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Introduction

Humans perform visual search tasks constantly from
finding a set of keys to looking for a friend in a crowded
place. However, despite the importance of this task and its
ubiquity in our everyday lives, the current understanding
of the neural underpinnings of this behavior falls short of
forming a consensus opinion. The steep drop-off in visual
acuity from the fovea to the periphery necessitates an
efficient system for directing the eyes onto those areas of
the scene that are relevant to satisfying the goals of an
observer. Moreover, a related and important task is the
direction of the focus of attention cortically; that is, the
cortical mechanisms underlying the direction of focused
processing onto task relevant visual input.
Over the last several decades, a great deal of research

effort has been directed toward further understanding the
mechanisms that underlie visual sampling, either through
observing fixational eye movements, or in considering the
control of focal cortical processing. Consideration of
fixational eye movements necessarily involves two dis-
tinct components, one being the top-down task-dependent
influence on these behaviors, and the second characterized
by bottom-up stimulus-driven factors governed by the
specific nature of the visual stimulus.
The importance of the former of these categories is well

documented and perhaps most prominently demonstrated
by Yarbus (1967). In the experiments of Yarbus, observers
were asked a variety of different questions about a specific

scene while having their eye movements tracked. The
resulting data demonstrates wildly different patterns of
eye movements depending on the question posed. More
recent efforts have continued in the same vein (Hayhoe &
Ballard, 2005; Hayhoe, Shrivastava, Mruczek, & Pelz,
2003; Land, Mennie, & Rusted, 1999), observing eye
movements in a variety of real-world settings and further
demonstrating the role of task in the direction of visual
and presumably cortical sampling.
Certain visual events such as a bright flash of light, a

vividly colored sign, or sudden movement will almost
certainly result in an observer’s gaze being redirected,
independent of any task-related factors. These behaviors
reflect the bottom-up stimulus-driven component of visual
sampling behavior. Even in the absence of such remark-
able visual patterns, the specific nature of the visual
stimulus at hand no doubt factors appreciably into the
visual sampling that ensues. A number of studies have
attempted to expound on this area by observing correlation
between fixations made by human observers and basic
features such as edges or local contrast (Parkhurst, Law, &
Niebur, 2002; Tatler, Baddeley, & Gilchrist, 2005). The
general finding of such studies is that there is no simple
single basic feature that adequately characterizes what
comprises salient content across all images. An additional
limitation of such an approach is that any result of such a
study says little about the underlying neural basis for such
computation or the corresponding neural implementation.
An additional domain in which saliency is considered is

in the context of attention models that posit the existence
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of what has been called a saliency map. The introduction
of saliency maps came conceptually with Treisman and
Gelade’s (1980) Feature Integration Theory in the form of
what they describe as a master map of locations. The basic
structure of the model is that various basic features are
extracted from the scene. Subsequently the distinct feature
representations are merged into a single topographical
representation of saliency. In later work this representation
has been deemed a saliency map and includes with it a
selection process that in vague terms selects the largest
peak in this representation, and the spotlight of attention
moves to the location of this peak (Koch & Ullman, 1985).
In this context, the combined pooling of the basic feature
maps is referred to as the saliency map. Saliency in this
context then refers to the output of an operation that combines
some basic set of features into a solitary representation.
Although models based on a saliency map have had some

success in predicting fixation patterns and visual search
behavior, there exists one significant methodological short-
coming of the definition of saliency captured by these
saliency map models. The definition of saliency is
emergent from a definition of local feature contrast that is
loosely based on observations concerning interaction
among cells locally within primate visual cortex. Although
the models succeed at simulating some salience-related
behaviors, they offer little in explaining why the operations
involved in the model have the structure that is observed
and, specifically, what the overall architecture translates
into with respect to its relationship to the incoming
stimulus in a principled quantitative manner. As such,
little is offered in terms of an explanation for design
principles behind observed behavior and the structure of
the system.
In this paper, we consider the role that the properties of

visual stimuli play in sampling from the stimulus-driven
perspective. The ambition of this work lies in explaining
why certain components implicated in visual saliency
computation behave as they do and also presents a novel
model for visual saliency computation built on a first
principles information theoretic formulation dubbed Atten-
tion based on Information Maximization (AIM). This
comprises a principled explanation for behavioral mani-
festations of AIM and contributions of this paper include:

1. A computational framework for visual saliency built
on first principles. Although AIM is built entirely on
computational constraints, the resulting model struc-
ture exhibits considerable agreement with the
organization of the human visual system.

2. A definition of visual saliency in which there is an
implicit definition of context. That is, the proposed
definition of visual salience is not based solely on
the response of cells within a local region but on the
relationship between the response of cells within a
local region and cells in the surrounding region.
This includes a discussion of the role that context
plays in the behavior of related models.

3. Consideration of the impact of principles underlying
neural coding on the determination of visual
saliency and visual search behavior. This includes
a demonstration that a variety of visual search
behaviors may be seen as emergent properties of
principles underlying neural coding combined with
information seeking as a visual sampling strategy.

4. A demonstration that the resulting definition of
visual saliency exhibits greater agreement with
fixational eye movement data than existing efforts.

As a whole, we establish that an information max-
imization strategy for saliency-related neural gain control
is consistent with the computation observed in the visual
cortex. These results are discussed in terms of implica-
tions with respect to how attentional selection in general is
achieved within the visual cortex.

Information maximization and
visual sampling

The central core of the model is built on computational
constraints derived from efficient coding and information
theory. The intuition behind the role of these elements in
saliency computation may be introduced by considering
an example from an early influential paper by Attneave
(1954) that considers aspects of information theory as they
pertain to visual processing. Within this work, Attneave
provides the following description and associated figure
(labeled Figure 1):

“Consider the very simple situation presented in
Figure 1. With a modicum of effort, the reader may
be able to see this as an ink bottle on the corner of a
desk. Let us suppose that the background is a



uniformly white wall, that the desk is a uniform
brown, and that the bottle is completely black. The
visual stimulation from these objects is highly
redundant in the sense that portions of the field are
highly predictable from other portions. In order to
demonstrate this fact and its perceptual significance,
we may employ a variant of the “guessing game”
technique with which Shannon has studied the
redundancy of printed English. We may divide the
picture into arbitrarily small elements, which we
“transmit” to a subject (S) in a cumulative sequence,
having him guess at the color of each successive
element until he is correctI. If the picture is divided
into 50 rows and 80 columns, as indicated, our S will
guess at each of 4,000 cells as many times as
necessary to determine which of the three colors it
has. If his error score is significantly less than chance
[2/3 � 4,000 + 1/2(2/3 � 4,000) = 4,000], it is
evident that the picture is to some degree redundant.
Actually, he may be expected to guess his way
through Figure 1 with only 15 or 20 errors.”

