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 Abstract—The pulse oximeter’s photoplethysmographic 
(PPG) signals, measure the local variations of blood volume in 
tissues, reflecting the peripheral pulse modulated by cardiac 
activity, respiration and other physiological effects. Therefore, 
PPG can be used to extract the vital cardiorespiratory signals 
like heart rate (HR), respiratory rate (RR) and respiratory 
activity (RA) and this will reduce the number of sensors 
connected to the patient’s body for recording vital signs. In this 
paper, we propose an algorithm based on ensemble empirical 
mode decomposition with principal component analysis 
(EEMD-PCA) as a novel approach to estimate HR, RR and RA 
simultaneously from PPG signal. To examine the performance 
of the proposed algorithm, we used 45 epochs of PPG, 
electrocardiogram (ECG) and respiratory signal extracted 
from the MIMIC database (Physionet ATM data bank). The 
ECG and capnograph based respiratory signal were used as the 
ground truth and several metrics such as magnitude squared 
coherence (𝑴𝑴𝑴𝑴𝑴𝑴), correlation coefficients  (𝑴𝑴𝑴𝑴) and root mean 
square (𝑹𝑹𝑴𝑴𝑴𝑴) error were used to compare the performance of 
EEMD-PCA algorithm with  most of the existing methods in 
the literature. Results of EEMD-PCA based extraction of HR, 
RR and RA from PPG signal showed that the median RMS 
error (quartiles) obtained for RR was 0 (0, 0.89) breaths/min, 
for HR was 0.62 (0.56, 0.66) beats/min and for RA the average 
value of  𝑴𝑴𝑴𝑴𝑴𝑴 and 𝑴𝑴𝑴𝑴 was 0.95 and 0.89 respectively. These 
results illustrated that the proposed EEMD-PCA approach is 
more accurate in estimating HR, RR and RA than other 
existing methods.  

I. INTRODUCTION 

Monitoring of cardiorespiratory signal like heart rate 
(HR), respiratory rate (RR), respiratory activity (RA), blood 
oxygen saturation and blood pressure accurately and reliably 
without disturbing the normal activities of patients is a task 
of interest for ubiquitous healthcare (u-health). It is also 
important for patients having long term cardiorespiratory 
diseases in the intensive care environment. Pulse oximeter 
based photoplethysmogram (PPG) signal is one of the 
strongest candidates for promoting the opportunities of 
ambulatory and tele-monitoring by monitoring the oxygen 
saturation (SpO2) reliably and noninvasively. Extraction of 
HR, RR and RA from this simple, low cost and portable 
device attracts the researcher, which will be helpful not only 
for monitoring primary health care but also for detecting 
cardiorespiratory diseases.  
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Respiratory signal can be monitored via direct 
(spirometric measurements) and indirect (capnograph, 
impedance pneumograph, nasal thermistor, abdomen belts, 
inductive photoplethysmograph, magnetometer and 
physiological signal derived) measurement techniques [1].       
The direct measurement of respiratory signal is operable 
only at hospital settings and it is highly inconvenient for the 
patient [2]. Although most of the indirect measurement 
approaches reduce the patient discomfort for short term 
monitoring, they mostly suffer from requirement of 
additional devices, affects patient’s natural breathing and 
unsuitable for ambulatory monitoring [2]. To overcome 
these limitations, researchers pay more attention on 
physiological signal (electrocardiogram (ECG) and 
photoplethysmographic (PPG) signal) derived respiratory 
activity monitoring. However, in the case of pervasive and 
tele-monitoring, PPG signal is more attractive than ECG 
signal for its simplicity, portability and small number of 
sensors.  

