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Abstract—In this study a seizure prediction method is 

proposed based on a patient-specific approach by extracting 
undulated global and local features of preictal/ ictal and interictal 
periods of EEG signals. The proposed method consists of feature 
extraction, classification, and regularization. The undulated 
global feature is extracted using phase correlation between two 
consecutive epochs of EEG signals and an undulated local feature 
is extracted using the fluctuation and deviation of EEG signals 
within the epoch. These features are further used for 
classification of preictal/ictal and interictal EEG signals. A 
regularization technique is applied on the classified outputs for 
the reduction of false alarms and improvement of the overall 
prediction accuracy (PA). The experimental results confirm that 
the proposed method provides high PA (i.e. 95.4%) with low false 
positive per hour using intracranial EEG signals in different 
brain locations of 21 patients from a benchmark data set. 
Combining global and local features enables the transition point 
to be determined between different types of signals with greater 
accuracy, resulting successful versus unsuccessful prediction of 
seizure. The theoretical contribution of the study may provide an 
opportunity for the development of a clinical device to predict 
forthcoming seizure in real time.  
 

Index Terms— Deviation, Epilepsy, Fluctuation, LS-SVM, 
Phase Correlation, Seizure 

I. INTRODUCTION 
EIZURE is a sudden surge of electrical activity of the 
brain affecting more than 65 million individuals (i.e. 

1%) worldwide [1]. Approximately 325 million people 
experience a seizure within their life time [2]. During 
seizure, the brain cannot perform normal tasks; 
therefore, people may restriction and abnormal activity 
in movement, behavior, awareness, and sensation. 
Epilepsy is spontaneously recurrent seizures. Seizure 
causes many injuries such as submersion, burns, 
accidents, and more seriously, death. However, it is 
possible to prevent these unwanted situations by timely 
and correct prediction of epilepsy before the actual 
seizure onset. Electroencephalogram (EEG) is a well-
accepted tool for analyzing seizure [3]-[28]. EEG can 
measure electrical activity of the brain through multiple 

electrodes placed on the scalp 
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[8]. 
A significant amount of research of seizure prediction 

including [23]-[28] has been conducted. Williamson et 
al. [23] proposed a seizure prediction method based on 
spatiotemporal features. The experimental results 
provide 85% accuracy with false positive rate (FPR) of 
0.03/h using 19 patients from a total of 21 patients using 
the benchmark data set [29]. Chisci et al. [24] also 
proposed a prediction method using an autoregressive 
model and support vector machine (SVM). The 
prediction accuracy (PA) was 100% with FPR of 0.41/h 
using only 9 patients from the same data set [29]. 
Mirowski et al. [25] proposed another method based on 
bivariate features such as cross-correlation, nonlinear 
interdependence, and dynamic entrainment using the 
data set in [29] where the results provided 71% accuracy 
with zero FPR using 15 of 21 patients. Park et al. [2] 
proposed a technique using linear features of spectral-
power and non-linear classifier considering 18 of 21 
patients that provided 94.4% accuracy with FPR of 
0.20/h using the data set [29]. Li et al. [26] employed the 
spike rate using a morphological filter and obtained 
75.8% PA with FPR of 0.09/h using all 21 patients from 
the data set [29]. Moghim et al. [27] proposed a seizure 
prediction technique in advance using different statistical 
features by preictal period relabeling of the EEG signals. 
They obtained high accuracy (i.e. 96.30%) for prediction 
between 1 and 6 minutes in advance using the data set 
[29]. Rasekhi et al. [28] proposed a seizure prediction 
technique based on linear univariate features by 
providing 73.9% PA with FPR of 0.15/h using another 
data set.   

It is difficult to achieve a good balance by using a 
prediction algorithm between high PA (100%) with low 
FPR, using all patients. Moreover, for a given seizure 
prediction horizon (SPH), it is also difficult to achieve 
prediction performance above the chance level for all 
patients by a particular method [11]. The non-abruptness 
phenomena and inconsistency of the signals along with 
different brain locations, patient-age, patient-sex, and 
seizure-type are the challenging issues that affect the 
consistency of performance in terms of advanced PA and 
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false alarms by the existing methods using all types of 
patients. Therefore, more research should be conducted 
within this scope to achieve better accuracy for advanced 
prediction with low FPR.  