The intent of Attneave’s example is to demonstrate that
there exists significant redundancy in natural visual
stimuli and that human subjects appear to have some
degree of an internal model of this redundancy. A second
observation that is not made in the original description,
but that is fundamental to the subject matter of this paper,
is that one might also suggest that the areas of the scene
where subjects make the greatest number of errors on
average in guessing are those that contain content of
interest. This is equivalent to the Shannon (1948) self-
information associated with each pixel location in this
context.
One may also imagine a hypothetical generalization of

the game described by Attneave in which a human
participant is required to describe the contents of a region

of a scene containing arbitrary structure, lightness,
contrast, and colors. Although it is not practical to carry
out an experiment of this type, most would agree that
there exists some general intuition concerning what a
certain portion of a scene is expected to contain on the
basis of its context. Consider for example Figure 2: Under
the blacked out regions (left) labeled A, B, and C, one
would likely claim to have some general intuition
concerning the contents of each hidden region on the
basis of the surround and the contents of the scene. It is
also evident from the frame on the right that the image
content hidden within regions A and B come very close to
this intuition whereas the content that lies beneath region
C is very far from our expectation and would almost
certainly require the greatest number of guesses within the
hypothetical guessing game. This region is also the most
informative in a Shannon sense on this basis.
Recently, a variety of proposals based on information

theory concerning attention and fixation behavior have
emerged. An earlier proposal of ours presents in prelimi-
nary form a demonstration of correlation between an
information-based definition of visual saliency and fix-
ation behavior in human observers (Bruce, 2005; Bruce &
Tsotsos, 2006). In this paper, a more developed presenta-
tion of these ideas is put forth along with additional
supporting evidence. In the later part of this section, this
proposal is contrasted against other existing proposals.
The following provides an overview of AIM and each

of its constituent components. For additional details
pertaining to the specifics of the implementation and a
more mathematical treatment, the reader may also refer to
Appendix A. The premise of our proposal is that the
saliency of visual content may be equated to a measure of
the information present locally within a scene as defined
by its surround, or more specifically, how unexpected the
content in a local patch is based on its surround. This
quantity corresponds to the surprisal, or the expected
number of guesses required in the general version of the



game described by Attneave. The machinery involved in
this computation is depicted in Figure 3. Boxed regions
(surrounded by a dotted line) contain the inputs to and
outputs of the various operations involved in the compu-
tation, and these computational operations are depicted by
the rounded rectangles. A description of each of these
components follows.

Independent feature extraction

For each coordinate location i, j in the scene, the
response of various learned filters with properties remi-
niscent of V1 cortical cells are computed. This stage may
be thought of as measuring the response of various
cortical cells coding for content at each individual spatial
location and corresponds roughly to Gabor-like cells that
respond to oriented structure within a specific spatial
frequency band and color opponent cells. This yields a set
of coefficients for each local neighborhood of the scene Ci,j

that may be assumed mutually independent. Operations
involved in this stage are depicted in Figure 3b and a
description of these operations as well as discussion of the
assumption of mutual independence follows the overview
description of the model. More specific details may also
be found in Appendix A.

Density estimation

The content of a local neighborhood Ci,j,k (i, j
corresponding to position of the local neighborhood) of
the image is characterized by several coefficients ak
corresponding to the various basis filters that code for
that location. Let us consider one of these coefficients that,
choosing an arbitrary example, might correspond to the
presence of edge content corresponding to a specific
orientation and spatial frequency at that location. In a
larger region Si,j,k surrounding the location in question,
one also has for each spatial location in the surround, a
single coefficient corresponding to this same filter type.
Considering all spatial locations in the surround the
coefficients corresponding to the filter in question form a
distribution (based on a non-parametric or histogram
density estimate) that may be used to predict the like-
lihood of the response of the coefficient in question for
Ci,j,k. For computational parsimony, the definition of
surround in the simulations shown is such that each pixel
in the image contributes equally to the density estimate
and is performed based on a 1000 bin histogram density
estimate with the number of bins chosen to be in a range
where the likelihood estimate is insensitive to a change in
the number of bins. That said, the proposal is amenable to
computation based on a local surround and results
concerning the quantitative evaluation are included based
on such a definition. It is worth noting that in the presence
of the sort of parallel hardware with which the brain is

equipped, the computation of a likelihood estimate based
on the local surround is highly efficient. For more
discussion related to this issue, the readers may refer to
the section on related literature and Appendix A.

Joint likelihood and self-information

A density estimate for any single coefficient based on
coefficients corresponding to the same filter type from the
surround affords a likelihood estimate corresponding to
the single filter type in question. Based on the indepen-
dence assumption emergent from a sparse representation,
an overall likelihood for all coefficients corresponding to a
single location is given by the product of the likelihoods
associated with each individual filter type. That is, the
likelihood of responses corresponding to the entire
cortical column corresponding to a specific spatial
location is given by the product of the likelihoods
associated with the individual filters. The Shannon Self-
Information of this overall likelihood p(x) is then given by
jlog(p(x)). Note that this is equivalent to the sum of the
self-information of the individual cell responses. The
resulting information map depicts the saliency attributed
to each spatial location based on the Shannon information
associated with the joint likelihood of all filters in the
cortical column. An additional point of interest is that the
depiction in what appears as a saliency map can then be
thought of as the average Shannon self-information of
cells across a cortical column corresponding to content
appearing at each spatial location. It should be noted,
however, that the saliency-related computation takes place
at the level of a single cell, which is an important
consideration in addressing different architectures con-
cerning how attentional selection is achieved; this is an
issue that is considered in the Discussion section.
The independent feature extraction stage involves some

specific details pertaining to the computational motivation
for the proposal of AIM as well as its relationship to
properties of cortical cells. Operations involved in
independent feature extraction are depicted in Figure 3b
and are given as follows.

