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Abstract—In this study a seizure prediction method is
proposed based on a patient-specific approach by extracting
undulated global and local features of preictal/ ictal and interictal
periods of EEG signals. The proposed method consists of feature
extraction, classification, and regularization. The undulated
global feature is extracted using phase correlation between two
consecutive epochs of EEG signals and an undulated local feature
is extracted using the fluctuation and deviation of EEG signals
within the epoch. These features are further used for
classification of preictal/ictal and interictal EEG signals. A
regularization technique is applied on the classified outputs for
the reduction of false alarms and improvement of the overall
prediction accuracy (PA). The experimental results confirm that
the proposed method provides high PA (i.e. 95.4%) with low false
positive per hour using intracranial EEG signals in different
brain locations of 21 patients from a benchmark data set.
Combining global and local features enables the transition point
to be determined between different types of signals with greater
accuracy, resulting successful versus unsuccessful prediction of
seizure. The theoretical contribution of the study may provide an
opportunity for the development of a clinical device to predict
forthcoming seizure in real time.

Index Terms— Deviation, Epilepsy, Fluctuation, LS-SVM,
Phase Correlation, Seizure

[. INTRODUCTION

S EIZURE is a sudden surge of electrical activity of the
brain affecting more than 65 million individuals (i.e.
1%) worldwide [1]. Approximately 325 million people
experience a seizure within their life time [2]. During
seizure, the brain cannot perform normal tasks;
therefore, people may restriction and abnormal activity
in movement, behavior, awareness, and sensation.
Epilepsy is spontaneously recurrent seizures. Seizure
causes many injuries such as submersion, burns,
accidents, and more seriously, death. However, it is
possible to prevent these unwanted situations by timely
and correct prediction of epilepsy before the actual
seizure onset. Electroencephalogram (EEG) is a well-
accepted tool for analyzing seizure [3]-[28]. EEG can
measure electrical activity of the brain through multiple
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electrodes placed on the scalp [8].

A significant amount of research of seizure prediction
including [23]-[28] has been conducted. Williamson et
al. [23] proposed a seizure prediction method based on
spatiotemporal features. The experimental results
provide 85% accuracy with false positive rate (FPR) of
0.03/h using 19 patients from a total of 21 patients using
the benchmark data set [29]. Chisci et al. [24] also
proposed a prediction method using an autoregressive
model and support vector machine (SVM). The
prediction accuracy (PA) was 100% with FPR of 0.41/h
using only 9 patients from the same data set [29].
Mirowski et al. [25] proposed another method based on
bivariate features such as cross-correlation, nonlinear
interdependence, and dynamic entrainment using the
data set in [29] where the results provided 71% accuracy
with zero FPR using 15 of 21 patients. Park et al. [2]
proposed a technique using linear features of spectral-
power and non-linear classifier considering 18 of 21
patients that provided 94.4% accuracy with FPR of
0.20/h using the data set [29]. Li et al. [26] employed the
spike rate using a morphological filter and obtained
75.8% PA with FPR of 0.09/h using all 21 patients from
the data set [29]. Moghim et al. [27] proposed a seizure
prediction technique in advance using different statistical
features by preictal period relabeling of the EEG signals.
They obtained high accuracy (i.e. 96.30%) for prediction
between 1 and 6 minutes in advance using the data set
[29]. Rasekhi et al. [28] proposed a seizure prediction
technique based on linear univariate features by
providing 73.9% PA with FPR of 0.15/h using another
data set.

It is difficult to achieve a good balance by using a
prediction algorithm between high PA (100%) with low
FPR, using all patients. Moreover, for a given seizure
prediction horizon (SPH), it is also difficult to achieve
prediction performance above the chance level for all
patients by a particular method [11]. The non-abruptness
phenomena and inconsistency of the signals along with
different brain locations, patient-age, patient-sex, and
seizure-type are the challenging issues that affect the
consistency of performance in terms of advanced PA and
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false alarms by the existing methods using all types of
patients. Therefore, more research should be conducted
within this scope to achieve better accuracy for advanced
prediction with low FPR.

When an EEG signal is captured from a patient, it may
have different types of periods such as interictal,
preictal, and ictal periods, in that order. Thus, for the
advanced prediction of an ictal state, the transition
between interictal and preictal periods needs to
determine, as EEG is a supreme advantage in studying
transient neuronal activity [30]. How early a preictal
period associated with an ictal period is determined from
the interictal period by a technique indicates its
advanced prediction performance accuracy. To
determine the transition between interictal and preictal
periods, an EEG signal needs to be processed by
dividing the signal into a number of epochs (i.e. a
specified time-window). Sometimes the epoch is not
fully aligned with the interictal, preictal, or ictal period
i.e. an epoch may have two types of period if an epoch is
very large in size. Thus, it is important to extract global
features from different epochs and local features within
an epoch for correct seizure prediction. Moreover, the
features extracted from spatially separated different
channels of EEG signals should be incorporated to
further improve the PA. In this paper, a novel approach
is derived by exploiting spatiotemporal correlation of
undulated global and local features within an EEG signal
to find the transition of an event occurring during a
seizure.