When an EEG signal is captured from a patient, it may 
have different types of periods such as interictal, 
preictal, and ictal periods, in that order. Thus, for the 
advanced prediction of an ictal state, the transition 
between interictal and preictal periods needs to 
determine, as EEG is a supreme advantage in studying 
transient neuronal activity [30]. How early a preictal 
period associated with an ictal period is determined from 
the interictal period by a technique indicates its 
advanced prediction performance accuracy. To 
determine the transition between interictal and preictal 
periods, an EEG signal needs to be processed by 
dividing the signal into a number of epochs (i.e. a 
specified time-window). Sometimes the epoch is not 
fully aligned with the interictal, preictal, or ictal period 
i.e. an epoch may have two types of period if an epoch is 
very large in size. Thus, it is important to extract global 
features from different epochs and local features within 
an epoch for correct seizure prediction. Moreover, the 
features extracted from spatially separated different 
channels of EEG signals should be incorporated to 
further improve the PA. In this paper, a novel approach 
is derived by exploiting spatiotemporal correlation of 
undulated global and local features within an EEG signal 
to find the transition of an event occurring during a 
seizure. 

Phase correlation [31] essentially provides relatively 
shifting information between current signals and 
reference signals of two correlated signals via Fourier 
Transformation. Thus, undulated global feature (UGF) 
can be determined using phase correlation. Paul et al. 
[31] demonstrated that the phase correlation is capable 
of detecting reliable motion between two images or 
blocks. In a similar fashion, the phase correlation 
extracting features between two adjacent epochs can 
capture the relative changes between two epochs of an 
EEG signal. This can be used to estimate the transition 
between interictal and preictal/ictal periods. However, 
sometimes this may not be adequate to identify the 
transition, if the transition is not aligned with the epochs. 
To avoid this situation, a local feature is also extracted 
from the signal fluctuation and deviation from the 
frequent oscillation within an epoch to achieve better 
accuracy and significant reduction in false alarms. Xie et 
al. [32] illustrated that fluctuation and deviation are able 
to identify defects of an image. This inspired us to use 
customized fluctuation and deviation [32] which can 
measure the fine changes of a specific epoch. Therefore, 

a cost function comprised of weighted fluctuation and 
deviation in each epoch is calculated in a temporal 
direction to extract the undulated local feature (ULF). 
Since EEG signals are non-stationary signals [33], the 
cost function of fluctuation and deviation (CFD) cannot 
fully identify the phase-lagging between two epochs 
alone. Thus, in this paper, both features (i.e. UGF and 
LGF) are used for advanced prediction of seizure onset 
with greater PA and low FPR.  

The paper is organized as follows: the data formation, 
the detailed proposed technique, feature extraction, 
classification, and post-processing are described in 
Section 2. Definition of SPH and statistical validation is 
described in section 3, and the detailed experimental 
results and discussions are explained in Section 4. 
Section 5 contains the analysis of results, and Section 6 
the conclusion. 

II.PROPOSED METHOD  
 The key objective of the paper is to successfully 

predict seizure with high accuracy in an automated way. 
A generic diagram of a seizure prediction process is 
schematized in Fig. 1 with a detailed description of the 
process diagram presented below. In general, pre-
processing, features extraction, classification, 
regularization (i.e. post-processing) and decision 
function are all possible steps for predicting seizure from 
EEG signals. Normally a pre-processing step is applied 
to remove artifacts from the raw EEG signals using 
filtering techniques. However, our proposed method is 
considered with a certain range of artifacts tolerance 
without a filtering technique being applied. Firstly, 
different features are extracted using different 
approaches. These features are then used to classify 
different types of periods and regularization (i.e. post-
processing) is used on classified signals to enable a final 
decision to be made for predicting seizure. In the 
proposed method, phase correlation and CFD are used as 
a feature extraction procedure, with least square-SVM 
(LS-SVM) as a classifier, and windowing regularization 
as a post-processing step. Our contributions are 
customization of the existing phase correlation, and cost 
function of fluctuation and deviation techniques, all are 
applicable in EEG signals analysis for the feature 
extraction of EEG signals. An innovative regularization 
is also proposed to enable a final decision on the type of 
interictal and preictal/ictal periods. 

