a short description
of what constitute a network processor. Subsequently,
we present the general, functional, and implementa-
tion requirements of such processors. Finally, several
design approaches are highlighted and several commer-
cial architectures are presented.

A. Description

A network processor is an application-specific in-
struction processor (ASIP) for the networking applica-
tion domain with architectural features and/or special
circuitry for packet processing at wire speed [1][2][3].
The network processor differs from traditional micro-
processors in three ways:

• The instruction set of many network processors is
based on existing RISC processor instruction sets.
• The network processor’s instruction set contain spe-
cial instructions intended for, e.g., bit manipulation,
CRC calculation, and search and lookup operations.
• Special hardware function blocks are present to ac-
celerate specific packet processing tasks.

Besides a functional description of a network processor
(given by its instruction set architecture), it is equally
important to understand at what levels of the network
(similar to a protocol stack) the network processor can
be utilized: depicted in Figure 1.

• The core level includes high-speed components to
carry and transfer large amounts of data. The nodes



2

Core

Edge

Access

Fig. 1. Simple model of operational levels in network processor.

linking up to form the core implement rudimentary
services as routing, tag-switching, and access control.
• The edge level of the network forms the ingress and
egress to the core. Services at the edge are complex
and run at medium to high speeds, services at this
point include routing, switching, net-flow, access con-
trol, and QoS features.
• The access level of the network covers all the delivery
points of the Internet. The end-user accesses the Inter-
net through campus networks, broadband connections
and dial-up lines. At this level, there are several dif-
ferent protocols and technologies inter-operating with
one another at relatively low speeds.

Finally, a network processor can be utilized in two
different planes that that differ in the speed and man-
ner they handle incoming packets; namely data plane
and control plane.

In the data plane simple tasks are performed, and
most packets follow the fast path through the NP that
required very little processing. In the control plane
exceptional packets and complex routines are handled.
In this plane some packets we sent over to follow slow
path [3]. This structure is depicted in Figure 2.

Low Speed

High Speed

Physical Interface

Data Plane

Control Plane

Fig. 2. Packet processing model in network processor

B. General requirements

In this section, we describe the general require-
ments of network processor.

• Performance: By executing key computational ker-
nels in hardware, NPs are able to perform many ap-
plications at wire speed. Network processors must be
able to support high bandwidth connections, multiple

protocols, and advanced features without becoming a
performance bottleneck.
• Flexibility and programmability: Having software as
a major part of the system allows network equipment
to easily adapt to changing standards and applications.
The network processor should be easily programmable
in order to support customization of feature sets and
the rapid integration of new and existing technolo-
gies. In order to meet this demand, network proces-
sor manufacturers must strive to supply programming
and testing tools that are as simple as possible to use.
These programming tools should be based on a simple
programming language that allows for reuse of code
wherever possible. In addition, programming tools
must provide extensive testing capabilities that pro-
vide intelligent debugging features, such as descriptive
codes and definitions, as well as code level statistics for
optimization. Testing tools must be able to simulate
real world conditions and provide accurate measure-
ments of throughput and other performance measure-
ments [4].
• Fast time to market (TTM): Time to market has be-
come a critical factor in achieving success with network
equipment, it is the time required for system vendor
to bring a product from demand to commercial avail-
ability and has known as a factor that determined the
success or failure of the product in the market [1].
• Serviceability: Users are demanding services such as
real-time video, secure private networks and voice over
IP, these will require lot of serviceability at the access
and edge network elements [5].

C. Functional requirements

Typical functions performed by network proces-
sors are summarized below:

• Lookup and pattern matching: This function com-
pares packet header fields with specific patterns to
classify the type of packets, for example perform a
table lookup to return the relevant table entry or de-
termining type of incoming packets are an IPv4 or an
IPv6 packet.
• Forwarding: This function is defined as determin-
ing the output path for incoming packets. It is im-
plemented using hardware prefix tree structure and
special hardware [5].
• Access control and queue management: Once pack-
ets have been identified, they are placed in appropriate
queues for further processing. Packets are also checked
against security access policy rules to see if they should
be forwarded or discarded.
• Traffic shaping and control: Some protocols or ap-
plications require that, as traffic is released to the out-
going wire or fiber, it is shaped to ensure that it meets
delay or delay variation requirements. Other require-
ments specify the priority of traffic between different



3

channels or message types [2].
• Data Manipulation: This is where the packet is mod-
ified in some way, this could be decrementing the Time
To Live (TTL) field in a IP packet, recalculating the
CRC check, performing packet segmentation and re-
assembly and encryption or decryption of packets.