Phase correlation [31] essentially provides relatively
shifting information between current signals and
reference signals of two correlated signals via Fourier
Transformation. Thus, undulated global feature (UGF)
can be determined using phase correlation. Paul et al.
[31] demonstrated that the phase correlation is capable
of detecting reliable motion between two images or
blocks. In a similar fashion, the phase correlation
extracting features between two adjacent epochs can
capture the relative changes between two epochs of an
EEG signal. This can be used to estimate the transition
between interictal and preictal/ictal periods. However,
sometimes this may not be adequate to identify the
transition, if the transition is not aligned with the epochs.
To avoid this situation, a local feature is also extracted
from the signal fluctuation and deviation from the
frequent oscillation within an epoch to achieve better
accuracy and significant reduction in false alarms. Xie et
al. [32] illustrated that fluctuation and deviation are able
to identify defects of an image. This inspired us to use
customized fluctuation and deviation [32] which can
measure the fine changes of a specific epoch. Therefore,

a cost function comprised of weighted fluctuation and
deviation in each epoch is calculated in a temporal
direction to extract the undulated local feature (ULF).
Since EEG signals are non-stationary signals [33], the
cost function of fluctuation and deviation (CFD) cannot
fully identify the phase-lagging between two epochs
alone. Thus, in this paper, both features (i.e. UGF and
LGF) are used for advanced prediction of seizure onset
with greater PA and low FPR.

The paper is organized as follows: the data formation,
the detailed proposed technique, feature extraction,
classification, and post-processing are described in
Section 2. Definition of SPH and statistical validation is
described in section 3, and the detailed experimental
results and discussions are explained in Section 4.
Section 5 contains the analysis of results, and Section 6
the conclusion.

II.PROPOSED METHOD

The key objective of the paper is to successfully
predict seizure with high accuracy in an automated way.
A generic diagram of a seizure prediction process is
schematized in Fig. 1 with a detailed description of the
process diagram presented below. In general, pre-
processing, features extraction, classification,
regularization (i.e. post-processing) and decision
function are all possible steps for predicting seizure from
EEG signals. Normally a pre-processing step is applied
to remove artifacts from the raw EEG signals using
filtering techniques. However, our proposed method is
considered with a certain range of artifacts tolerance
without a filtering technique being applied. Firstly,
different features are extracted using different
approaches. These features are then used to classify
different types of periods and regularization (i.e. post-
processing) is used on classified signals to enable a final
decision to be made for predicting seizure. In the
proposed method, phase correlation and CFD are used as
a feature extraction procedure, with least square-SVM
(LS-SVM) as a classifier, and windowing regularization
as a post-processing step. Our contributions are
customization of the existing phase correlation, and cost
function of fluctuation and deviation techniques, all are
applicable in EEG signals analysis for the feature
extraction of EEG signals. An innovative regularization
is also proposed to enable a final decision on the type of
interictal and preictal/ictal periods.

A. Data Formation

The paper uses the data set recorded at the Epilepsy
Centre of the University Hospital of Freiburg, Germany
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[29]. The data set is publicly available and the most cited
resource in modern seizure detection and prediction
approaches [8]-[27][33]-[36] that contains intracranial
EEG (iEEG) recordings of 21 patients suffering from
medically intractable focal epilepsy [34]. The data was
obtained by the Neurofile NT digital video EEG system
with 128 channels, 256 Hz sampling rate, and 16 bit
analogue-to-digital converter. In this data set, the
epileptic EEG signals are classified into ictal, preictal,
postictal, and interictal periods. The ictal period may
persist from a few seconds to 5 minutes. The ictal-
records (which is tagged as an ictal file) contains at least
50 minutes of preictal signals preceding each seizure.
The data set contains 87 seizures from 21 patients.
Altogether, it is 24-25 hours of interictal signals and 2-5
hours of ictal signals with preictal and postictal signals
[29]. Therefore, the data set is around 509 hours. For the
experiments, we concatenate 60 minutes of interictal
signals and 30 minutes of preictal/ictal signals (as 30
minutes preceding a seizure onset) for each seizure of a
patient. In this way we consider all seizures for all
patients in the data set. There is no clear chronological
order between interictal and preictal EEG signals in the
Freiburg data set for a patient. The signals are arranged
into different numbers of blocks with each block
containing approximately 1 hour signals. We organize
the signals for interictal and preictal/ictal signals one
after another by maintaining continuous signals within
interictal and preictal periods individually. It is to be
noted that six channels are used to capture EEG signals
in each patient. In the experiments, all channels of focal
electrodes (i.e. three channels) and extra-focal (i.e.
another three channels) electrodes for EEG signals from
different brain locations and different patients are
considered.