ICA

A large number of local patches were randomly
sampled from a set of 3600 natural images. Images were
drawn from the Corel stock photo database and consist of
a variety of photographs of outdoor natural scenes
captured in a variety of countries. In total, 360,000
patches of 31 � 31 � 3 (and 21 � 21 � 3 for a few
results noted in the text) width � height � RGB pixels
form the training set for ICA based on the random
selection of 100 patches from each image. Independent
Component Analysis (Cardoso, 1999; Lee, Girolami, &
Sejnowski, 1999) is applied to the data in order to learn a





sparse spatiochromatic basis. The impetus for this stage of
the computation lies in the computational complexity
associated with density estimation. Taken at face value,
characterizing the likelihood of a local region of the visual
field on the basis of its surround seems a difficult problem
computationally. To consider the metaphor of an image,
even for a region as small as a 5 � 5 pixel region of RGB
values, one is faced with a probability density estimate on
a 75-dimensional space. The amount of data required for a
likelihood estimate in such a space appears infeasible in
its raw form. A solution to this dilemma comes in the
coding observed in the visual cortex wherein as suggested
by Attneave and others (Atick, 1992; Attneave, 1954;
Barlow, 1961) an efficient representation of natural image
statistics is established. There is considerable evidence in
favor of sparse coding strategies in the cortex, with sparse
coding an important and ubiquitous property of cortical
coding (Foldiak & Young, 1995) and having the implica-
tion that the response of cells coding for content at a
particular spatial location are relatively independent. This
is a consideration that is critical as it implies that
computation of the self-information of a local patch may
be reduced from a high-dimensional patch-wise estimate
of self-information to a low-dimensional feature-wise
estimate (Bruce, 2004). This reduces the problem of a
density estimate in 75 dimensions as given in the example,
to 75 one-dimensional density estimates. An independent
representation is therefore central to realizing the required
density estimate and additionally has implications from
the perspective of observed behavior, which are discussed
in more detail later in this paper. It is also encouraging
from the perspective of biological plausibility that a
representation of this form exhibits considerable corre-
spondence with cortical computation and the properties of
cortical cells: A number of influential studies have
demonstrated that learning a sparse encoding of natural
image statistics may yield a sparse V1-like set of cells
(Bell & Sejnowski, 1997; Olshausen & Field, 1996),
including those that code for spatiotemporal content (van
Hateren & Ruderman, 1998) and color opponency
(Wachtler, Lee, & Sejnowski, 2001). The output of this
operation is a set of basis functions with properties akin
to those appearing in early visual areas including
responding to oriented structure at various spatial fre-
quencies and red–green/blue–yellow color opponency.
This provides a transformation between raw pixel
elements and cortical cell responses for which the
responses of cells may be assumed independent and in a
representation having a close correspondence with early
visual cortex.

Matrix pseudoinverse and matrix
multiplication

ICA assumes that a local image patch is comprised of a
linear combination of the basis filters. The pseudoinverse

of the mixing matrix provides the unmixing matrix, which
may be used to separate the pixel content within any local
region into independent components. More specifically,
for each local neighborhood of the image Ck, multi-
plication of the local pixel matrix with the unmixing
matrix produces a set of coefficients that corresponds to
the relative contribution of the various basis functions in
representing the local neighborhood. These coefficients
may be thought of as the responses of V1-like cells across
a cortical column, corresponding to the location in
question.
There have been other relevant proposals centered

around the role of information or likelihood estimation
in determining the deployment of fixations. Najemnik and
Geisler (2005) consider fixation behavior predicted by a
Bayesian ideal observer with the focus on predicting
sequences of fixations. They demonstrate that human
observers appear to compute an accurate posterior
probability map in the search for a target within 1/f noise
and that inhibition of return proceeds according to a very
coarse representation of past fixations. An important
element of this work lies in showing that target search
appears to operate according to maximizing the informa-
tion about the location of the target in its choice of
fixations. Another effort that leans more toward a
stimulus-driven approach in the sense that there is no
specific target is that of Renninger, Verghese, and
Coughlan (2007). The task involved determining whether
the silhouette of a particular shape matched with a
subsequently presented silhouette. Eye movements were
tracked during the presentation to observe the strategy
underlying the selection of fixations. Renninger et al.
demonstrate that the selection of fixation points proceeds
according to a strategy of minimizing local uncertainty,
which equates to a strategy of maximizing information
assuming information equates to local entropy. This will
typically correspond to regions of the shape silhouette,
which contain several edgelets of various orientations. In
agreement with the work of Najemnik and Geisler, it was
found that there is little benefit to the optimal integration
of information across successive fixations. Mechanisms
for gain control at the level of a single neuron have been
observed, which have been shown to correspond to a
strategy based on information maximization (Brenner,
Bialek, & de Ruyter van Steveninck, 2000). Although the
proposal put forth in this paper is distinct from a
description that involves sequences of fixations, the search
for a specific target, or specific task conditions, it is
nevertheless encouraging that there do appear to be
mechanisms at play in visual search that serve to
maximize some measure of information in sampling, and
it is also the case that the findings of these studies may be
viewed as complementary to our proposal rather than
conflicting.
One critique that might be levied against an entropy-

based definition of the sort described in Renninger et al.
(2007) is that a definition based on minimizing local



uncertainty or entropy is inherently local. The difference
between the measure of information proposed in AIM and
one based on local entropy is that a definition based on
local entropy amounts roughly to a measure of local
activity. In the context of AIM, entropy is defined on the
surround of the local region under consideration with
information equated to the self-information of local
content in the context of the surround. As such, this
information-based definition has an inherent contrast
component to it, rather than relying on local activity only.
One can imagine a stimulus such as a region containing

lines of homogeneous orientation in a sea of randomly
oriented lines, or a shape silhouette of the sort employed
in the study of Renninger et al. (2007) that has significant
edge content on the entire boundary with the exception of
a single smooth region. In such cases, one may expect
fixations to be directed to the relatively more homoge-
neous regions of the scene or figure. Therefore, a local
definition of what is salient that fails to include the context
in which a localized stimulus is presented will fail to
adequately characterize some aspects of behavior, since
local activity seems less of a determining factor in
what may draw an observers’ gaze in these cases. It is
also worth stating that such a measure based on self-
information is likely to exhibit some degree of correlation
with an entropy-based definition for certain stimulus
choices since the nature of natural stimuli is biased in
favor of having relatively few cells active at a time by
construction (Foldiak & Young, 1995).

Fixational eye movement data

A means of considering model plausibility is in consid-
ering correlation between the proposed definition of visual
saliency and eye movements made by human observers in
a task designed to minimize the role of top-down factors.
We therefore have considered the extent to which the
behavior of AIM agrees with two sets of eye tracking data,
one that includes a variety of colored natural images, and
the other that comprises a wide variety of different videos
that include natural spatiotemporal content, television
advertisements, and video games, which was the basis for
evaluation for the Surprise model of Itti and Baldi (2006).
The resulting model performance is compared against the
saliency models of Itti, Koch, and Niebur (1998) and Itti
and Baldi (2006) where appropriate.