D. Implementation requirements

Each network processor is combination of many
different elements, that are described in the following:

• The processing engine: Many network processors
are multi-processors, meaning that they are not built
as one big RISC processor. The basic programmable
unit in the network processor is a processing engine
(PE). The PE may be clustered in a group of two
or more PEs. Different network processor use differ-
ent architectures for their PEs, and amount of PEe
also differs. The PEs may be grouped into functional
blocks or be independent. Moreover, next to network
processors sometimes co-processors or hardware accel-
erators are utilized. A hardware accelerator is the fi-
nite state machine that operates independently of the
PEs and can be called a functional unit. If a hardware
accelerator is programmable it is called a co-processor.
The abstract model of network processor is depicted
in Figure 3.

Processing Engine

Processing Engine

Lookup Engine

Co−Processor

Memory Manager

Switch 
FabricSDRAM

SRAMHost Processor

Special Hardware

Fig. 3. Abstract model of network processor architecture

• Exploiting parallelism: All network processors are
using parallel techniques and pipelining. Basically,
They use three type of parallelism:
1. Instruction-level parallelism (ILP).
2. Thread level-parallelism (TLP).
3. Packet level-parallelism (PLP).

In ILP, the compiler or hardware instruction scheduler
determines simultaneous execution of program instruc-
tions. In PLP, a mechanism should be used for packet
ordering to allow parallel processing of packets. In
TLP, different threads are executed to avoid idle time

in memory references and processing engines, i.e, if
a thread waits for the memory it is stalled and then
another thread is started.
• NP memory architecture: A critical resource in NPs
is the memory architecture. There are three types
of memories in NPs including: instruction memory,
packet memory, and route table memory. Instruction
memory usually is small because the number of in-
structions in NP is low. Packet memory that handles
the buffered arrival packets, queued, modified packets
and read forwarding packets must be designed care-
fully with a minimum delay. Routing table memory
includes routing entry that is read by the NP. The
routing table require update operations and lookups
thus it must be designed as fast as possible. One solu-
tion for mentioned aim is use intelligent data structure,
hardware accelerator for lookup, content addressable
memory (CAM) and SRAM.
• Dedicated hardware: All network processors incor-
porate special hardware and integrated co-processors
to perform common networking tasks. Typical hard-
ware functionality include CRC calculation, queue
management, forwarding engine and lookup engine.
• Network interface: The most important feature next
to a network processor is the network interface. This
is the point where packet enter and exit the network
processor. In the past, some of the manufactures de-
veloped their own network interface but now most net-
work processors implement standard interfaces such as
UTOPIA level 2, 3 and SPI-3, SPI-4.
• Software support: Thus far, the considerations were
all related to the hardware of the network processor,
but of equal importance is software support. It is no
good selecting the fastest most powerful network pro-
cessor available, if it is impossible to program it effec-
tively. However, manufactures are now paying much
more attention to the software support. Now the more
network processor softwares allow to be written in C
and certain core routines are written in microcode.
This factor relates high programmability degree and
will decrease the time to market period.

E. Design approaches

In the previous section, we reviewed the require-
ments that must be met in network processor architec-
ture design and highlighted common elements accom-
panying NPs. In this section, we presents common
approaches in designing NPs[1][4]:

1. ASIC (application specific integrated circuit): Any
hardwired solution including a microchip that has
been designed from scratch for a specific application.
In ASIC technique all of NP element is designed by
hardwire and lack of programmability and flexibility is
main problems in ASIC, meantime designing by ASIC
increased TTM and performance.



4

2. ASIP (application specific instruction processor):
An instruction set processor specialized for a particu-
lar application domain.

3. Co-processor: A hardwired, possibly configurable
solution with a limited programming interface.

4. FPGA (field programmable gate array): A device
that can be reprogrammed at the gate level.

5. GPP (general purpose processor): A pro-
grammable processor for general purpose computing.

ASICs are the most hardwired (least flexible), but pro-
vide the highest performance. GPPs are the most gen-
eral (flexible) at the cost of the lowest performance.
FPGAs provides an interesting value proposition in
the absence of ASIPs or co-processors as they are
higher performant than GPPs with more flexibility
than ASICs.

F. Commercial architectures

In this section we present the architectural specifi-
cation for some of commercial network processors such
as: Agere (PayloadPlus), Alchemy (Au1xxx), Applied-
Micro circuits, Formerly MMC Networks (nP7xxx),
BRECIS Communications (MSP5000), Broadcom,
Formerly-SiByte (Mercurian SB1250), ClearSpeed
Network Processor, Cognigine, IBM (PowerNP), Intel
(IXP12xx, IXP24xx, IXP28xx), Vitesse and Formerly
SiTera (PRISM IQ2000).