Undulated
Global Feature

" Pre- T I Post- )
EEG Signa Procassing Classification 1 Processing Decision »

Undulated D
Local Feature

Fig. 1. Generic block diagram of a seizure prediction process.

B.Undulated Global Feature (UGF) Extraction

It is assumed that an EEG signal of a channel captured
from a patient contains interictal, preictal, and ictal
periods, in that order. To identify a particular signal type
(i.e. ictal, interictal, or preictal period) an EEG signal is
divided into small epochs or time-windows. Relative
change is estimated between the current epoch and the
successive epoch using phase correlation. The relative

change between successive epochs indicates whether
there is any signal-type change from interictal to preictal
or ictal to interictal period. Features are extracted from
the relative changes among epochs. See a block diagram
of the proposed global feature extraction in Fig. 2. The
detailed procedure of the feature extraction is described
below.

Let » and ¢ be the previous (i.e. reference) and current
epoch respectively, containing all values of the specified
time-window of the EEG signals. Corresponding
transformed signals R and C are determined after
applying Fast Fourier Transformation (FFT) on the
reference and current epochs as follows:

R=q(r) (1

C=pc) )
where ¢ is the FFT function.
A phase correlation ¢ of » and ¢ is then determined

using transformed signals by applying inverse FFT and
shift FFT (these functions are available in Matlab) as
follows:

C=9fp7 (e ) 3)
where 4is the FFT shift function and £ indicates the

angle or phase. Then the displacement between two
epochs is determined as follows:

k=max(¢(#) -7 (4)

where the middle position of the epoch is considered as
7 and ¢ is any sample position within the epoch.

Best Matched
Reference Epoch

+ B

Epoch (r)

Actual
Displacement (Z)

Predicted
D (

FFTSHIFT(IFFT(angle(R)-angle(C)] >

Phase
Matched
Epoch

\

Current
Epoch (c)

Transformed
ECR Phase Match
Error

Fig. 2. Extracted global feature by phase correlation.

To find the actual displacement z between two
epochs, the minimum mean square error (MSE) of the
reference epochs against the current epoch is examined
from the predicted displacement to the ‘0’ locations
where ‘0’ location means the original reference epoch
location. In the experiments a 10 second epoch is
considered. Thus, an epoch size, f, is 2560 (=10 x 256)
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samples, where the length of the epoch is 10 seconds and
the samples per second is 256. To understand locations
of the current and reference epochs of a signal, it is
assumed that if the current epoch is started at a position
of 200™ seconds, then the reference epoch is started at
190™ seconds. If a given current epoch provides the best-
matched reference epoch with a displacement of £ = 100
using the phase correlation (see Equation (4)), all
reference epochs are needed to be checked from the
original reference epoch (i.e. ‘0’ location) to other
epochs formed by shifting 1 to 100 samples in the right
direction (see bottom epochs in Fig. 3). In this case,
some samples of the reference epochs overlap with the
current epoch. On the other hand, if & = -100, all
reference epochs are needed to be checked from the
original reference epoch to other epochs formed by
shifting 1 to 100 samples in the left direction (see top
reference epochs in Fig. 3). The best-matched reference
epoch is calculated as follows:

=r(t+7) (5)

WhereZ—argmln[ S(r(t+i)—c) }

i i=0

Actually A is the Z-position shifted reference epoch
which provides minimum difference with the current
epoch c.

K=-100 r%:r 1 00‘2»

EEG signal \rhﬂf[’}"lw&wﬁ[%| iﬂ“ﬂn\ Nn I}H LM H»-
K=0

K =100 '

Fig. 3. Visualization of different best-matched epochs for a given current
epoch using phase correlation where the reference epochs are calculated from
0 to displacement (i.e. k) positions based on the MSE between the current
epoch and the reference epochs of a signal.

The phase-matched reference epoch is calculated as
follows, where inverse FFT is applied on the frequency
epoch with the phase of the current epoch and the
magnitude of the best-matched reference epoch:

=lp~(p(2)e ) ©)

The phase-matched error is calculated between the
current and phase-matched reference epochs as follows:

g=c—y. ©)

Then discrete cosine transformation (DCT) is applied on
the phase-matched error in order to calculate the
transformed residual as follows:

0= (e) ®)

wheregis the DCT function. DCT is an effective
transformation to convert a signal from the time domain

to the frequency domain, and to arrange them from low
to high frequency coefficients [37]. If the original signal
(see Fig. 4.(a)) has less variations, then all energy of the
DCT transformed signals is concentrated in the first few
coefficients; otherwise, the energy is distributed into all
coefficients. This property is exploited to find the energy
concentration ratio between low and all frequency
coefficients.

