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Abstract

The present analysis is based upon the numerical solution of the full Navier-Stokes equations for laminar viscous flow. The
convection-diffusion model is used for the determination of the flow particle concentration and the formation of typical 
sedimentation zones. The results are compared with available experimental data.
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1. Introduction

One of the most important problem in hydrotechical construction is to remove the bottom and suspended 
sediments from water flows on its way to energy, irrigation and water conduits. Removal of the bottom sediment can 
be accomplished by appropriate design of the intake without building special structures. To precipitate suspended 
solids settlings a construction of expensive tanks in which the particles settle to the bottom under the gravity effect is 
required. The studying of the hydrodynamics of flow is necessary to create more favorable conditions contributing to 
the most rapid and efficient deposition of sediment. Physical modeling of flows in such designs is rather a
sophisticated problem. Therefore, the mathematical simulation of flows in the settler taking into account the 
deposition of particles is an actual task.
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One of the simplest designs to be applied for this purpose is shown in Fig. 1 and has the following principle. 
From the intake channel the water enters the chamber of the settler, bypassing the sill representing a sudden 
deepening with a height equal to h. A developed recirculation zone is formed in the chamber of the settler. The 
bottom flow in the chamber transports the settled sediment particles toward the entry sill, in the lowest part of which 
the flushing slot is located. Through it sediments are discharged into the downstream facilities.

2. Formulation of the problem and numerical procedure

As a mathematical model of the flow in the chamber settler, let’s consider the problem of the motion of an 
incompressible viscous fluid moving through the sill of high h , on the bottom of which there is a runoff with a 
given flow rate ∗Q . Let’s introduce a Cartesian coordinate system 0xy with the center at the base of the sill. The 
system of Navier-Stokes equations describing the laminar flow of a viscous incompressible fluid by means of
variables stream function ψ and vorticity can be written as follows:
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Nomenclature

Vx, Vy axial and transverse velocity components
ψ stream function
Ω vorticity
Q flow rate
ν kinematic viscosity
ρ density
Re Reynolds number
t time
c particle concentration
St Stokes number
Pr Prandtl number
Sc Schmidt number
g gravity acceleration

Fig. 1. Schematic of the problem.
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The boundary of the free surface is assumed to be a straight line const== kyy parallel to the axis x. The flow is 
considered in the rectangular region G ,0( kxx ≤≤ kyy ≤≤0 ). The value hHyk /= characterizes the flow depth 
in the settling chamber (where 1−

ky is the sill height), and hhy /11 = is the size of the flushing hole.
The boundary conditions for the system (1)-(3) are set as follows. An axial flow with flow rate 0Q and average 

velocity 0U is assigned at the entry to settling chamber for 0=x , kyy ≤≤1 . For 0=x , 10 yy ≤≤ we have a 
runoff with flow rate 01 / QQQ ∗= and a parabolic velocity distribution. On rigid surfaces, when kxx ≤≤0 , 0=y
and 0=x , 11 ≤≤ yy no-slip conditions are assigned. Conditions of shear stresses are determined as equal to zero 
and are placed on the surface of the fluid for kxx ≤≤0 , kyy = . Soft boundary conditions are imposed in the outlet 
section kxx = , kyy ≤≤0 . The set of boundary conditions can be written as:
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To solve numerically the boundary value problem (1)-(3), (4)-(9) the finite difference method was used. The 
incomplete reduction method was applied for solving the Poisson equation (2). The transport equation (1) was
solved using the implicit block iteration method. The diffuse terms were approximated by means of central 
differences. For approximating the convective terms we used a modified Leonard scheme with quadratic upstream 
terms of third-order accuracy. This method has been successfully applied in [1] to calculate flows of various types.

3. Flow fields calculations results

Flow calculations in the settling chamber determined by the boundary problem (1)-(9) was carried out for values
100Re = ; 150; 200; 250; 1.01 =y , =ky 1.7; 1.8; 1.9; 2; 2.1. The typical streamline patterns for the calculated 

flows are presented in Fig. 2,a-c.
Experimental model of the settler had the following parameters. The total length of the tray was 5050 mm, the 

length of the supply channel was 1200 mm, the length of settling chamber was 2800 mm, flow rate was 1530 ÷=Q
l/sec, the Reynolds number was 54 1010~Re − .

The results of the experiments can be compared with obtained numerical solutions based on the concept of the 
effective parameters of the flow. For this purpose in accordance with the Prandtl’s hypothesis let’s introduce the 
value of the length of the mixing path , which is associated with turbulent viscosity tν as follows:

2 2( / )t xV y= ν ∂ ∂                                                                                                                                         (11)

The effective viscosity of the flow effν is determined by the sum tν+ν=νeff and ν>>νt . Taking the known 
value 11.0≈ for the flows of this type, and estimating the value yVx ∂∂ / from the experimental data [2], we find 
that the effective Reynolds number is =effRe ≈ν/0 hU 150140 − .
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A comparison of the experimental data with the calculation results is given in Fig. 3,a. It can be seen that there is 
a good agreement between theory and experiment.