Various architectural techniques have been used
in NP structure. These techniques are described in
the following [1][4][2]:

• Traditional RISC-based approach architectures:
The RISC architectures are the basic infrastructures
of many existing NPs. RISC architectures have sim-
ple instructions for fast execution. However, due
to RISC’s simple ISA, compilers have to generate
complex routines using a large number of simple in-
structions. To overcome this, time consuming tasks
are identified and implemented as new instructions
in a standard RISC processor ISA. These instruc-
tions include bit matching operations, lookup ta-
bles, and checksum calculations. The first genera-
tion of NPs were designed based on a RISC archi-
tecture. AU1000&AU1550 (Alchemy network proces-
sor) [6] BROADCOM, BRECIS, Vitesse-Sitera NP
and Applied-Micro circuit [1][4]. The major perfor-
mance bottlenecks in RISC-based architectures are the
necessary bus bandwidth to handle instructions, data
traffic, and processing cycles required to extract packet
data, performing a forwarding table look up, modi-
fying, and transmitting data. Several methods have
been employed to overcome these bottlenecks. these

methods are: function partitioning, special instruction
and cache optimization [7].
• Special processor architectures: Some NPs use spe-
cial processor architecture techniques, such as modi-
fied co-processor and special functional units to im-
prove their performance. For example, Agere rout-
ing switch processor and Cisco-PXF TOASTER use
VLIW architectures to exploit ILP [8][9][10]. An-
other method exploits ILP at run time using a super-
scalar approach that issues several instructions per
clock cycle. Cognigine uses this method to find
the ILP based on the dynamic behavior of the pro-
gram. Multi-threading is another technique that has
been implemented in some NPs, including the Intel
IXP1200/2400/2800, and the IBM PowerNP [1][2][11].
• Massively parallel architectures with modern RISC
approach: Some NPs utilize multiple PEs to exploit
parallelism for example, ClearSpeed network processor
is a cluster of several multi-threaded array processors
(MTAP). Each MTAP contains up to 256 processing
engines (PEs), which are all simple 8-bit processors
with a 32-bit wide 4 kB memory unit of their own.
The IBM PowerNP, IXP are other instances of this
approach [12][13].
The information provided in Tables I and II describe
that all NPs have some kind of special hardware to
execute common time-consuming tasks faster and exe-
cutes special instructions to speed up network process-
ing functions. Furthermore the utilization of multiple
packet processing engine hides latency and results in
reaching higher throughput.

III. Software tools

In this section, we review different network pro-
cessor software tools including: simulators, bench-
marks and related tools. (Which may be used in other
networking area fields).

A. Network processor benchmarks

In NP area, no agreed upon standard benchmark
exist and existing general purpose benchmarks can not
be utilized. The goal of a NP benchmarks to allow for
an objective and quantitive comparision between dif-
ferent architectures and to cover the NP application
domain. Still, there are sevral issues in designing NP
benchmark including: different NPs have different ar-
chitectures, programming models and languages, and
need to support a varying NP application domain from
edge to core. Consequently, four levels have been iden-
tified in which network processing benchmarks can be
defined:
1. System level: NP benchmarking in this level covers
performance of complete systems such as routers and
include both control plane and data plane function-
alities. Examples of system level benchmarking are
benchmarks for routers and firewalls.



5

NP Special Hardware Special Instructions Layering
Support

Agere Payload-
Plus

FFP (Fast Patten Processor), ASI (Agere System in-
terface), RSP (Routing switch processor)

For traffic management, QoS
and packet modification

L2-4

Intel IXP 1200 Specialized functional unit for hashing and queue man-
agement

yes L2-4

IBM PowerNP Co-processor to accelerate tree search and frame ma-
nipulation

yes L2-4

Motorola C-5 Fabric processor, table lockup unit, and queue and
buffer management

yes L2-7

Ezchip NP1 Four special processors, MAC queue, and search engine Each TOP(Task Optimized
Processor) has its ISA

L2-7

Cisco PFX 16 processor packet forwarding function yes L2-4
Cognigine 16 Processing element or reconfigurable communication

unit
yes L2-7

Alchemy AU1xxx MIPS processor yes L2-4
BRECIS
(MSP5000)

2 DSP processor yes L2-4

Broadcom(SB-
1250)

2 MIPS 64 bit no L3-7

Applied Micro
circuit

Packet transform, search, and policy engines yes (Optimized ins.) L2-4

ClearSpeed Table lookup engine no L2-4
Virtese Sitera Co-processor for lookup, classification, and queue man-

agement
yes L2-3

TABLE I

Architectural comparison for some NPs.