     
A. Data Formation 

The paper uses the data set recorded at the Epilepsy 
Centre of the University Hospital of Freiburg, Germany 
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[29]. The data set is publicly available and the most cited 
resource in modern seizure detection and prediction 
approaches [8]-[27][33]-[36] that contains intracranial 
EEG (iEEG) recordings of 21 patients suffering from 
medically intractable focal epilepsy [34]. The data was 
obtained by the Neurofile NT digital video EEG system 
with 128 channels, 256 Hz sampling rate, and 16 bit 
analogue-to-digital converter. In this data set, the 
epileptic EEG signals are classified into ictal, preictal, 
postictal, and interictal periods. The ictal period may 
persist from a few seconds to 5 minutes. The ictal-
records (which is tagged as an ictal file) contains at least 
50 minutes of preictal signals preceding each seizure. 
The data set contains 87 seizures from 21 patients. 
Altogether, it is 24-25 hours of interictal signals and 2-5 
hours of ictal signals with preictal and postictal signals 
[29]. Therefore, the data set is around 509 hours. For the 
experiments, we concatenate 60 minutes of interictal 
signals and 30 minutes of preictal/ictal signals (as 30 
minutes preceding a seizure onset) for each seizure of a 
patient. In this way we consider all seizures for all 
patients in the data set. There is no clear chronological 
order between interictal and preictal EEG signals in the 
Freiburg data set for a patient. The signals are arranged 
into different numbers of blocks with each block 
containing approximately 1 hour signals. We organize 
the signals for interictal and preictal/ictal signals one 
after another by maintaining continuous signals within 
interictal and preictal periods individually. It is to be 
noted that six channels are used to capture EEG signals 
in each patient. In the experiments, all channels of focal 
electrodes (i.e. three channels) and extra-focal (i.e. 
another three channels) electrodes for EEG signals from 
different brain locations and different patients are 
considered. 

 

Fig. 1. Generic block diagram of a seizure prediction process. 

 

B.Undulated Global Feature (UGF) Extraction 
It is assumed that an EEG signal of a channel captured 

from a patient contains interictal, preictal, and ictal 
periods, in that order. To identify a particular signal type 
(i.e. ictal, interictal, or preictal period) an EEG signal is 
divided into small epochs or time-windows. Relative 
change is estimated between the current epoch and the 
successive epoch using phase correlation. The relative 

change between successive epochs indicates whether 
there is any signal-type change from interictal to preictal 
or ictal to interictal period. Features are extracted from 
the relative changes among epochs. See a block diagram 
of the proposed global feature extraction in Fig. 2. The 
detailed procedure of the feature extraction is described 
below.  

Let r and c be the previous (i.e. reference) and current 
epoch respectively, containing all values of the specified 
time-window of the EEG signals. Corresponding 
transformed signals R and C are determined after 
applying Fast Fourier Transformation (FFT) on the 
reference and current epochs as follows:  

)(rR ϕ=                                                                (1) 
)(cC ϕ=                                                               (2) 

where φ is the FFT function. 
A phase correlation ζ of r and c is then determined 

using transformed signals by applying inverse FFT and 
shift FFT (these functions are available in Matlab) as 
follows: 

( ))(1 CRje ∠−∠−= ϕϑζ                                               (3) 

where ϑ is the FFT shift function and ∠  indicates the 
angle or phase. Then the displacement between two 
epochs is determined as follows: 

πζ −= ))((max
arg

tk
t

                                                 (4) 

where the middle position of the epoch is considered as 
π and t is any sample position within the epoch.  
 

Fig. 2. Extracted global feature by phase correlation. 

To find the actual displacement  between two 
epochs, the minimum mean square error (MSE) of the 
reference epochs against the current epoch is examined 
from the predicted displacement to the ‘0’ locations 
where ‘0’ location means the original reference epoch 
location. In the experiments a 10 second epoch is 
considered. Thus, an epoch size, β, is 2560 (=10 × 256) 