Single image eye tracking evaluation
Methods

The data that form the basis for performance evaluation
are derived from eye tracking experiments performed
while participants observed 120 color images. Images

were presented in random order for 4 seconds each with a
gray mask between each pair of images appearing for
2 seconds. Participants were positioned 0.75 m from a
21-inch CRT monitor and given no particular instructions
except to observe the images. Images consist of a variety
of indoor and outdoor scenes, some with very salient
items, others with no particular regions of interest. The
eye tracking apparatus consisted of an ERICA workstation
including a Hitachi CCD camera with an IR emitting LED
at the center of the camera lens. The infrared light was
reflected off two mirrors into the eye facilitating segmen-
tation of the pupil. Proprietary software from ABB
corporate research was used to analyze the data. The
parameters of the setup are intended to quantify salience
in a general sense based on stimuli that one might expect
to encounter in a typical urban environment. Data were
collected from 20 different participants for the full set of
120 images.
The issue of comparing between the output of a

particular algorithm and the eye tracking data is non-
trivial. Previous efforts have selected a number of fixation
points based on the saliency map and compared these with
the experimental fixation points derived from a small
number of subjects and images (7 subjects and 15 images
in a recent effort (Privitera & Stark, 2000)). There are a
variety of methodological issues associated with such a
representation, the most important such consideration
being that the representation of perceptual importance is
typically based on a saliency map. Observing the output of
an algorithm that selects fixation points based on the
underlying saliency map obscures observation of the
degree to which the saliency maps predict important and
unimportant content and, in particular, ignores confidence
away from highly salient regions. Secondly, it is not clear
how many fixation points should be selected. Choosing
this value based on the experimental data will bias output
based on information pertaining to the content of the
image and may produce artificially good results in that it
constrains assessment of fixations to a number of locations
that may be correlated with the number of salient regions
in the image, reducing the importance of model predic-
tions away from these regions.
The preceding discussion is intended to motivate the

fact that selecting discrete fixation coordinates based on
the saliency map for comparison may not present the most
appropriate representation to use for performance evalua-
tion. In this effort, we consider two different measures of
performance. Qualitative comparison is based on the
representation proposed in Koesling, Carbone, and Ritter
(2002). In this representation, a fixation density map is
produced for each image based on all fixation points and
subjects. This is given by a 2D Gaussian kernel density
estimate wherein the standard deviation A is chosen to
approximate the drop-off in visual acuity moving periph-
erally from the center of the fovea based on the viewing
distance of participants in the experiment. The density
map then comprises a measure of the extent to which each



pixel of the image is sampled on average by a human
observer based on observed fixations. This affords a
representation for which similarity to a saliency map
may be considered at a glance. Quantitative performance
evaluation is achieved according to the procedure of
Tatler et al. (2005). The saliency maps produced by each
algorithm are treated as binary classifiers for fixation
versus non-fixation points. The choice of several different
thresholds for the saliency maps treated as binary
classifiers in predicting fixated versus not fixated pixel
locations allows an ROC curve to be produced for each
algorithm. An overall quantitative performance score is
then given by the area under the ROC curve. For a further
explanation of this method, refer to Tatler et al. (2005).

Results

Figure 4 demonstrates a qualitative comparison of the
output of AIM with fixation density maps, as compared
with the output of the saliency maps produced by the Itti
et al. algorithm. The frames from left to right are given as
follows: The image under consideration, the output of
AIM as applied to the image appearing in the leftmost
frame. The output of the Itti et al. algorithm as described
in Itti et al. (1998). The human fixation density map
depicting the extent to which each pixel location is
sampled on average by a human observer accounting for
foveation. The original image modulated by the output of
AIM showing the localization of saliency-related activa-
tion. As can be observed there is considerable qualitative
similarity between AIM output and the human density
maps. Figure 5 demonstrates ROC curves associated with
AIM and the Itti et al. algorithm when treated as
classifiers for fixation points, along with 99% confidence
intervals. The area under the curves is 0.781 T 0.0087 and
0.729 T 0.0082 for AIM and the Itti et al. algorithms,
respectively. These results are determined using identical
computation to that appearing in Bruce and Tsotsos
(2006) with each pixel location contributing equally to
the density estimate for computational parsimony. We
have also performed analysis based on a local surround
with the drop-off corresponding to the approximate drop-
off observed in surround suppression moving from the
center of a target cell in V1 as shown in Figure 7 of Petrov
and McKee (2006) as fit to a 2D Gaussian kernel. Due to
the additional computation required for such a simulation,
analysis was performed for a 21 � 21 window size, which
yields an ROC score of 0.762 T 0.0085 based on the local
surround. As a basis for comparison, the ROC score for a
21 � 21 window size in which each pixel location
contributes equally to the estimate yields an ROC score
of 0.768 T 0.0086. This suggests that one might also
expect an ROC score in the vicinity of 0.78 for a
simulation based on a local surround definition based on
a 31 � 31 window size. Note also that a more careful

analysis of the extent and shape of the local surround may
yield further gains with respect to ROC score as we have
considered only a single sensible choice for the local
simulation. This, however, does not impact upon the
conclusions of this paper, or the demonstration that self-
information based on a local surround yields performance
that exceeds that of previous efforts (Itti et al., 1998). As a
whole the results are encouraging in the validation of
saliency as defined within AIM as a quantity that
correlates with the direction of human eye movement
patterns. For further implementation details pertaining to
these results, the reader is urged to consult Appendix A.