Finally, an energy concentration ratio (ECR)
calculated by the ratio of total energy from the low
frequency coefficients and the entire coefficients of 0 as

follows:

383/

Lﬂz Jaz( )/zaz(r) ©)
s=1 t=1

The mean ECR (MECR) is calculated using all channels
of the specific patient as follows (see Fig. 4.(b)):

(10)

where 0<w <1 and N is the total number of neighboring
channels and %, is the ECR of /" channel.

x 10
4 . .

interictal

interictal preictalictal

preictalictal

x 10°
(a) Original EEG signals comprises interictal and preictal/ictal periods.
1.005 T
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1 1 |
1 1 |
1 1 |
1 1 |
1 1 |
1 1 |
0.965 ! . L
1 360 540 900 1080

epochs

(b) Mean energy concentration ratio i.e. MECR of interictal and
preictal/ictal periods using six channels.

Fig. 4. Preictal/ictal and interictal EEG signal from patient 17 and channel 1
where (a) represents the raw EEG signals (b) represents MECR where vertical
lines are drawn to separate the interictal periods from preictal/ictal periods.

The MECR is used as an undulated global feature i.e.
UGF for the classifier. Fig. 4. (b) shows that the values
of MECR for preictal/ictal are relatively higher
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compared to that of the interictal signal. This indicates
that MECR would be a good feature to classify a
preictal/ictal signal from an interictal signal. One can
easily find the corresponding time in seconds by
multiplying 10, as our epoch size is 10 seconds. As our
initial processing unit is an epoch, thus we use an epoch
as an x-axis unit in this case.

C.Undulated Local Feature (ULF) Extraction

Using fluctuation and deviation, Xie et al. [32] show
that local defect merit function quantifies the cost of an
image where a pixel of an object is defective or not.
Fluctuation of a group of signals or pixel intensities is
considered as the changes of overall signals or pixel
intensities within the group. Thus it reflects the overall
variations from the average trend of the signals or pixel
intensities within the group. On the other hand, deviation
reflects the variations from the most common trend of
the signals or pixel intensities within the group. Inspired
by the paper [32], a customized fluctuation and deviation
function is used to measure the local relative change of
an EEG signal for identifying different types of signals
such as interictal and preictal/ictal. The calculation of
fluctuation and deviation is performed using a 10 second
epoch with 128 samples shifted (the justification of
selecting epoch size and shifting size is given in Sections
IV.A and IV.B respectively). Unlike the technique in
[32], the fluctuation function is refined as follows for the
current epoch:

f=0()-o (11)
where ois the standard deviation function applied on
the source (i.e. original) signal of each epoch, and ¢ is
the general artifacts component of the EEG signal. In the
experiments, d = 4 is used. Unlike the technique in [32],
we shifted the epoch by 128 samples (see in Equation
(11)) and calculated f for each shifted epoch. Thus, for a
given 10-second epoch it has 20 values of f. The
deviation function of the current epoch is also redefined
as follows:

d :%ﬁ]c(t)— A

where y is the mode of the original signal c.

(12)

Finally a cost function g is calculated for each shifted

epoch using weighted fluctuation and deviation as
follows (see Fig. 5 (a)):

p=wxd +w,x f* (13)
where W, and w, are a weighted value of deviation and
fluctuation, respectively. In the experiments, w; = %6

and w, =1 are used as suggested in [32].

As 128 samples are shifted for the shifted epoch to
calculate the cost functionp (see Fig. 5(a)), the cost
function quantifies 20 values of a 10 seconds epoch.
From the current epoch, the energy of cost functions of
the fluctuation and deviation (ECFD) is calculated as the
second feature (see Fig. 5(b)):

(14)
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(a) Values after applying cost function of fluctuation and deviation (CFD)
on interictal and preictal/ictal periods.
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(b) Energy of CFD i.e. ECFD of interictal and preictal/ictal periods using
six channels.

Fig. 5. CFD technique applies on preictal/ictal and interictal EEG signal from
patient 17 and channel 1 where (a) represents the combined value of CFD and
(b) represents energy of CFD value where vertical lines are drawn to separate
the interictal periods from preictal/ictal periods.

The detailed process of extracting a local feature is
presented in Fig. 6.

. B e |
Fluctuation (f) |——=>{ Weighted

1 Fluctuation

— Deviation (d;) |[=——={2and Deviation \
—

Epoch = . Energy

— Fluctuation (f,) Weighted

n Fluctuation

L Deviation (dy) and Deviation

Fig. 6. Extracted local feature using fluctuation and deviation.
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D.Classification

To classify the preictal/ictal and interictal signals, two
features, MECR, w and ECFD, @ are considered. For
classification, a SVM-based classifier is used as the
SVM [38] works as one of the best classifiers for the
non-stationary signals, such as EEG signals [39][40].
LS-SVM is an extended version of SVM and can
minimize the higher computational burden of the
constrained optimization programming of SVM [41].
Therefore, LS-SVM [42][43] is used for classification in
the experiments. The equation of LS-SVM is defined in
[44] as:

N
I'(x)= sign{: Y Y mA(X, X)) + b} (15)

m—1

where A(x,x;,) is a kernel function, a,, are the Lagrange

multipliers [45], b is the bias term, x, is the training
input, and y,, is the training output pairs. Equation (15) is
used to find a maximum-margin hyper-plane to classify
interictal and preictal/ictal signals.