NP Multiple packet processing Number of Threads
Agere PayloadPlus Three (FPP, RSP which one has three VLIW compute

engine, and ASI)
64 FPP

Intel IXP 1200 6 programmable engine(four thread each one) 4
IBMPower NP 16 functional unit. 2
Motorola C-5 16 channel processor 4
Ezchip NP1 64 task optimized processor 1
Cisco PFX 16 Processor engine 2
Cognigine 16 RCU each one has 4 parallel unit 4

Alchemy AU1xxx MAC(Multiply &Accumulate) 1
BRECIS (MSP5000) Co-Processor (ADPCM) 1
Broadcom(SB-1250) No 1

Applied Micro Circuit No 8
ClearSpeed Multi Thread Array processor include 256 PE 32

Virtese Sitera Co-processor, 4 RISC processor 1

TABLE II

Multi processing comparison for some NPs

2. Function level: In this level, benchmarks cover the
performance of specific NP application functions and
include data plane functionalities. Example of func-
tion level are IP forwarding filtering and NAT appli-
cations.
3. Micro level: In this level, benchmarks cover ele-
mentary operations that are commonly put together
to make up a function such as string searcher, CRC
calculation, and longest prefix match table lookups.
4. Hardware level: In this level, benchmarks measure
the latencies and throughputs for accessing the various
hardware resource in the NP. This level is architecture
specific and it can be defined for a given architecture,
therfore this level does not provide a metric for com-
paring the performance of two different network pro-
cessors.

Network processor benchmarks are described in the
following:

• CommBench: A methodology for studying perfor-
mance of network hardware is CommBench. The
CommBench is similar to SPEC for traditional archi-
tectures [14][15]. The benchmark is composed of eight
programs, four of them oriented towards packet header
processing and four oriented towards data stream pro-
cessing. The instruction mix of CommBench are sim-
ilar when compared across the entire benchmark, but
the payload processing applications execute signifi-
cantly more add/sub, shift, and logic operations [14].
• NPBench: NPBench is a set of benchmarks targeted
towards control plane (traffic management and quality
of service) as well as data plane workloads. The char-



6

acteristics of NPBench workloads, such as instruction
mix, parallelism, cache behavior and required process-
ing capability per packet are described in[16].
• EEMBC: Embedded microprocessor benchmark
consortium, was formed in 1997 to develop meaningful
performance benchmarks for the hardware and soft-
ware used in embedded systems. It defines a set of
34 application benchmarks in the areas of networking,
communication, telecommunication and industry do-
mains. In the networking domain, EEMBC define only
the benchmarks including Patricia route lookup, Dijk-
stra’s OSPF, and packet flow between queues [17][1].
• NetBench: NetBench is a suite of benchmarks that
allow users to approximate the performance of proces-
sors tasked with moving packets in networking appli-
cations. The suites seven benchmark kernels are the
following: IP packet check, IP reassembly, IP network
address translator (NAT), route lookup, open shortest
path first (OSPF), quality of service (QOS) and TCP
[18]. It defines and classifies a set of nine network
processor benchmarks at the microlevel [1].
• NPF Benchmarking Work Group (NPF-BWG):
NPF-BWG defines benchmarks at microlevel, function
level, and system level applications.
• Intel NP benchmark: This benchmark specifically
focuses on the IXP1200 NP, it operates at four levels:
Hardware level, micro level, function level, and system
level. It provides some results for IP forwarding on
Intel IXP1200 [1].

B. Network processor simulators

In this section, we present several network simu-
lators for network processor simulation and other net-
working area.

• NEPSIM simulator: the NEPSIM simulator is an
integrated infrastructure for analyzing and optimiz-
ing NP design and power dissipation at architectural
level. NEPSIM is based on IXP1200 Intel architecture
[19][20].
• Component network simulator (ComNetSim): The
goal of this simulator is to model the behavior of net-
work processing components. This simulator imple-
mented and simulated an abstract model of the Cisco-
Toaster network processor and it is implemented by
object oriented programing in c++ environment [1][2].
• The network simulator (NS 2.0): This system is used
to study the behavior of algorithms and protocols at
the network level with interaction between different
nodes. NS2.0 provides substantial support for the sim-
ulation of TCP, routing and multi-cast protocols over
wired and wireless (local and satellite) networks [21].
• The network animator: The network animator be-
gan in 1990 at LBL as a simple tool for animating
packet trace data. This trace data is typically derived
as output from a network simulator like NS2.0 or from
real network measurements. It supports topology lay-