Video-based eye tracking evaluation
Methods

The data employed for evaluation of fixations in video
examples are identical to that employed in Itti and Baldi
(2006). The following gives an overview of the details
concerning the data set. For a detailed description of the
methods involved please refer to the aforementioned
work. Eye tracking data were collected from eight
subjects aged 23–32 with normal or corrected-to-normal
vision. A total of 50 video clips consisting of a variety of
categories of scenes including indoor scenes, outdoor
scenes, television clips, and video games were employed
for the experiment. Video clips were displayed at a
resolution of 640 � 480 and consist of over 25 minutes
of playtime at approximately 60 Hz. Total analysis is
based on 12,211 saccades.
The generality of AIM means that it may be applied to

any arbitrary set of neurons provided they form a sparse
representation. A natural extension to considering neurons
that code for combinations of angular and radial frequency
and color opponency is that of considering spatiotemporal
patterns. To carry out this evaluation, we learned a
spatiotemporal basis using the Lee et al. (1999) extended
Infomax algorithm. The data set employed was the van
Hateren data employed to learn the basis presented in van
Hateren and Ruderman (1998) and consists of grayscale
image sequences at 50 frames per second of natural data.
The basis was learned by randomly sampling spatiotem-
poral volumes of 11 � 11 � 6 frames from throughout the

Figure 4. A qualitative comparison of the output of AIM with the
experimental eye tracking data for a variety of images. Also
depicted is the output of the Itti et al. algorithm for comparison:
From left to right: Original unprocessed image. Output of AIM,
hotter areas correspond to more salient regions. Saliency as
computed by the Itti et al. (1998) algorithm. Eye tracking density
maps from experimental data averaged across 20 subjects
depicts the extent to which each pixel location was sampled on
average by human observers. The original image modulated by
the output of AIM, demonstrating the localization of patterns and
affording a sense of cortical modulation associated with various
stimulus patterns.





video taking every second frame so that the basis
corresponds to data sampled at 25 frames per second.
The result of the ICA algorithm is a set of cells selective

for oriented content at different spatial frequencies and for
different velocities of motion not unlike those appearing in
V1 as reported in van Hateren and Ruderman (1998). For
the sake of comparison, we considered the same set of
videos used in Itti and Baldi (2006) and employed the
same strategy for performance evaluation with respect to
predicting fixations. In short, this process involves
examining the saliency of randomly selected locations
relative to saliency values at fixations. The KL-divergence
between these two distributions is then used to rank
algorithms. A detailed description of this procedure may
be found in Itti and Baldi (2006).

Results

A sample of frames from a variety of qualitatively
different videos is shown in Figure 6 (left of each pair)
along with the associated saliency (right of each pair). It is
interesting to note that the output agrees qualitatively with
our intuition of what is salient across a wide range of
types of spatiotemporal data, including situations with low
contrast structure, crowding, and with an inherent tradeoff
between stationary and moving structure. The resulting
distributions from consideration of the eye tracking data
described, subject to AIM, are shown in Figure 7. Results
are compared with those that appear in Itti and Baldi
(2006) and include three static metrics of salience
corresponding to local intensity variance, orientation
contrast, and Entropy as well as a characterization of
motion energy (for details, see Itti & Baldi, 2006) and, in
addition, the output of the saliency model of Itti et al.



(1998) and the Surprise model of Itti and Baldi (2006).
The KL-divergence associated with this evaluation is
0.328. This is a 36% improvement over the Surprise
model of Itti and Baldi with a KL score of 0.241 and a
60% improvement over the saliency model of Itti et al.
(1998) with a KL score of 0.205. Importantly, this
apparently strong performance comes from the same
biologically plausible setup that yielded favorable per-
formance for spatiochromatic data, without modification
or any additional assumptions required for consideration
of spatiotemporal neurons. This evaluation supports the
claim of generality of information as a strategy in saliency
computation and additionally offers a means of character-
izing spatiotemporal saliency. Additionally, no prior
model of scene content or memory is involved as in Itti
and Baldi (2006), but rather the prediction is based on the
current state of neurons that code for spatiotemporal
content. Overall, the results provide further support of the
generality of AIM in predicting fixation and visual-search-
related behaviors and demonstrates the efficacy of the
proposal in predicting fixation patterns on a qualitatively
different data set than that comprised of still images.

Visual search behavior

The study of visual search has been influential in
shaping the current understanding of computation related
to attention and the determination of visual saliency.
Owing to the large body of psychophysics work within
this area, in addition to some of the peculiarities that are
observed within the visual search paradigm, it is natural to
consider how model predictions measure up against the
wealth of psychophysics results in this area. It is with this
in mind that we revisit a variety of classic results derived
from the psychophysics literature revealing that AIM
exhibits considerable explanatory power and offers some
new insight on certain problem domains.
It is important to state that the visual search literature

largely focuses on situations in which there is a specific
target definition (e.g., find the red horizontal bar). Within
the context of this paper we consider only the bottom-up
determination of saliency and there is no specific notion of
task or target. A more general account of visual search
behavior requires treatment of at least these two



considerations in combination. As the focus of this paper
is on a detailed proposal for computation related to
bottom-up salience, we only aim to consider visual search
insofar as saliency contributes to the efficiency with which
search is performed. While more general conclusions
might be drawn in including the impact of task specific
bias on the response of cells involved based on, for
example, a simple multiplicative gain applied to cells that
accounts for their relevance to a specific task, this is a
complex mechanism in itself and is outside of the scope of
the study at hand. That said, the bottom-up salience of
items within a display is nevertheless an important
contribution to any visual search task and thus the results
considered are relevant in the context of the more general
body of visual search results in which there is a specific
definition associated with the visual search task to be
performed. It is also worth noting that the conclusions put
forth in this paper when combined with accounts of visual
search for which the focus is on the role of bias in the
guidance toward target items (e.g., Wolfe, Cave, &
Franzel, 1989) have as a result a treatment of visual
search that is applicable to the more general body of
visual search results for which the impact of task is a
central component. That said, it is important to bear in
mind that the results presented focus on but one element
of visual search, and caution should be exercised in
considering how conclusions drawn from the examples
that follow relate to visual search performance in general.
Generally, models of attention assume that the focus

of attention is directed according to a competitive

Winner-take-all process acting on some neural represen-
tation in the cortex. An important element of this
representation is the saliency of a target item relative to
the saliency of the distractors since this is the determinant
of search efficiency according to various selection mech-
anisms (Desimone & Duncan, 1995; Itti et al., 1998; Koch
& Ullman, 1985; Tsotsos et al., 1995). It is assumed then
throughout the discussion that search efficiency is a
function of the ratio of target to distractor saliency in line
with other similar efforts (Li, 2002). This assumption
allows the consideration of saliency to be disentangled
from the mechanisms that underlie attentional gating,
which remains a contentious issue.