RBEF kernel is used in our experiments as this is one of
the most effective kernels for non-stationary EEG signal
classification. This function can be defined as:

A(x,xm) = exp(fllx - Xm ||2 /2@2)

(16)

where o controls the width of RBF kernel function. The
RBF kernel is a fast and linear algorithm capable of
representing complex non-linear mapping. A detailed
formulation of LS-SVM can be found in [41][42].

The classifier aims to classify preictal/ictal and
interictal EEG signals using a machine learning
approach. The selection of the parameters is automated
by optimizing a cross-validation based model selection.
In the experiments, cross-validation is conducted for
tuning the parameters which are then used for testing. To
find mapping between a training set and an unseen test
set is challenging. LS-SVM is a classifier that learns
nonlinear mapping from the training set features
{x},=1...nr, where nr is the number of training features
in the patient’s state of preictal/ictal period (1) and
interictal period (0). To obtain unbiased classification
results [46] and to make sure testing data has never been
used for training, we follow the same procedure
suggested by Park et al. [2]. In the experiment, if a
patient has M seizures and N-hour-long interictal
recording, then whole trails of interictal signals are
divided into the M subset, where each subset contains
N/M hour long interictal recoding with 30 minutes
preictal/ictal signals. One interictal and preictal/ictal
subset is randomly chosen and reserved for testing and
the remaining M-1 is used for training. Ten- fold cross
validation is performed during training to generate an
optimal model of the LS-SVM classifier. 90% of the

training set, the whole training set is considered as the
M-1 subset, is randomly selected to establish the LS-
SVM model in the learning processing and the
remaining 10% is used to fit the model. Once the model
is well-fitted then the model is considered as trained and
the reserved subset is evaluated by testing. This process
is performed M times and the average classification rate
is considered.
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(a) Classified results of each epoch of an interictal and preictal/ictal
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(b) Decision on classified values after windowing of interictal and
preictal/ictal periods.

Fig. 7. A demonstration of the classified output after LS-SVM classification
and proposed regularization using EEG signals from Patient 17 where (a)
represents the classification output using LS-SVM and (b) represents the
decision of seizure prediction after regularization.

E.Post-processing

Undulated local and global feature extraction
techniques inherently attenuate unwanted signals as
artifacts with eye blinking, muscle movement, etc. These
artifacts may lead to misclassification of preictal/ictal
and interictal EEG signals (see Fig. 7 (a)). Therefore,
post-processing is needed for accurate prediction of
epileptic seizure on LS-SVM classified signals. In the
post-processing, two-step u-of-v analysis is performed to
predict an impending seizure by analyzing preictal/ictal
and interictal EEG signals where preictal/ictal period
represents ‘1’ and interictal period represents ‘0’. The
presence of equal or more than # number of ‘1’ out of v
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number of consecutive windows (note that a five minute
window is used in the experiments), then the prediction
horizon is labeled as preictal/ictal period, otherwise, it is
labeled as interictal period. In two-step post-processing,
3-of-5 (i.e. u = 3 and v = 5) and 2-of-6 analysis are
performed to identify the prediction horizon of the five
minute window in total, prior to a seizure. The five
minute decision is divided into two steps: the first step
consists of 50 seconds i.e. five 10 second epochs; the
second step consists of six 50 second windows. In the
first step, if at least three epochs have a classified value
as ‘1’ then all five epochs are considered ‘1’. In the
second step, six 50 seconds windows are to be
considered to make a final decision. If at least two 50
second windows have ‘1’ results then the entire five
minute window is regulated as ‘1’ otherwise it is ‘0’. It
is to be noted that in order to prevent the impending
seizure by administrating drugs [1], the five minute
window is sufficient. Fig. 7(b) shows the seizure
prediction result as a decision is taken in each five
minute window based on the two-step decision. In each
step, different sized windows were investigated;
however the proposed two-step method is the best
regarding the PA and FPR. Fig. 7 demonstrates the
classified results from the LS-SVM and the final
decision after regularization. This confirms that
regularization is able to remove a number of
misclassifications.

III. SPH AND PREDICTABILITY BY CHANCE

A clinical application of the seizure prediction method
is able to generate an alarm of an upcoming seizure and
an intervention system can control a seizure. A perfect
seizure prediction method has to predict an upcoming
seizure by generating an alarm and indicate the exact
time of a seizure occurring. It is suggested by Mormann
et al. [18], Winterhalder et al. [17], and Snyder et al.
[19] to consider seizure occurrence period (SOP) which
is indicated as the period where seizure is expected. In
addition, the seizure prediction horizon (SPH) is
considered for clinical intervention which is the
minimum window of time between the alarm being
generated by the prediction method and the beginning of
the SOP.