PPG derived RR was first suggested by Nakajima et al. 
[3, 4] in the early 1990s using simple band pass filter. An 
automated algorithm based on wavelet transform was 
proposed by Leonard et al. [5, 6]. In addition to digital 
filtering [3, 4, 7] and wavelet transform [8], time domain 
methods [9-11], bivariate auto-regressive modeling [12-14] 
and time-frequency analysis [15, 16] were proposed to 
extract RR from the PPG signal. Though, all of these 
methods were proposed for estimating RR, there were none 
for estimating RA.  Madhav et al. [17] first proposed the 
modified multi scale principal component analysis 
(MMSPCA) technique for extracting RA from PPG signal.  

In this paper, we propose a novel approach based on 
ensemble empirical mode decomposition with principal 
component analysis (EEMD-PCA) for simultaneous 
estimation of HR, RR and RA from PPG signal.  

II. MATERIAL AND METHOD 

A. Data 
The MIMIC database contains [18] 121 simultaneous 

recordings of BP, ECG, PPG and respiratory signals of ICU 
patients. All signals were sampled at a rate of 125Hz. In this 
study, we extracted 45 epochs of simultaneous PPG and 
respiratory signal, each with a length of 30 seconds, to 
evaluate the performance of proposed EEMD-PCA based 
technique.  

B. Extraction of PPG derived heart rate (HR), respiratory 
rate (RR) and respiratory activity (RA) using EEMD-PCA 

The overall block diagram of EEMD-PCA technique is 
illustrated in Fig. 1. The overall process can be divided into 
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four stages: (a) EEMD decomposition of PPG data, (b) 
Selection of intrinsic mode functions (IMFs) without 
artifacts, (c) PCA of the selected IMFs, (d) Extraction of 
HR, RR and RA. In the first stage, EEMD was used to 
decompose each epoch of a PPG signal into a series of 
embedded IMFs. In the second stage, the IMF containing 
artifacts was automatically identified and rejected. In the 
third stage, PCA was applied on the selected IMFs. Finally, 
the first and second principal component (PC) was retained 
for extracting HR, RR and RA. The remainder of this section 
provides the details of the four stages. 

 
Figure 1.  Overall block diagram of EEMD-PCA approach for extracting 
HR, RR and RA from PPG signal. (Different colors represent different 

stages). 

a) Decomposition of PPG signal using EEMD 

EEMD was applied to the PPG signal for decomposing 
into true IMFs. EEMD, a new noise assisted algorithm, was 
first proposed by Wu et al. [19] that eliminates the mode 
mixing dilemma of empirical mode decomposition (EMD) 
by defining the true IMFs of a data as the mean of an 
ensemble of trials, each consisting of the original signal plus 
a white noise of finite amplitude. According to the principal 
of EEMD, the original PPG signal 𝑥𝑥(𝑡𝑡) was added with 
white noise 𝑛𝑛(𝑡𝑡) with magnitude 𝛼𝛼 to generate a new signal 
𝑦𝑦(𝑡𝑡) and decomposed into true IMFs. The data 𝑦𝑦(𝑡𝑡) can be 
written as  
 𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) + 𝛼𝛼𝑛𝑛(𝑡𝑡)  (1) 

 𝑦𝑦(𝑡𝑡) =  �𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖(𝑡𝑡) + 𝑟𝑟𝑦𝑦(𝑡𝑡)
𝑁𝑁

𝑖𝑖=1

  (2) 

where, 𝑟𝑟𝑦𝑦  is the residual of signal after N true IMFs are 
extracted.    

b) Selection of IMFs and rejection of artifacts 

       Once the IMFs were obtained, the noisy IMFs should be 
identified and rejected. PPG signals are dominantly 
modulated by cardiac frequency (1-2 Hz) and respiration 
frequency (0.2-0.4Hz). To identify the artefacts, fast Fourier 
transform (FFT) was applied on each IMF to determine the 
dominant frequency, the frequency at which maximum 
power was obtained. Once all dominant frequencies were 
obtained, IMFs having frequency greater than or equal to 2.5 
Hz were considered as artifacts and IMFs with frequency 
less than 2.5 Hz were selected for further processing.  