out, packet level animation and various data inspec-
tion tools [22].
• The CNET network simulator (v2.0.9): This simu-
lator enables experimentation with various data-link
layer, network layer, routing and transport layer net-
working protocols in networks consisting of any com-
bination of point-to-point links and IEEE 802.3 Eth-
ernet segments. It was developed at the university of
Western Australia, CNET runs on a variety of Unix
and Linux platforms [23].
• National Chiao Tung university simulator (NCTU):
The NCTU network simulator is a high-fidelity and
extensible network simulator and emulator capable of
simulating various protocols used in both wired and
wireless IP networks. The NCTUns can be used as an
emulator, it directly uses the Linux TCP/IP protocol
stack to generate high-fidelity simulation results, and
it has many other interesting qualities. It can simu-
late various networking devices. For example, Ether-
net hubs, switches, routers, hosts, IEEE 802.11 wire-
less stations and access points, WAN (for purposely
delaying/dropping/reordering packets), optical circuit
switch, optical burst switch, QoS DiffServ interior and
boundary routers. It can simulate various protocols for
example, IEEE 802.3 CSMA/CD MAC, IEEE 802.11
(b) CSMA/CA MAC, learning bridge protocol, span-
ning tree protocol, IP, mobile IP, Diffserv (QoS), RIP,
OSPF, UDP, TCP, RTP/RTCP/SDP, HTTP, FTP
and telnet [24].
• Georgia-tech network simulator (GTNetS): The
Georgia-tech network simulator is a full-featured net-
work simulation environment that allows researchers
in computer networks to study the behavior of moder-
ate to large-scale networks, under a variety of condi-
tions. The design philosophy of GTNetS is to create a
simulation environment that is structured much like
actual networks are structured. Simulation objects
representing network nodes have one or more inter-
faces, each of which can have an associated IP address
and an associated link. layer 4 protocol objects in GT-
NetS are bound to ports. Connections between proto-
col objects at the transport layer are specified using a
source IP, source port, destination IP, destination port
tuple just like actual TCP connections. The interface
between applications and transport protocols uses the
familiar connect, listen, send, and send to calls much
like the ubiquitous sockets API in Unix environments
[25].
• The packet lookup and classification (PALAC) simu-
lator: This simulator developed at Stanford university
provides a framework for studying behavior of packet
classifying algorithms. The system includes a traf-
fic generator, packet classifier algorithms, and statis-
tics collection mechanisms. The goal of this simulator
seems to have been to design and implement efficient
packet classification algorithms [26].



7

• Scalable wireless network simulator (SWANS): the
scalable wireless network simulator was created pri-
marily as a validation of the virtual machine-based
approach to simulator construction. SWANS is orga-
nized as independent software components that can be
composed to form complete wireless network or sen-
sor network configurations. Its capabilities are similar
to ns2, but is able to simulate much larger networks.
SWANS design to achieve high simulation throughput,
save memory, and run standard Java network applica-
tions over simulated networks. In addition, SWANS
implements a data structure called hierarchical bind-
ing for efficient computation of signal propagation [27].
• OMNeT++: The OMNeT++ simulator is a
component-based, modular and open-architecture sim-
ulation environment with strong GUI support and an
embeddable simulation kernel. Its primary application
area is the simulation of communication networks and
because of its generic and flexible architecture, it has
been successfully used in other areas like the simula-
tion of IT systems, queuing networks, hardware archi-
tectures and business processes as well. OMNeT++
is rapidly becoming a popular simulation platform in
the scientific community as well as in industrial set-
tings. Several open source simulation models have
been published, in the field of Internet simulations (IP,
IPv6, MPLS, etc), mobility and ad-hoc simulations
and other areas [28].

C. Network processor related tools

The one of interesting work related to network
processor refered to by E. Kohler in MIT as the click
modular router. It provides a good framework to study
the router functionalities.

The click modulator router: Click is a new soft-
ware architecture for building flexible and configurable
routers. Click software runs in the Linux kernel on
conventional PC hardware. A click router is assem-
bled from packet processing modules called elements.
Individual elements implement simple router functions
like packet classification, queuing, scheduling, and in-
terfacing with network devices. A router configura-
tion is a directed graph with elements at the vertices’s,
packets flow along the edges of the graph. Configura-
tions are written in a declarative language that sup-
ports user-defined abstractions. This language is both
readable by humans and easily manipulated by tools
[29][30][31].