To evaluate the performance of a seizure prediction
algorithm, sensitivity over chance level needs to be
calculated. The successful and unsuccessful warnings are
shown in Fig. 8. The first row of Fig. 8 represents the
ideal seizure alarm time, which is expected for the alarm
signal to be activated, i.e. the alarm signal should be

activated at the starting point of the preictal period and
remained active for whole preictal period. The second
row of Fig. 8 also represents a successful seizure
prediction where preictal classification i.e. alarm, starts
late and continues until onset of the actual seizure. The
third row of Fig. 8 represents an unsuccessful seizure
prediction where the preictal classification does not
continue until actual seizure onset. To verify the
performance of the proposed prediction method, it is
important to measure chance level sensitivity. The
chance level sensitivity S, is defined in [19] as:

Snc = 1-exp(~Lyppayy -+ (- L whn0))
(17)
where Poisson rate ¢y, = (1/ #y) In(l-7y) -
In (17), wmyois the corresponding SPH that is the
detection interval, ., is the warning duration that is the
sum of SPH, and 7, is the proportion of time under

warning (TUW).
The sensitivity improvement over chance level can be
measured by p-value which is defined [19] as

p=l—t9(7£p—1,7£a,Snc) (18)
where ¢ is the binomial cumulative distribution function, A »

is the number of predicted seizures, and XA, is the actual

seizures.
alarm seizure onset
¢ interictal period [ preictal period | N
(a) time
alarm seizure onset
| interictal classification [ preictal classifaction |
¢ | interictal period | preictal period | N
(b) time
alarm seizure onset
[ interictal classification | preictal classifaction | W
¢ interictal period [ preictal period | N
(c) time

Fig. 8. Seizure prediction horizon (SPH) of the proposed prediction
method to predict upcoming seizure by generating an alarm where (a)
interictal and preictal periods with ideal alarm time, (b) a successful
seizure predictor and (c) a unsuccessful seizure predictor.

IV.RESULTS AND DISCUSSIONS

The paper proposes a seizure prediction method based
on phase correlation and CFD by analyzing EEG signals
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from different patients having different brain locations,
sex, age, seizure types and electrodes. The EEG signals
from different locations of the brain are firstly extracted
by an undulated global feature using the customized
phase correlation between the reference epoch and
current epoch, and undulated local feature using
customized CFD of an EEG signal. A classifier then
classifies interictal and preictal/ictal signals. A two-step
regularization-based decision making strategy is applied
to predict the seizure for better PA with low FPR.

PA and FPR are the popular criteria used to evaluate
performance of the techniques for prediction of epileptic
seizure. Thus they are used in the experiments. The PA
is defined in [47] as:

Q= (Mg /Mg)*100 (19)

FPR=Nf/Nt (20)
where ois the PA, pis the number of correctly
predicted seizures, 1, is the total number of seizures, Nf

is the number of inaccurately predicted seizures, and N¢
is the total time of EEG signals.

Comparisons of the performance of the proposed
method with a number of relevant and recent methods
[23]-[27] are made. Patients’ detailed information from
the benchmark data set [29] and the comparison of
prediction results of the proposed method with two state-
of-the-art methods [24] and [2] are given in Table 1.
Some entries in the table for state-of-the-art methods are

TABLE 1. PATIENTS DETAILS AND PREDICTED SEIZURE USING THE PHASE CORRELATION AND PROPOSED METHOD.

Only using Proposed
) ) . [24] [2] UGE Method i.e.
Patient SIA Seizure Electrodes Bral_n Tptal UGF+ULF
No. Type Location Seizures
PA FA PA FA PA FA PA EA
(%) (%) (%) (%)
1 F/15 SP.CP g, s Frontal 4 100 0 100 1 75.0 6 100 3
2| msg | SPEPO d Temporal 3 - 0o 0| 12| 100 2
3 M/14 SP,CP g, s Frontal 5 100 3 100 1 80.0 4 100 2
SP,CP,
4 F/26 GTC d, g s Temporal 5 - - 100 1 100 0 100 0
SP.,CP,
5 F/16 GTC g, s Frontal 5 100 23 100 21 100 3 100 4
6| FA31 | CP,GTC | d,gs Temporal/ 3 - 10| 1| 100 1| 10| 2
Occipital
SP.,CP,
7 F/42 GTC d Temporal 3 - - 100 1 100 0 100 0
8 F/32 SP.CP g, s Frontal 2 - - - - 0.00 0 50.0 2
9| M/44 | CP,GTC g, s Temporal 5 100 3] 100 4| 100 30 100 1
/Occipital
SP,CP,
10 | M/47 GTC d Temporal 5 - - 100 3 100 10 100 4
SP,CP, .
11 F/10 GTC g, s Parietal 4 100 9 75 2 75.0 5 75.0 1
SP.,CP,
12 F/42 GTC d, gs Temporal 4 - - 100 1 100 1 100 2
SP,CP, Temporal/
13 F/22 GTC d, s Occipital 2 - - - - 50.0 3 50.0 1
14 | F/41 | CP,GTC ds Frontal/ 4 - 75 | 12| 100 41 100 1
Temporal
SP,CP,
15 M/31 GTC d, s Temporal 4 - - 100 4 50.0 11 100 2
SP.,CP,
16 F/50 GTC d,s Temporal 5 - - 90 11 100 17 100 5
17 M/28 SP.CP, S Temporal 5 100 10 100 1 100 5 100 2
GTC
18 F/25 SP,CP S Frontal 5 100 17 100 1 40.0 7 100 2
19 F/28 SGP,TCé’, S Frontal 4 100 25 75 24 75.0 20 100 3
SP,CP, Temporal
20 | M/33 GTC d, g s Parictal 5 100 0 80 16 100 11 75.0 5
21 M/13 SP,CP g, s Temporal 5 - - 100 4 80.0 10 100 3