c) PCA on the selected IMFs 

To separate the cardiac and respiratory information from PPG 
signal, PCA was applied on the selected IMFs. PCA of the 

interrelated selected IMFs produced a number of uncorrelated 
variables which is called the principal components (PCs). 
PCs are ordered so that the first PC retained most of the 
variation present in the PPG signal, and so on. Since the 
artifacts are removed beforehand, we hypothesized that the 
PC presenting maximum and second maximum variance will 
represent the cardiac and respiratory activity respectively. 

d) Extraction of HR, RR and RA 

 Since first PC represent the cardiac activity, FFT was 
applied on the first PC to extract HR frequency (fHR) and 
then it was converted to HR using eq [3a]. Similarly, 
breathing frequency (fRR) was extracted by applying FFT on 
the second PC and then it was converted to RR using eq 
[3b].  
 𝐻𝐻𝐻𝐻 = 𝑓𝑓𝐻𝐻𝐻𝐻 ∗ 60  (beats/min)  (3a) 

 𝐻𝐻𝐻𝐻 = 𝑓𝑓𝐻𝐻𝐻𝐻 ∗ 60  (breaths/min)  (3b) 

Reference RR was calculated by applying FFT on the 
reference respiration signal obtained from capnograph and 
reference HR was calculated manually from ECG signal.  

C. Performance measurement 
To measure the performance of PPG derived RA, 

magnitude squared coherence (𝐼𝐼𝑀𝑀𝑀𝑀), correlation 
coefficients (𝑀𝑀𝑀𝑀) and normalized root mean square 
error (𝑁𝑁𝐻𝐻𝐼𝐼𝑀𝑀𝑁𝑁) of it was measured with reference 
respiration signal.  

𝐼𝐼𝑀𝑀𝑀𝑀 is a widely used technique to measure the similarity 
between two signals in the frequency domain. 𝐼𝐼𝑀𝑀𝑀𝑀 of the 
reference respiration signal and PPG derived RA was 
calculated as follows:  

 𝐼𝐼𝑀𝑀𝑀𝑀 =  
|𝑃𝑃𝑜𝑜𝑜𝑜(𝑓𝑓)|2

𝑃𝑃𝑜𝑜(𝑓𝑓)𝑃𝑃𝑜𝑜(𝑓𝑓)
  (4) 

where, 𝑃𝑃𝑜𝑜(𝑓𝑓) and 𝑃𝑃𝑜𝑜(𝑓𝑓) are the power spectral density of 
original and PPG derived RA respectively. 𝑃𝑃𝑜𝑜𝑜𝑜  is the cross 
power spectral density of original and PPG derived RA. 

𝑀𝑀𝑀𝑀 is another way of measuring similarity between two 
signals in time domain method, CC is defined as: 

 𝑀𝑀𝑀𝑀 =  
𝑀𝑀𝐶𝐶𝐶𝐶(𝑜𝑜,𝑑𝑑)
𝜎𝜎𝑜𝑜𝜎𝜎𝑜𝑜

  (5) 

   where, COV(𝑜𝑜,𝑑𝑑) represent the covariance of reference 
respiration signal and PPG derived RA; 𝜎𝜎𝑜𝑜  and 𝜎𝜎𝑜𝑜 are the 
standard deviation of original respiration signal and PPG 
derived RA respectively.  

𝑁𝑁𝐻𝐻𝐼𝐼𝑀𝑀𝑁𝑁 was used for measuring the deviation of PPG 
derived RA from original RA. The equation for estimating 
𝑁𝑁𝐻𝐻𝐼𝐼𝑀𝑀𝑁𝑁 is given below: 

 𝑁𝑁𝐻𝐻𝐼𝐼𝑀𝑀𝑁𝑁 =  ��
∑ [𝑜𝑜(𝑛𝑛) − 𝑑𝑑(𝑛𝑛)]2𝑁𝑁
𝑛𝑛=1

∑ [𝑜𝑜(𝑛𝑛)]2𝑁𝑁
𝑛𝑛=1

�  (6) 

   where, 𝑜𝑜(𝑛𝑛) and 𝑑𝑑(𝑛𝑛) represent the reference respiration 
signal and  PPG derived RA respectively for 𝑛𝑛𝑡𝑡ℎepoch and 
𝑁𝑁(= 45) is the total number of epochs.  