Ζ
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number of consecutive windows (note that a five minute 
window is used in the experiments), then the prediction 
horizon is labeled as preictal/ictal period, otherwise, it is 
labeled as interictal period. In two-step post-processing, 
3-of-5 (i.e. u = 3 and v = 5) and 2-of-6 analysis are 
performed to identify the prediction horizon of the five 
minute window in total, prior to a seizure. The five 
minute decision is divided into two steps: the first step 
consists of 50 seconds i.e. five 10 second epochs; the 
second step consists of six 50 second windows. In the 
first step, if at least three epochs have a classified value 
as ‘1’ then all five epochs are considered ‘1’. In the 
second step, six 50 seconds windows are to be 
considered to make a final decision. If at least two 50 
second windows have ‘1’ results then the entire five 
minute window is regulated as ‘1’ otherwise it is ‘0’. It 
is to be noted that in order to prevent the impending 
seizure by administrating drugs [1], the five minute 
window is sufficient. Fig. 7(b) shows the seizure 
prediction result as a decision is taken in each five 
minute window based on the two-step decision. In each 
step, different sized windows were investigated; 
however the proposed two-step method is the best 
regarding the PA and FPR.  Fig. 7 demonstrates the 
classified results from the LS-SVM and the final 
decision after regularization. This confirms that 
regularization is able to remove a number of 
misclassifications.     

 

III. SPH AND PREDICTABILITY BY CHANCE  

A clinical application of the seizure prediction method 
is able to generate an alarm of an upcoming seizure and 
an intervention system can control a seizure. A perfect 
seizure prediction method has to predict an upcoming 
seizure by generating an alarm and indicate the exact 
time of a seizure occurring. It is suggested by Mormann 
et al. [18], Winterhalder et al. [17], and Snyder et al. 
[19] to consider seizure occurrence period (SOP) which 
is indicated as the period where seizure is expected. In 
addition, the seizure prediction horizon (SPH) is 
considered for clinical intervention which is the 
minimum window of time between the alarm being 
generated by the prediction method and the beginning of 
the SOP.  

To evaluate the performance of a seizure prediction 
algorithm, sensitivity over chance level needs to be 
calculated. The successful and unsuccessful warnings are 
shown in Fig. 8. The first row of Fig. 8 represents the 
ideal seizure alarm time, which is expected for the alarm 
signal to be activated, i.e. the alarm signal should be 

activated at the starting point of the preictal period and 
remained active for whole preictal period. The second 
row of Fig. 8 also represents a successful seizure 
prediction where preictal classification i.e. alarm, starts 
late and continues until onset of the actual seizure. The 
third row of Fig. 8 represents an unsuccessful seizure 
prediction where the preictal classification does not 
continue until actual seizure onset. To verify the 
performance of the proposed prediction method, it is 
important to measure chance level sensitivity. The 
chance level sensitivity Snc is defined in [19] as:  

                                                

(17) 
))01(exp(1 wweS wwnc μμ ll −+−−=

where Poisson rate .  )1ln(/1( ) www ημ −=l

In (17), is the corresponding SPH that is the 
detection interval, is the warning duration that is the 
sum of SPH, and is the proportion of time under 
warning (TUW).  

0wμ

wμ

wη

The sensitivity improvement over chance level can be 
measured by p-value which is defined [19] as  
 
        ),,1(1 ncap SDD −−= θρ                                            (18) 
where  is the binomial cumulative distribution function,  
is the number of predicted seizures, and  is the actual 
seizures. 

θ pD

aD

Fig. 8. Seizure prediction horizon (SPH) of the proposed prediction 
method to predict upcoming seizure by generating an alarm where (a) 
interictal and preictal periods with ideal alarm time, (b) a successful 
seizure predictor and (c) a unsuccessful seizure predictor. 

IV.RESULTS AND DISCUSSIONS 
The paper proposes a seizure prediction method based 

on phase correlation and CFD by analyzing EEG signals 
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from different patients having different brain locations, 
sex, age, seizure types and electrodes. The EEG signals 
from different locations of the brain are firstly extracted 
by an undulated global feature using the customized 
phase correlation between the reference epoch and 
current epoch, and undulated local feature using 
customized CFD of an EEG signal. A classifier then 
classifies interictal and preictal/ictal signals. A two-step 
regularization-based decision making strategy is applied 
to predict the seizure for better PA with low FPR. 

PA and FPR are the popular criteria used to evaluate 
performance of the techniques for prediction of epileptic 
seizure. Thus they are used in the experiments. The PA 
is defined in [47] as: 

100*)/( as ΠΠ=Ω                                              (19) 
NtNfFPR /=                                                            (20) 

where Ω is the PA, sΠ is the number of correctly 
predicted seizures, aΠ is the total number of seizures, Nf 
is the number of inaccurately predicted seizures, and  Nt 
is the total time of EEG signals. 