S/A=sex/age, SP=simple partial, CP=complex partial, GTC=generalized tonic-conic, d=depth electrode, g=grid electrode, s=strip
electrode, PA= prediction accuracy, FA= false alarm, - indicated that the experiment was not available for this patient.
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not available as the method in [24] used only 9 patients
and the method in [2] used only 18 patients, whereas the
proposed method uses all available patients of the data
set. Moreover, it is tested the phase correlation feature
only and obtained 83.9% PA with FPR is 1.01/h (see
Table 1).

The proposed method successfully provides 100%
accuracy for 17 patients and the methods in [24] and [2]
provide 100% accuracy for 9 and 13 patients
respectively. Moreover, the proposed method provides
significantly higher FPR than state-of-the-art methods.
As Table 1 shows, the proposed method can predict 83
of 87 seizures correctly, with 47 false alarms. Thus,
95.4% average PA with 0.36/h FPR is obtained by the
proposed method.

Table 2 shows that the performance of the proposed
method in terms of PA and FPR is comparatively better
regarding the five existing relevant methods, by
combining PA (i.e. 95.4%) and low FPR (i.e. 0.36/h). A
proper functioning (i.e. high sensitivity and low false
alarms) of the seizure prediction procedure is important
to clinically prevent a seizure. Experiments prove that
the proposed method achieves low FPR with high
sensitivity.

TABLE 2. COMPARISON RESULTS WITH PROPOSED METHOD AND
EXITING METHODS.

Prediction
Methods Accuracy FPR thal

(PA) (hour) | Patients

[23] 85.0 0.03 19

[24] 100 0.41 9

[25] 71.0 0.00 15

[2] 94.4 0.20 18

[26] 75.8 0.09 21
Proposed Method 95.4 0.36 21

Table 3 demonstrates the performance of the proposed
method against the performance of seizure predictability
by chance. The table shows that the proposed method is
able to successfully predict 19 of 21 patients above the
chance [14]-[16] based on p-value.

Table 4 shows the successful and unsuccessful
prediction of a seizure per patient. The table also
indicates that the mean advanced prediction time with
95.4% performance accuracy for all patients is 22.16
minutes whereas existing literature [27] achieved
96.30% PA between 1 and 6 minutes.

V. ANALYSIS

A.Different Time Epoch

In the proposed method, a fixed epoch size is
employed to extract undulated global and local features

of an EEG signal. To find the best epoch size,
experiments are conducted using different epoch sizes
such as 5 seconds, 10 seconds, and 15 seconds. The 10
seconds epoch is found to be more consistent in terms of
decision values of preictal/ictal and interictal signals i.e.
the PA and false alarms of the decision values of the 10
seconds window during preictal/ictal and interictal
signals are the minimum compared to the decision
values for a 5 or 15 seconds-epoch (shown in Fig. 9).
Therefore, a 10 seconds epoch is applied in the
experiments.

TABLE 3. CALCULATED SENSITIVITY BY PROPOSED METHOD AND
CHANCE LEVEL.

Sensitivity Proportion of time

PN | TS | by proposed | inwarning 7y, (%)
method (%) p-value
1 4 100 20.8 | 0.000005
2 3 100 22.2 | 0.000133
3 5 100 23.3 | 0.000000
4 5 100 32.2 | 0.000003
5 5 100 27.7 | 0.000001
6 3 100 27.7 | 0.000280
7 3 100 33.3 | 0.000532
8 2 50 12.5 | 0.054148
9 5 100 33.3 | 0.000003
10| 5 100 25.5 | 0.000001
11| 4 75 25.0 | 0.000756
12 | 4 100 26.4 | 0.000015
13| 2 50 18.8 | 0.083184
14| 4 100 33.3 | 0.000043
15| 4 100 23.6 | 0.000009
16 | 5 100 27.7 | 0.000001
171 5 100 32.2 | 0.000003
18] 5 100 24.4 | 0.000001
19| 4 100 26.3 | 0.000014
20 | 5 75 8.9 | 0.000001
21 5 100 23.3 | 0.000000