Serial versus parallel search

An observation that has been influential in earlier
models of attention is that certain stimuli seem to be
found effortlessly from within a display, while others
require considerable effort to be spotted seemingly
requiring elements of the display to be visited in turn.
Consider for example Figure 8. In the top left, the
singleton item distinguished by its orientation is found
with little effort seemingly drawing attention automati-
cally. This phenomenon is sometimes referred to as “pop-
out.” The same may be said of the singleton defined by
color in the top middle frame; however, the singleton in
the top right frame requires examining the elements of the
frame in turn to locate the target. These observations form



the motivation for Treisman’s Feature Integration Theory
(Treisman & Gelade, 1980), a seminal work in attention
modeling based on the observation that some targets are
found effortlessly and seemingly in parallel while others
seem to require a serial search of target items with the
search time increasing as a linear function of the number
of distracting elements. In particular, the distinction
between these two cases is when a target item is defined
by a conjunction of features rather than a single feature.
On the bottom row of Figure 8 is the output of the AIM
algorithm with the saliency scale shown on the left-hand
side. Warmer colors are more salient, and this scale is
used in all examples scaled between the maximum and
minimum saliency values across all examples within an
experiment. As can be seen in Figure 8 the target relative
to distractor saliency is very high for the first two cases,
but the target saliency is indistinguishable from that of the
distractors in the third case, suggesting no guidance
toward the target item and hence requiring a visit of items
in serial order. Thus, the distinction between a serial and
parallel search is an emergent property of assuming a
sparse representation and saliency based on information
maximization. Since the learned feature dimensions are
mutually independent, the likelihood is computed inde-
pendently for uncorrelated feature domains implying
unlikely stimuli for singletons based on a single feature
dimension but equal likelihood in the case of a target
defined by a conjunction. This behavior seen through the
eyes of AIM is then a property of a system that seeks to
model redundancy in natural visual content and overcome
the computational complexity of probability density
estimation in doing so. An additional example of a
conjunction search is featured in Figure 9: The small,
rotated, and red 5’s are easily spotted, but finding the 2
requires further effort. It is worth noting that this account
of visual search has been revised to some extent with
more recent experiments demonstrating an entire contin-
uum of search slopes ranging from very inefficient to very

efficient (Wolfe, 1998). This is a consideration that is also
supported by AIM as more complex stimuli that give rise
to a distributed representation may yield very different
ratios of target versus distractor saliency.

Target–distractor similarity

An additional area of psychophysics work that has been
very influential is that of observing the effects of target–
distractor similarity on difficulty in search tasks. Gen-
erally, as a target item becomes more similar in its
properties to the distracting items, the search becomes
more difficult (Duncan & Humphreys, 1989; Pashler,
1987). An example of this modeled on the experiment of
Duncan and Humphreys (1989) and based on the example
shown inWolfe and Horowitz (2004) is shown in Figure 10
(top). Moving from the top left to top right frame, a shift
of the target away from the distractors in color space
occurs. The resulting saliency appears below each
example and the ratio of distractor to target saliency is
0.767, 0.637, 0.432, and 0.425, respectively. This ratio is
given by the saliency score at the center of the singleton
and by the mean of the saliency score at the center of
distractors, respectively. There is one important element
appearing in this example that perfectly matches the data
of Duncan and Humphreys: In the two rightmost stimulus
examples, the distractor to target saliency ratio remains
the same. This implies that beyond a certain distance for a
particular feature dimension, a further shift along this
feature dimension makes no difference in search effi-
ciency. This is exactly the effect reported in Duncan and
Humphreys (1989). In AIM, the effect emerges due to a
single neuron type responding to both target and distractor
items. Once the target–distractor distance increases to the
extent that there are no cells that respond strongly to both
the target and distractor items, a further shift in feature
space has no effect on task difficulty. Hence the specific



effect observed in Duncan and Humphreys (1989) also
appears as an emergent property of modeling redundancy
and with saliency equated to information. Interestingly,
the resulting data are almost identical to the experimental
results despite the simplifying assumptions in learning the
V1-like neural representation.

Distractor heterogeneity

A question that follows naturally from consideration of
the role of target–distractor similarity is that of whether
distractor–distractor similarity has any effect on search
performance. The most telling effect in this domain is that
increasing the heterogeneity of the distractors yields a
more difficult search (Duncan & Humphreys, 1989; Nagy
& Thomas, 2003; Rosenholtz, Nagy, & Bell, 2004).
Consider for example Figure 11. In the top left case, the
item 15 degrees from horizontal appears to pop-out. This
effect is diminished in the top middle frame and severely
diminished in the top right frame. The saliency attributed
to each of these cases appears below each stimulus
example. The finding that an increase of distractor
heterogeneity results in a more difficult search is con-
sistent with the behavior of AIM. Distributing the
distractors over several different cell types rather than a
single type of neuron means that the distractors are
considered less probable and hence more informative thus
decreasing the ratio of target to distractor saliency. There
is also a secondary effect in the example given of target–
distractor similarity since broad tuning means that cells

tuned to a particular orientation may respond weakly to a
distractor type other than that for which they are tuned, or
the target. This serves to highlight the importance of the
specifics of a neural code in the determination of visual
saliency and also offers insight on why the determination
of efficiency in visual search tasks may be difficult to
predict. It is worth noting that this basic effect captures
behaviors that models based on signal detection theory
(Verghese, 2001) fail to. For example, a horizontally
oriented bar among distractors at 30 degrees is much more
salient than a horizontal bar among distractors 1/3
oriented at 30 degrees, 1/3 at 50 degrees, and 1/3 at
70 degrees as observed in Rosenholtz (2001a). This is an
important peculiarity of visual search that is inherent in an
information seeking model but absent from many com-
peting models of saliency computation.

Search asymmetries

A stimulus domain that has generated a great deal of
interest involves so-called search asymmetries, due to
their potential to reveal peculiarities in behavior that may
further our understanding of visual search. One asymme-
try that has received considerable attention is an asym-
metry attributed to presence vs. absence of a feature as in
Figure 12 (Treisman & Gormican, 1988). In this example,
a search for a dash among plus signs is much more
difficult than the converse. In examining the associated
saliency maps as computed by AIM, it is evident that this
behavior is also inherent in the information-based





definition. Note that this is simply a specific case of a
more general phenomenon and the same might be
observed of a Q among O’s or any instance where a
singleton is defined by a feature missing as opposed to its
presence. This phenomenon can be explained by the fact
that in the feature present case, the feature that distin-
guishes the target is judged to be improbable and hence
informative. In the case of the feature absent, there is
nothing about the location that distinguishes it from
background content in the context of the missing feature
since the background regions also elicit a zero response to
the “missing” feature. Rosenholtz (2001b) reveals an
additional class of asymmetries, which she points out are
examples of poor experimental design as opposed to true
asymmetries. An example of such a stimulus appears in
Figure 13 (top). Rosenholtz points out that the asymmetry
appearing in Figure 13, which corresponds to the task of
finding a red dot among pink being easier than the
converse (top left and top second from left), may be
attributed to the role of the background content (Rosenholtz
et al., 2004); a change in background color (top right
and top second from right) causes a reversal in this
asymmetry. From the resultant saliency maps, it is evident
that AIM output also agrees with this consideration
(Figure 13, bottom). Reducing the contrast between the
background and the target/distractors would also be
expected to give rise to a more pronounced asymmetry
as the response of a cell to target/distractors and back-
ground become less separable. This is indeed the behavior
reported in Rosenholtz et al. (2004).
An important point to note is the fact that viewed in the