 Comparisons of the performance of the proposed 
method with a number of relevant and recent methods 
[23]-[27] are made. Patients’ detailed information from 
the benchmark data set [29] and the comparison of 
prediction results of the proposed method with two state-
of-the-art methods [24] and [2] are given in Table 1. 
Some entries in the table for state-of-the-art methods are 

TABLE 1. PATIENTS DETAILS AND PREDICTED SEIZURE USING THE PHASE CORRELATION AND PROPOSED METHOD. 

Patient 
No. 

 
S/A 

 

Seizure 
Type Electrodes Brain 

Location 
Total 

Seizures 

[24] [2] 

Only using 
UGF 

Proposed 
Method i.e. 
UGF+ULF 

PA 
(%) FA PA 

(%) FA PA 
(%) FA PA 

(%) FA 

1 F/15 SP,CP g, s Frontal 4 100 0 100 1 75.0 6 100 3 

2 M/38 SP,CP,G
TC d Temporal 3 - - - - 67.0 12 100 2 

3 M/14 SP,CP g, s Frontal 5 100 3 100 1 80.0 4 100 2 

4 F/26 SP,CP, 
GTC d, g, s Temporal 5 - - 100 1 100 0 100 0 

5 F/16 SP,CP, 
GTC g, s Frontal 5 100 23 100 21 100 3 100 4 

6 F/31 CP, GTC d, g, s Temporal/
Occipital 3 - - 100 1 100 1 100 2 

7 F/42 SP,CP, 
GTC d Temporal 3 - - 100 1 100 0 100 0 

8 F/32 SP,CP g, s Frontal 2 - - - - 0.00 0 50.0 2 

9 M/44 CP, GTC g, s Temporal 
/Occipital 5 100 3 100 4 100 3 100 1 

10 M/47 SP,CP, 
GTC d Temporal 5 - - 100 3 100 10 100 4 

11 F/10 SP,CP, 
GTC g, s Parietal 4 100 9 75 2 75.0 5 75.0 1 

12 F/42 SP,CP, 
GTC d, g, s Temporal 4 - - 100 1 100 1 100 2 

13 F/22 SP,CP, 
GTC d, s Temporal/

Occipital 2 - - - - 50.0 3 50.0 1 

14 F/41 CP, GTC d, s Frontal/ 
Temporal 4 - - 75 12 100 4 100 1 

15 M/31 SP,CP, 
GTC d, s Temporal 4 - - 100 4 50.0 11 100 2 

16 F/50 SP,CP, 
GTC d, s Temporal 5 - - 90 11 100 17 100 5 

17 M/28 SP,CP, 
GTC s Temporal 5 100 10 100 1 100 5 100 2 

18 F/25 SP,CP s Frontal 5 100 17 100 1 40.0 7 100 2 

19 F/28 SP,CP, 
GTC s Frontal 4 100 25 75 24 75.0 20 100 3 

20 M/33 SP,CP, 
GTC d, g, s Temporal 

/Parietal 5 100 0 80 16 100 11 75.0 5 

21 M/13 SP,CP g, s Temporal 5 - - 100 4 80.0 10 100 3 

S/A=sex/age, SP=simple partial, CP=complex partial, GTC=generalized tonic-conic, d=depth electrode, g=grid electrode, s=strip 
electrode, PA= prediction accuracy, FA= false alarm, - indicated that the experiment was not available for this patient. 
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not available as the method in [24] used only 9 patients 
and the method in [2] used only 18 patients, whereas the 
proposed method uses all available patients of the data 
set. Moreover, it is tested the phase correlation feature 
only and obtained 83.9% PA with FPR is 1.01/h (see 
Table 1).  
The proposed method successfully provides 100% 
accuracy for 17 patients and the methods in [24] and [2] 
provide 100% accuracy for 9 and 13 patients 
respectively. Moreover, the proposed method provides 
significantly higher FPR than state-of-the-art methods. 
As Table 1 shows, the proposed method can predict 83 
of 87 seizures correctly, with 47 false alarms. Thus, 
95.4% average PA with 0.36/h FPR is obtained by the 
proposed method. 

Table 2 shows that the performance of the proposed 
method in terms of PA and FPR is comparatively better 
regarding the five existing relevant methods, by 
combining PA (i.e. 95.4%) and low FPR (i.e. 0.36/h). A 
proper functioning (i.e. high sensitivity and low false 
alarms) of the seizure prediction procedure is important 
to clinically prevent a seizure. Experiments prove that 
the proposed method achieves low FPR with high 
sensitivity. 