       Box-Whiskers plot, Pearson correlation measurement, 
un-normalized root mean square (RMS) error and Bland-
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Altman plot were used for analyzing the robustness of 
EEMD-PCA based PPG derived RR and HR. 

III. RESULTS AND DISCUSSION 

An example of the reference respiration signal and PPG 
derived respiratory activity is shown in Fig. 2. It is obvious 
that the PPG derived RA is visually analogous to the 
reference capnograph based respiration signal. 

 
Figure 2.  PPG signal, PPG derived respiratory activity and original 

respiration signal. 

A.  Respiratory Activity (RA) 
𝐼𝐼𝑀𝑀𝑀𝑀, 𝑀𝑀𝑀𝑀 and 𝑁𝑁𝐻𝐻𝐼𝐼𝑀𝑀𝑁𝑁 between PPG derived RA and 

reference respiration signal are shown in Fig. 3. The mean 
value of 𝐼𝐼𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀 for 45 epochs was 0.95 and 0.89 
respectively that is close to unity. In addition, the average 
value of 𝑁𝑁𝐻𝐻𝐼𝐼𝑀𝑀𝑁𝑁 was -1.24 dB. Since the 𝐼𝐼𝑀𝑀𝑀𝑀 and 
𝑀𝑀𝑀𝑀 value close to unity and lower value of 𝑁𝑁𝐻𝐻𝐼𝐼𝑀𝑀𝑁𝑁 
represent more accurate or exact extraction of RA from PPG 
signal, we can summarize that EEMD-PCA approach 
provides nearly accurate estimation of RA from PPG signal. 

 
Figure 3.  𝐼𝐼𝑀𝑀𝑀𝑀, 𝑀𝑀𝑀𝑀 and 𝑁𝑁𝐻𝐻𝐼𝐼𝑀𝑀𝑁𝑁 measurement for different epochs between 

EEMD-PCA derived RA and reference respiratory signal.  

B. Respiratory rates (RR) and heart rates (HR) 
   Box-whiskers plot of RR and HR rate extracted from 
reference signal and PPG derived signal are demonstrated in 
Fig. 4, where  RRR, RRD, HRRand HRD represents reference 
RR, PPG derived RR, reference HR and PPG derived HR 
respectively. From the box-whiskers plot (Fig. 5), it was 
found that the derived rates were coincidental with their 
reference rates. Additionally, the median ( median(RRR) =
16,  median(RRD)=16) and inter quartile range (IQR) 
( IQR(RRR) = 4.01,  IQR(RRD)=4.50) for  RRR and  RRD 
was nearly same. Similarly, the median and  
( median(HRR) = 100.49,  median(HRD)=100.05) and 
IQR ( IQR(HRR) = 7.18, IQR( HRD)=6.51) for  HRR and 

 HRD was also nearly similar. These results indicated that the 
RRD and HRD were analogous to the RRR and HRR 
respectively.     

 
Figure 4.   Box-Whiskers plot of reference and EEMD-PCA based PPG 

derived RR and HR.  

The Bland–Altman plot is the preferred method for 
assessing the agreement between reference and new 
measurement. It shows the paired difference between the 
two observations on each event against the mean of these 
two observations.  Bland-Altman plots of RR and HR 
derived from reference and PPG signal are shown in Fig 5. 
RRR and RRD showed a good agreement with very small 
bias (0.05) and 95% limit of agreement (-1.23, 1.33), which 
contain 95% of the difference scores (42/45). Similarly, HRR 
and HRD showed a very good agreement with a bias of 0.17 
and 95% limits of agreement (-1.70, 2.04), which contain 
100% (45/45) of the difference scores.   