context of AIM, the color background asymmetry arises
from the same cause as the feature presence–absence

asymmetry, both a result of the role of the background in
determining feature likelihood. In each case, it is the role
of the background content in determining the likelihood
associated with any particular firing rate. In the colored
background examples, the background causes greater
suppression of the target or distractors depending on its
color. One example Rosenholtz (1999) describes as an
asymmetry in experimental design is that of a moving
target among stationary distractors versus a stationary
target among moving distractors, suggesting that the
design be rectified by ensuring the motion of the
distractors is coherent. Under these conditions, the sta-
tionary search becomes more efficient but still remains
significantly less efficient than the moving target case.
This is an aspect of search performance that is captured by
the behavior of AIM: If there exists units that elicit a
response to non-target background locations and also to
the stationary target, this may have an effect of suppress-
ing target saliency that will be absent in the moving target
case. Encouraging is the fact that this effect emerges due
to the role of background content in the determination of
saliency consistent with the model of Rosenholtz (2001b).

Related proposals

There are a few related proposals that include similar
definitions of the saliency of visual content. We have
deferred discussion of these models to this point in the
text so that specific reference to some of the results
appearing in this paper may be made. A central element of
the proposal put forth in this paper, as mentioned briefly,
is that under the assumption of a sparse representation, the



likelihood of local content as characterized by a sparse
ensemble of cells may be reduced to a computationally
feasible problem of many likelihood estimates of one
dimension. This was a point that was the focus of Bruce
(2004), which presented this point along with the sugges-
tion that this computation might be performed for any
arbitrary definition of context. In Bruce (2004) qualitative
results of this measure were presented for a definition of
context based on the entirety of a single natural image
under consideration, or for a definition based on ecolog-
ical statistics in which a large set of natural images forms
the likelihood estimate. Zhang, Tong, Marks, Shan, and
Cottrell (2008) have presented analysis of the relationship
between this latter definition and locations fixated by
human observers. The results they present show compa-
rable performance to results for which the estimation is
based on the image in question or based on a local
surround region. However, such a definition precludes the
possibility of context specific determination of saliency
and thus will not produce any of the behaviors associated
with the various psychophysics paradigms we have
considered. There are a few behaviors that Zhang et al.
describe, which they suggest a context specific model of
saliency fails to capture, such as the asymmetric perfor-
mance observed in a visual search for a bar oriented
5 degrees from vertical among many vertical bars versus
a bar oriented vertically among many bars oriented
5 degrees from vertical, with the suggestion that a
likelihood based on natural image statistics is necessary
to account for this effect. There is however a significant
oversight associated with this statement. An encoding
based on ICA is optimal with respect to the statistics of
the natural environment and therefore there is some
representation of natural image statistics in general
inherent in the context specific model in the definition of
the receptive fields themselves. Therefore one also
observes this specific asymmetry in the context of our
model as the units that respond most strongly to content
oriented 5 degrees from vertical also respond to a
vertically oriented edge, but the converse is not the case
(or the response is weaker) as the nature of the coding
dictates a smaller orientation bandwidth for vertical edges.
Combined with a suppressive surround, this results in the
observed performance asymmetry. The same may be said
of novelty of stimuli (e.g., Shen & Reingold, 2001; Wang,
Cavanagh, & Green, 1994) assuming familiarity with a
specific character set may have as a consequence a more
efficient neural representation. It is also interesting to note
that as receptive field properties (and image statistics)
vary with position in the visual field, that behavior in tasks
for which performance is anisotropic with respect to the
location in the visual field might also be explained by
AIM. This however is an issue that is difficult from an
implementation perspective, requiring different cell types
for different locations in the visual field and an explicit
model of dependencies between different cell types. There
are a few additional points of interest that appear in the

work of Zhang et al., which are discussed at the end of
this section. A definition that is closer to the former
definition appearing in Bruce (2004) in which the like-
lihood estimate is based on the content of the entirety of a
single image under consideration appears in Torralba,
Oliva, Castelhano, and Henderson (2006). In Torralba
et al. (2006), the focus is on object recognition and how
context may guide fixations in the search for a specific
object. They propose the following definition: P(O = 1,
XªL, G), where O = 1 indicates that the object O in
question is present, X is the location within the scene, and
L and G are the local and global features, respectively. Via
Bayes rule and excluding certain terms that appear in
reformulating this definition, one arrives at an expres-
sion for saliency S(x) = 1

PðLkGÞ p(XªO = 1, G). While the

focus of Torralba et al. (2006) is on how context informs
the saliency within the context of an object recognition
task given by the location likelihood conditioned on the
global statistics for instances in which the object appears,
the formulation also results in a term that is the inverse
function of the likelihood of some set of local features
conditioned on the global features. In the model of
Torralba et al. (2006), they propose that image structure
is captured on the basis of global image features. These
global features consist of a coarse spatial quantization of
the image and the features themselves pool content across
many feature channels for each spatial location. Given this
formulation, evaluation of P(LªG) directly is infeasible.
For this reason, an estimate of P(LªG) is computed on the
basis of the joint likelihood of a vector of local features
based on a model of the distribution of said features over
the entire scene. The likelihood P(LªG) is fit to a
multivariate power exponential distribution with assump-
tions on the form of the distribution allowing an estimate
of the joint likelihood of a local feature vector. Aside from
the most obvious difference between the proposal put
forth in this paper and that appearing in Torralba et al.
(2006); that being computation of saliency based on local
context as mediated by surround suppression, versus
global receptive fields), there are a few comments that
may be made in regards to the relationship to the proposal
put forth in this paper. A significant point that may be
made is that in considering the joint likelihood of a set of
features, one once again fails to predict a variety of the
behaviors observed in the psychophysics examples. For
example the independence assumption is central to some
of the psychophysics behaviors discussed, such as the
distinction between a pop-out and conjunction search, or
the feature presence/absence asymmetry. Secondly, it is
unclear how the computational machinery proposed to
achieve this estimate will scale with the number of
features considered and it is likely that a local surround
contains an insufficient number of samples for the
required covariance matrix estimate. Therefore, it is once
again the case that this proposal does not correspond to
behavior observed psychophysically and also seems to
prohibit computation of a measure of information in
which the context is local. It should be noted that this