TABLE 2. COMPARISON RESULTS WITH PROPOSED METHOD AND 
EXITING METHODS. 

Methods 
Prediction 
Accuracy 

(PA) 

FPR 
(hour) 

Total 
Patients 

[23] 85.0 0.03 19 
[24] 100 0.41 9 
[25] 71.0 0.00 15 
[2] 94.4 0.20 18 

[26] 75.8 0.09 21 
Proposed Method 95.4 0.36 21 

 

 
Table 3 demonstrates the performance of the proposed 

method against the performance of seizure predictability 
by chance. The table shows that the proposed method is 
able to successfully predict 19 of 21 patients above the 
chance [14]-[16] based on p-value.  

Table 4 shows the successful and unsuccessful 
prediction of a seizure per patient. The table also 
indicates that the mean advanced prediction time with 
95.4% performance accuracy for all patients is 22.16 
minutes whereas existing literature [27] achieved 
96.30% PA between 1 and 6 minutes.  

V. ANALYSIS 

A.Different Time Epoch 
In the proposed method, a fixed epoch size is 

employed to extract undulated global and local features 

of an EEG signal. To find the best epoch size, 
experiments are conducted using different epoch sizes 
such as 5 seconds, 10 seconds, and 15 seconds. The 10 
seconds epoch is found to be more consistent in terms of 
decision values of preictal/ictal and interictal signals i.e. 
the PA and false alarms of the decision values of the 10 
seconds window during preictal/ictal and interictal 
signals are the minimum compared to the decision 
values for a 5 or 15 seconds-epoch (shown in Fig. 9). 
Therefore, a 10 seconds epoch is applied in the 
experiments. 

TABLE 3. CALCULATED SENSITIVITY BY PROPOSED METHOD AND 
CHANCE LEVEL. 

PN TS 
Sensitivity 

by proposed 
method (%) 

Proportion of time 
in warning (%) wη

 
 

p-value 
1 4 100 20.8 0.000005 
2 3 100 22.2 0.000133 
3 5 100 23.3 0.000000 
4 5 100 32.2 0.000003 
5 5 100 27.7 0.000001 
6 3 100 27.7 0.000280 
7 3 100 33.3 0.000532 
8 2 50 12.5 0.054148 
9 5 100 33.3 0.000003 
10 5 100 25.5 0.000001 
11 4 75 25.0 0.000756 
12 4 100 26.4 0.000015 
13 2 50 18.8 0.083184 
14 4 100 33.3 0.000043 
15 4 100 23.6 0.000009 
16 5 100 27.7 0.000001 
17 5 100 32.2 0.000003 
18 5 100 24.4 0.000001 
19 4 100 26.3 0.000014 
20 5 75 8.9 0.000001 
21 5 100 23.3 0.000000 

PN= Patient Number, TS=Total Seizures 
 

B.Different Sample Shift Justification 
In the proposed method, 128 sample-shift is used for 

each epoch to extract ULF in Equation (11) & (12) 
(detail of the 128 shifted sample size is described in 
Section II. C). The performance of the ULF is 
investigated using a different sample shift (i.e. 64, 128 
and 256 sample) for each shifting epoch. For the 
investigation, EEG signals from different patients with 
different brain locations are used. It is to be noted that, 
128 shifted window carries good PA compared to the 64 
and 256 sample shift (see Table 5). 
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proposed prediction method provides high prediction 
accuracy (95.4%) and low FPR (i.e. 0.36/h) for all 
patients from a challenging benchmark data set, without 
any explicit artifacts removal technique. The statistical 
analysis confirms that the proposed method is able to 
predict seizures in 19 of 21 patients from a benchmark 
data set above the chance level. Moreover, the proposed 
method outperforms six existing relevant state-of-the-art 
methods considering the balance between the PA and 
FPR. 

Freiburg data set is the benchmark resource in modern 
seizure prediction approaches that contains widely 
varieties of seizures and patients. The data set has 
continuous data within interictal or preictal EEG signals, 
however, there is no clear chronological order between 
interictal and preictal signals. Due to the lack of publicly 
available data set, it is not possible to test the 
performance of the proposed technique against other 
relevant techniques using true continuous data. This is a 
retrospective study and thus that prospective testing with 
continuous long lasting data is needed to validate the 
reported results. In this regard, we are planning in future 
to test the proposed algorithm for a true continuous data 
set. 
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