In general, through the choice of appropriate and effective Reynolds number it’s possible to describe properly the 
large-scale vortex structures (such as the recirculation zones).

4. Convection-diffusion model

In the settling chamber among all forces acting on a moving particle, the most significant are the force of gravity 
and the force of viscous resistance (Stokes force). The equations of motion of the particles under the influence of 
these forces in the dimensionless form are:
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where St is the Stokes number, Fr is Froude number and the subscript s denotes the particles. For 1St << from 
(12) it follows that the axial particle velocities xsV coincide with the corresponding velocity of the basic flow

)( xxs VV = .
The velocity of the particles in the transverse direction will be determined from the equation (13). In the 

stationary case )0/( =∂∂ t we have
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Let’s consider the process of particle transfer for the flows calculated in paragraph 3. The numerical 
investigations of two-phase flow with rigid particles are based upon the convection-diffusion model [3]. We assume 
that the influence of the particle motion on the basic flow is negligible. The flow field is defined as a sum of the 
particle velocity and the liquid phase velocity. In this case the equation of volume global continuity transforms to 

                      Fig. 2. Streamlines (a-c) and concentration isolines (d-f) for 150Re = ; 8.1=ky ; 4.0;2.0;01 =Q ; 01.0Fr = ; 5105St −⋅= .
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the diffusion equation for the particle concentration c :
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in which D/Sc ν= is the Schmidt number, and D is the diffusion coefficient. The distribution ysV in (15) is 
determined by solving the equation (14) with the condition 0)( =kys yV .

Assuming that the admixture of the particles is introduced into the basic flow in the initial cross-section 0=x
with 21 ss yyy ≤≤ , 1( 1 >sy , )2 ks yy < we write down the boundary conditions for the equation (15) in the form:
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The boundary-value problem (15)-(18) was solved by the relaxation method on the basis of the finite-difference 
scheme used for the transport equations (1).

5. Calculation results for flow fields concentration

For the flows calculated above, the problem of the particle concentration distribution was solved numerically
over the parameter ranges 51Sc −= , =St 54 1010 −− − . In Fig. 2,d-e we have reproduced the most characteristic 
results of the calculations in the form of concentration isolines. The dashed line in these figures shows the contour of 
the reverse flow zone.

In Fig. 3,b we have reproduced distributions of the transverse velocity yV and particle deposition flow rate ysV .
The difference in the distribution can be noticed only at a short distance 234.0=x (curves 1 and 6) away from the
inlet cross-section. Further downstream the profile yV is different from the profile ysV at almost constant value 
corresponding to the dimensionless deposition rate in a fluid at rest Fr/St2−=∗

ysV .
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Fig. 3. Comparison of calculated length of the recirculation zone with the experiment (a) for Re=145, =ky 1.65, 1.7, 1.75 

(curves 1-3), distributions of the transverse velocity yV (b, curves 1-3) and particle deposition flow rate ysV (b, curves 4-6)

for 150Re = , 01 =Q , 8.1=ky , =z 0.234, 0.938, 5.
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The nature of the particle deposition on the bottom of the settler is illustrated by the distribution of concentration 
c and flux concentration cVys for 0=y (Fig. 4,a). Using these dependencies we can determine the location of 
maximum deposition of particles.

For a more detailed view of the particle deposition process in the settling chamber let’s introduce the following 
integral characteristics: the particle flow rates outQ , bQ and stQ through the tube exit cross-section )( kxx = , at the 
bottom of the settler )0( =y and in the flushing hole )0,0( 1yyx ≤≤= respectively:
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in accordance with the mass conservation condition must be equal to unity. This property was used to check the
calculation accuracy. The dependencies outQ , bQ , stQ , divided by the inQ , from the flow rate value 1Q , are 
presented for 150Re = , 8.1=ky in Fig. 4,b. They also show that an increase of the flow rate in the flushing hole 
leads to a more intensive deposition of particles on the bottom of the settling chamber, whereas the particle flow rate 

stQ directly through the flushing hole increases slightly.
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Fig. 4. Concentration c (dashed lines) and flux concentration cVys (solid lines) for 0=y , 150Re = , 8.1=ky , =1Q 0, 

0.1, 0.2, 0.3 (a, curves 1-4); dependencies of the particle flow rates outQ , bQ , stQ (b, curves 1-3) on the runoff 1Q for 

150Re = , 8.1=ky , 01.0Fr = , 5105St −⋅= .