 
Figure 5.   Bland-Altman plot for EEMD-PCA based PPG derived RR and 
HR with reference RR and HR. 𝐋𝐋𝐋𝐋𝐋𝐋𝐑𝐑𝐑𝐑 is -1.23 to 1.33 and 𝐋𝐋𝐋𝐋𝐋𝐋𝐇𝐇𝐑𝐑 is -1.70 
to 2.04 (µ, SD and LOA represent the mean, standard deviation and limits 

of agreement respectively of the data). 

Additionally, the accuracy of the EEMD-PCA based 
algorithm per epoch is illustrated in Fig. 6, where the 
estimated rates (RRD and HRD) and their reference values 
(RRR and HRR) for each epoch are represented. The Pearson 
correlation for RR and HR was 0.935 and 0.996 respectively 
as well as the goodness of fit for RR and HR was 0.875 and 
0.992 respectively.  

 

Figure 6.   Pearson correlation between ground truth and EEMD-PCA based 
PPG derived RR and HR for each epoch (The dotted line represents the 

optimal performance). 
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       The comparison of mostly available methods for 
extracting PPG derived HR, RR and RA is shown in  Table 
I. The existing methods are mostly used to estimate either 
one or two parameters out of the three presented in this 
study.  Although, studies were performed on different data 
sets EEMD-PCA based method provided the lowest median 
(=0) and IQR (0.89) among existing methods for RR 
estimation. Similarly, low median (=0.62) and  the lowest 
IQR (=0.10) were also obtained using the proposed EEMD-
PCA approach for HR estimation. Although, the median 
HR-RMS error obtained using proposed algorithm is not the 
lowest among existing methods, the lowest IQR of it shows 
higher stability in accurate estimating the HR than other 
existing methods. In addition, the CC value of respiratory 
activity of our proposed method (0.89) is considerably 
higher than MMSPCA based approach (0.68). All these 
results indicate that EEMD-PCA method performed better 
than existing methods in estimating HR, RR and RA from 
PPG signal. 

TABLE I.  COMPARISON FOR PPG DERIVED HR, RR AND RA WITH 
OTHER EXISTING METHODS 

Methods RR-RMS error 
(breaths/min) 

HR-RMS error 
(beats/min) 

RA  

EEMD-PCA 
(Proposed) 

0(0, 0.89) 0.62(0.56,0.66) 𝑀𝑀𝑀𝑀(0.89), 
𝐼𝐼𝑀𝑀𝑀𝑀(0.95) 

CSD [20] 0.95(0.27, 6.20) 0.76 (0.34, 1.45) n/a 

MMSPCA 
[17] 

n/a n/a 𝑀𝑀𝑀𝑀(0.68), 
𝐼𝐼𝑀𝑀𝑀𝑀(0.96) 

PSD [20]  3.18(1.20, 11.3) 0.58 (0.21, 1.17) n/a 

Smart Fusion 
[9] 

1.56 (0.60,3.15) 0.48 (0.37, 0.77) n/a 

EMD [21] 3.5 (1.1, 11) 0.35 (0.2, 0.59) n/a 

T-F Analysis 
[22] 

1.91 (0.41,7.01) n/a n/a 

Digital 
Filtering [4] 

7.47(0.59, 10.6) n/a n/a 

IV. CONCLUSION 
In this paper, we have proposed a unique algorithm for 

simultaneous estimation of three vital physiological 
parameters (HR, RR and RA) from PPG signal. Most of the 
previous researches reported the derivation of only one or 
two of the above parameters from PPG signal. In addition, 
the proposed novel EEMD-PCA approach showed more 
accurate results in estimating HR, RR and RA than other 
existing methods. In the future, we aim to verify this 
algorithm using large cohorts as well as subjects having 
different type of cardiovascular or cardiorespiratory 
diseases.  
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