IV. Challenges and Trends

A. Challenges

Some of important challenges in network proces-
sor area are:

• Maintain high programmability and flexibility: Due
to attention exponential growth in bandwidth and va-

riety in applications, NP must be able to perform many
application in wire speed, in other word NP must be
able adapt to software and hardware changing.

• Achieve high performance: Network processors
must be able to support large bandwidth connections,
multiple protocols, and advanced features without be-
coming a performance bottleneck. Network processors
must be able to provide wire speed, nonblocking per-
formance regardless of the size of the pipe, the type of
protocol or the features that are enabled.

• Achieve lower TTM (time to market): Time to mar-
ket has become a critical factor in achieving success
with network equipment, it has known as a factor that
determined the success or failure of the product in the
market and relates to programmability and flexibility.

The most important challenge for network processor
designer is to have flexibility in software and to archive
high speed using ASIC or SOC-based network proces-
sor.

B. Trends

The most important trends in network processors
area are:

• FPGA and reconfigurable architecture network pro-
cessor: With due attention to much complexity in
higher level of protocol stack, each network processor
must have elements that can dynamically run different
part in higher layer of protocol stack. In other words
future network processors include two parts [32]: an
ASIC part for the data plane part, and an FPGA part
for the control plane part. Two FPGA network proces-
sor were designed that show FPGA architectures are at
the starting point in this area and the next generation
of high speed network processors are moving towards
being based on FPGA [33][34]. Some instances FPGA
network processors are ProPars and VALUE network
processor [34].
• Parameterizable hardware platform for multi-NPs
architectures: A trend exists to have dynamic ele-
ments in network processor architecture. Dynamic
parameters in NPs structure are done in two levels
including: register level and processing element level.
Register Level: There are different implementations
from mentioned alternative. In first case one of in-
teresting work has been done in Georgia university
[35], in this work, the base platform is IXP1200 net-
work processor and the properties of applications run-
ning on the network processor have been studied. It
has been observed that their imbalanced register re-
quirement across different threads at different program
points could lead to poor performance so it uses regis-
ter allocator aiming to distribute available registers to



8

different threads according to their need [35].
Processing element level: A method to achieve more
flexibility in network processor architecture using re-
configurable computing. An effort has been done com-
bination reconfigurable elements to IXP network pro-
cessor using BONeS simulator [36]. In other works has
been designed network processor with parameterizable
processing element in cluster and number of clusters
that can be adaptable to different application domain
including core and edge area [37][38].
• Packet differentiation filtering and processing: This
is a trend to separate redundant packets from the nor-
mal packet stream. In other words, redundant pack-
ets in the processing phase are separated and inserted
again after processing. Some of these packets are ac-
knowledgment and hello packets. The FlexPath NP
was designed to map network processor application
sub-function onto both software programmable pro-
cessor resources and reconfigurable hardware building
blocks, such that different packet flows are forwarded
via different, optimized processing path through the
NP. In FlexPath there are different packets path to
CPU, co-processor and traffic manager that path se-
lection operation is done by path dispatcher [39].
• Designing quantitative evaluator software: Network
applications vary as fast as NP architectures do, each
application has specific packet pattern. Designing a
NP based application is complicated hence it is nec-
essary to study the structure of packets and traffic
patterns when designing network processors [26]. It is
better to perform quantitative studies of the time con-
sumption of the different stages in packet processing,
along with statistics of the distribution of packets in
Internet traffic and using of these criteria for optimiz-
ing and designing NPs.
• Designing operating system in network processors:
One of most important challenges in network processor
area is programmability and flexibility in software. To
make full use of the capabilities of network processors,
it is imperative to provide the ability to dynamically
adapt to changing traffic patterns and to provide run-
time support in the form of a network processor op-
erating system. The differences to existing operating
systems and the main challenges lie in the multiproces-
sor nature of NPs, their on-chip resources constraints,
and the real-time processing requirements. Network
processing is inherently a dynamic process. Chang-
ing traffic patterns, new network services and proto-
cols, new algorithms for flow classification, and chang-
ing defenses against denial of service attacks present
the dynamic background that a programmable router
needs to accommodate. This requires that the router
can:
– Implement multiple packet processing applications

at the same time.
– Quickly add and remove processing functions from

its workload.