PN= Patient Number, TS=Total Seizures

B.Different Sample Shift Justification

In the proposed method, 128 sample-shift is used for
each epoch to extract ULF in Equation (11) & (12)
(detail of the 128 shifted sample size is described in
Section II. C). The performance of the ULF is
investigated using a different sample shift (i.e. 64, 128
and 256 sample) for each shifting epoch. For the
investigation, EEG signals from different patients with
different brain locations are used. It is to be noted that,
128 shifted window carries good PA compared to the 64
and 256 sample shift (see Table 5).
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TABLE 4. CALCULATED EARLY PREDICTION TIME PER SEIZURE AND PER
PATIENT AND ITS MEAN VALUE USING PROPOSED METHOD.

Predicting a seizure onset in terms of minutes
PN | TS
SZ1 | SZ2 | SZ3 | SZ4 | SZ5 | Average
1 4 8 23 9 30 - 17.50
2 3 6 22 30 - - 19.33
3 5 3 30 4 30 30 19.40
4 5 30 30 24 30 30 28.80
5 5 30 5 30 30 30 25.00
6 3 30 30 14 - - 24.67
7 3 30 30 30 - - 30.00
8 2 7 0 - - - 3.50
9 5 30 30 30 30 30 30.00
10 5 8 26 30 30 26 24.00
11 4 0 30 30 30 - 22.5
12 4 25 30 30 7 - 23.00
13 2 30 0 - - - 15.00
14 4 30 30 30 30 - 30.00
15 4 25 6 27 30 - 22.00
16 5 5 30 30 30 30 25.80
17 5 30 30 30 27 30 29.40
18 5 30 30 11 29 10 22.00
19 4 6 30 30 30 - 24.00
20 5 15 11 0 6 7 7.80
21 5 30 30 12 6 30 21.60
Average early prediction time: 22.16 minutes

SZ=seizure, PN=patient number, TS=total seizures, - indicated that
seizure is not available for this patient.

TABLE 5. COMPARISON RESULTS AMONG 64, 128, AND 256 SHIFT
ANALYSIS USING UNDULATED LOCAL FEATURE EXTRACTION TECHNIQUE
FOR DIFFERENT PATIENTS WITH DIFFERENT BRAIN LOCATIONS.

. Prgdicted PA (%)
PN LE(;’:H; ] TS Seizures
(Lobe) 64 128 256 64 128 256
4 | Temporal 5 5 5 4 100 100 80
13 Tgf;'i’;ﬁ/ 2 |1 2 2 50| 100 | 100
18 Frontal 5 4 5 4 80 100 80
19 Frontal 4 3 4 4 75 100 100

PN= Patient Number, TS= Total Seizure, PA=Prediction Accuracy

VI. CONCLUSION

In this paper an epileptic seizure prediction method is
proposed which exploits undulated global and local
features together with a regularization technique to
successfully and unsuccessfully predict the seizure
onset. The global feature is extracted using the phase
correlation between two consecutive epochs of an EEG
signal and the local feature is extracted using a weighted
cost function comprising fluctuation and deviation

5 seconds epoch
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(a) Decision on classified values using 5 seconds epoch of interictal and
preictal/ictal (i.e. prlc) periods.
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(b) Decision on classified values using 10 seconds epoch of interictal and
preictal/ictal (i.e. pric) periods.
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(c) Decision on classified values using 15 seconds epoch of interictal and
preictal/ictal (i.e. prlc) periods.

Fig. 9. Decision for seizure prediction using Patient 11 data set. The decision
values of preictal/ictal (i.e. prlc) and interictal EEG signals using different
window sizes where (a), (b), and (c) represent the 5 second, 10 second, and 15
second window, respectively.

within an epoch. The popular LS-SVM classifier is used
to classify the interictal, preictal, and ictal signals. To
purify the classified output, a two-step post-processing
regularization technique is also applied for the final
output. The experimental results are obvious in that the
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proposed prediction method provides high prediction
accuracy (95.4%) and low FPR (i.e. 0.36/h) for all
patients from a challenging benchmark data set, without
any explicit artifacts removal technique. The statistical
analysis confirms that the proposed method is able to
predict seizures in 19 of 21 patients from a benchmark
data set above the chance level. Moreover, the proposed
method outperforms six existing relevant state-of-the-art
methods considering the balance between the PA and
FPR.

Freiburg data set is the benchmark resource in modern
seizure prediction approaches that contains widely
varieties of seizures and patients. The data set has
continuous data within interictal or preictal EEG signals,
however, there is no clear chronological order between
interictal and preictal signals. Due to the lack of publicly
available data set, it is not possible to test the
performance of the proposed technique against other
relevant techniques using true continuous data. This is a
retrospective study and thus that prospective testing with
continuous long lasting data is needed to validate the
reported results. In this regard, we are planning in future
to test the proposed algorithm for a true continuous data
set.
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