– Ensure efficient operation under all circumstances.
In particular, the management of various system re-
sources is important to avoid performance degradation
from resource bottlenecks. The complexity of NP mul-
tiprocessor architectures has limited the use of exist-
ing operating system concepts in this domain [40][41].
It is important to note that the goals of an operat-
ing system for network processors are very different.
Some differences between network processor operating
system and conventional operating system are: sepa-
ration between control and data path, limited inter-
activity, regularity and simplicity of applications, pro-
cessing dominates resource management. There is no
reference model for network processor operating sys-
tems some efforts has been done related to data plane
[40] and other in NIC architecture [41].
• Asynchronous design of network processors: Some
RISC processor architecture have been designed using
asynchronous techniques but these products are not
available. One limitation in network processor area is
the clock rate limitation. This limitation can be elim-
inated by asynchronous design [42][43][44]. Examples
are high-speed non-linear asynchronous pipeline, an
asynchronous dataflow FPGA architecture pipelines,
an asynchronous super-scalar architecture for exploit-
ing instruction-level parallelism and asynchronous im-
plementation of parallel architectures [45][46][47].
• Small-scale and ad-hoc networks: In an ad-hoc net-
work, a set of wireless stations communicate directly
with one another without using an AP(access point).
The devices in ad-hoc networks do not communicate
with a central base station or server, but rather with
its peers in the local environment. The suggestion
is a network processor designed specifically for such
an environment. Compared with its larger cousins
in high-end fixed networks, such a mobile NP would
not need parallel processing engines. At a couple of
megabits per second, there are several microseconds
for each packet even at the worst case (all ACKs) and
one packet processing engine could be enough for that
purpose. Other issues are of interest though. Since
the protocols used for communication over a wireless
channel need to compensate for the lossy nature of the
medium, those parts of the protocol suite could be re-
flected in the NP design. Then there is the ad-hoc
part. Routing tables need to be updated frequently.
In a full-scale NP, this is commonly done by the host
GPP, but in the mobile case there is reason for putting
it in the NP. One way to design a mobile NP is thus
a set of two simple processors on one chip: a simple
general-purpose RISC core and one PE with packet
handling instruction. The GPP takes care of routing
table management and exception handling. It could
also be responsible for invoking the host CPU if un-
resolvable packets appear. The PE does classification
and calls on the look-up engine to get the next-hop
address. Since memory latency always is a problem,



9

it would be wise to equip the PE with support for
two simultaneous threads, so that two packets could
be processed at the same time [2].
• Grid computing and network processors: Applying
the resources of many computers in a network to a
single problem at the same time usually a scientific or
technical problem that requires a great number of com-
puter processing cycles or access to large amounts of
data. Grid computing uses software to divide and farm
out pieces of a program to as many as several thousand
computers [48][49]. With NPs in the network infras-
tructure performing the routing of packets, it would
be matter of software to let the NPs participate in the
forming of the grid by having them, the NPs, take care
of the load balancing and the distribution of comput-
ing tasks to different computers in the grid. Just as a
regular router forwards packets along the supposedly
best way to a destination, a Grid router could forward
computing tasks to the part of the grid and eventually
to the computer or the computers where they are best
served [2][50]. It is interesting to investigate what such
a network, where the network does more than forward-
ing data, but also takes part in the processing of tasks,
would demand from the equipment that performs the
necessary functions. If the NPs enable a new form of
grid how would that grid affect the NPs? How can
optimized NPs for grid processing?

V. Conclusion

In this paper, we introduced the field of network
processors by first presenting a description of what net-
work processors are. Subsequently, we described the
general, functional, and implementation requirements
to such processors must meet. Afterwards, a brief sur-
vey of design approaches was discussed in conjunction
with a summary of commercially available network
processors. Second, we described in detail benchmark-
ing approaches and presented several instances of such
benchmarks. This was followed by survey of exist-
ing network processor(-related) simulators. Finally, we
presented an overview of several challenges and identi-
fied many trends that we are witnessing nowand that
continue in the near future.

References

[1] P. Clowley, M. Franklin, and H. Hamidioglu, Network Pro-
cessor Design: issues and practices. Morgan Kaufmann,
2003.

[2] D. Suryanarayanen, “A Methodology for Study of Network
Processing Architecture, M.Sc. Thesis,” Master’s thesis,
North Carolina State University, 2001.

[3] “White Paper for Roke Manor Research An Introduction to
Network Processors,” http://www.roke.co.uk/ download/
white papers/ network processors introduction.pdf.

[4] N. Shah, “Understading Network Processors,” Master’s
thesis, Berkeley University, 2001.

[5] “White Papaer Challenges in Building Network Processor
Based Solutions,” www.futsoft.com/pdf/ NPwp.pdf.

[6] “Product Brief, AMD Alchemy, Au1550 Proces-
sor,” http://www.amd.com/usen/Connectivity Solu-
tions/Product Information.

[7] F. Khunjush, M. Watheq, E. Kharashi, F. Li, and N. Di-
mopoulos, “Network Processor Design: Issues and chal-
lenges ,” in Proc. IEEE Intl. Conf. on Communications,
Computers and signal Processing.

[8]
[9] “White Paper, 10G Network Processor Chip-Set,”

http://www.agere.com.
[10] A. Company, “Product Brief Agere System PaylaodPlus

APP750NP,” October 2003.
[11] “Intel IXP2850 Network Processor,” http://www.intel.com

/design/ network/ products/npfamily/ ixp2850.htm.
[12] “Clearspead Network Processor,” http://

tech.nplogic.com/ survey/ clearspeed.html.
[13] “Clearspead Network Processor,”

http://www.clearspeed.com .
[14] T. Wolf and M. Franklin, “Commbench: A telecommuni-

cations benchmark for network processor,” in IEEE Intl.
Symp. on Performance Analysis of Systems and Software
(ISPASS-2000).

[15] B. Liljeqvist, “Vision and Facts, Asurvey of Network Pro-
cessors, M.Sc Thesis,” Master’s thesis, Chalmers Univer-
sity, 2003.

[16] B. K. Lee and L. K. John, “NpBench: A Benchmark Suite
for Control Plane and Data Plane Applications for Net-
work Processors,” in Proc. IEEE Intl. Conf. on Computer
Design (ICCD’03).

[17] “Network Animator Network Simulator,” http://
www.eembc.org/ TechLit/Index.asp.

[18] “EEMBC Network Processor Benchmark,”
http://www.eembc.org/benchmark/networking2 sl.asp.

[19] Y. Luo, J. Yang, L. N. Bhuyan, and L. Zhao, “NepSim: A
Network Processor Simulator with Power Evalution Frame-
work,” IEEE Micro Special Issue on Network processors
for Future High-End System and Applications, pp. 33–44,
September 2004.

[20] “NepSim Simulator,” http://www.cs.ucr.edu/ yluo/ nep-
sim/.

[21] “The Network Simulator ns.2.0,” Http:// www.isi.edu
/nsnam/ns/.

[22] “Embedded Microprocessor Bencmark Consortium,”
http://www.isi.edu/nsnam/nam/.

[23] “CNET Network Simulator,” http:// www.csse.uwa.edu.au
/cnet/.

[24] “NS Network Simulator,” http:// nsl.csie.nctu.edu.tw/ nc-
tuns.html.

[25] “GTNets Network Simulator,” http://
www.ece.gatech.edu/ research/labs/ MANIACS/ GT-
NetS/.

[26] J. Balkman and N. Mckeown, “The Packet
Lookup And Classification (PALAC),” http:// kla-
math.stanford.edu/tools /PALAC/SRC/.

[27] “SWANS Network Simulator,” http:// jist.ece.cornell.edu/
swans-user/ index.html.

[28] “OMNETPP Network Simulator,” http://
www.omnetpp.org/ index.php.

[29] E. Kohler, “The Click Modular Router,” Ph.D. disserta-
tion, MIT University, 2000.

[30] E. Kohler, R. Morris, B. Chen, J. Jannoti, and M. F.
Kaashoek, “The Click Modular Router,” ACM Transac-
tion on computer systems, pp. 263–297, August 2000.

[31] “Click Modular Router,” http://pdos.csail.mit.edu/click/.
[32] X. Nie, U. Norvviqst, L. Gazsi, and D. Liu, “Network Pro-

cessors for Access Network Trends and Chalenges,” Proc.
IEEE Conf. on Parallel and Distributed Computing Sys-
tems, 2004.

[33] M. Coss and R. Sharp, “The Network Processor Decision,”
Bell Lab. Technical Journal, pp. 177–189, September 2004.

[34] “FPGA Network Processor,” http://www.roke.co.uk/ net-
works/ hardware/ network processor cores.asp.

[35] A. Zhuang and S. Pande, “Balancing Register Allocation
Across Threads for a Multithreaded Network Processor,”
in Proc. Conf. on Programming language design and im-
plementation.

[36] L. A. Troxel, A. D. George, and S. Oral, “Design and Anal-
ysis of a Dynamically Reconfigurable Network Processor ,”
in Proc. IEEE Local Computer Networks.