quantity is not the main focus of the proposal of Torralba
et al. (2006) but does serve as a useful point of contrast
with the proposal at hand and highlights the importance of
sparsity for likelihood estimation involved in a case where
the data contributing to such an estimate is limited. It is
interesting to note that the circuitry required to implement
AIM is consistent with the behavior of local surround
suppression with the implication that surround suppres-
sion may subserve saliency computation in line with
recent suggestions (Petrov & McKee, 2006). There are in
fact several considerations pertaining to the form of a
local surround-based density estimate that mirror the
findings of Petrov and McKee. Specifically, suppression
in the surround comes from features matching the
effective stimulus for the cell under consideration, is
spatially isotropic, is a function of relative contrast, is
prominent in the periphery and absent in the fovea, and
the spatial extent of surround suppression does not scale
with spatial frequency. It is also interesting to note that
suppression of this type is observed for virtually all types
of features (Shen, Xu, & Li, 2007). It is important to note
that AIM is the sole proposal that is consistent with the
entire range of psychophysical results considered and has
a strong neural correlate in its relationship to behavior
observed in the recent surround suppression literature.
An additional consideration that is also noted in the

study of Zhang et al. (2008) and also in Le Meur, Le
Callet, Barba, and Thoreau (2006) is that the nature of eye
tracking data sets is such that there is a considerable
central bias. This effect is sufficiently strong that a central
Gaussian appears to better predict the locus of fixation
points than any model based on the features themselves.
This is almost certainly as Zhang et al. suggest, due to the
bias that emerges from images consisting of composed
photographs in which the photographer centers items of
interest and possibly the fact that images are presented on
a framed display. In light of this, a model for which the
basic machinery results in higher scores away from the
borders of the image will have a score that is artificially
inflated. This is an important consideration with respect to
the quantitative evaluation presented. As the border effects
are especially strong in the implementation of Itti et al.
(1998), relative to those presented in this study (as
shown by Zhang et al.), one might expect an even larger
difference in the performance metric depicted in Figure 5
if edge effects were accounted for. This consideration
however does not impact on the conclusions of this study
and for a detailed treatment of this issue, readers may
wish to consult Zhang et al. (2008).

Discussion

It is interesting to consider how the content discussed in
the previous sections fits in with the “big picture” as far as

attention modeling is concerned. There are a variety of
different schools of thought on the computational structure
underlying attentional selection in primates ranging from
those that posit the existence of a “saliency map” (Itti
et al., 1998; Koch & Ullman, 1985; Li, 2002), in the
cortex to those that claim a distributed representation over
which winner-take-all behavior or competitive interaction
facilitates attentional selection (Desimone & Duncan,
1995; Tsotsos et al., 1995). Thus far we have depicted
saliency in a manner more consistent with the former of
these categories demonstrating the total information at any
spatial location as the sum of information attributed to all
cells that code for content at that location. The corre-
spondence between the proposal and models based on a
saliency map can then be thought of as considering the
average salience of cells across a cortical column
corresponding to a particular location. What is perhaps
more interesting is the relationship between the proposal
and distributed models of attention. It is evident that as the
observation likelihood is computed at the level of a single
cell, it is possible that this signal is used to control its gain
at the single cell level in accord with neurophysiological
observations. It is evident that the proposal put forth is
amenable to a saliency map style representation, but it is
our opinion that recent results are more consistent with a
distributed selection strategy in which gating is achieved
via localized hierarchical winner-take-all competition and
saliency-related computation achieved via local modula-
tion based on information.
In this vein, the following discussion considers evidence

in favor of a distributed representation for attentional
selection as put forth in Tsotsos et al. (1995) and the
relationship of such a representation to the proposal put
forth by AIM.
Visual processing appears to constitute a dichotomy of

rapid general perception on one hand versus slower
detailed processing on the other as evidenced by such
paradigms as change blindness (Rensink, O’Regan, &
Clark, 1997). Many studies demonstrate that certain
quantities are readily available from a scene at a glance
such as Evans and Treisman (2005) and Huang, Pashler,
and Treisman (2007) while other judgments require
considerably more effort. This is evidently a product of a
visual hierarchy in which receptive fields cover vast
portions of the visual field and representations code for
more abstract and invariant quantities within higher visual
areas. Attentional selection within the model of Tsotsos
et al. (1995) proceeds according to this assumption with
attentional selection implemented via a hierarchy of
winner-take-all processes that gradually recover specific
information about an attended stimulus including the
specific conjunction of features present and, in particular,
the precise location of a target item. In line with this sort
of architecture, recent studies have shown that a variety of
judgements can be made on a visual stimulus with a time
course shorter than that required for localization of a
target item (Evans & Treisman, 2005; Huang et al., 2007).



It should be noted that within the traditional saliency map
paradigm, there is nothing inherent in the structure of the
model that is consistent with this consideration as spatial
selection forms the basis for determining the locus of
attention. Furthermore, the forest before trees priority in
visual perception appears to be general to virtually any
category of stimulus including the perception of words
preceding that of letters (Johnston & McClelland, 1974)
and scene categories more readily perceived than objects
(Biederman, Rabinowitz, Glass, & Stacy, 1974) in
addition to a more general global precedence effect as
demonstrated by Navon (1977). As a whole, the behav-
ioral studies that observe early access to general abstract
quantities prior to more specific simple properties such as
location seem to support an attentional architecture that
consists of a hierarchical selection mechanism with higher
visual areas orchestrating the overall selection process.
Further evidence of this arrives in the form of studies that
observe pop-out of high-level features such as depth from
shading (Ramachandran, 1988), facial expressions
(Ohman, Flykt, & Esteves, 2001), 3D features (Enns &
Rensink, 1990), perceptual groups (Bravo & Blake, 1990),
surface planes (He & Nakayama, 1992), and parts and
wholes (Wolfe, Friedman-Hill, & Bilsky, 1994). As
mentioned, the important property that many of these
features may share is an efficient cortical representation.
Furthermore, pop-out of simple features may be observed
for features that occupy regions far greater than the
receptive field size of cells in early visual areas. It is
unclear then how a pooled representation in the form of a
saliency map mediating spatial selection can explain these
behaviors unless one assumes that it comprises a pooled
representation of activity from virtually every visual area.
The only requirement on the neurons involved is sparsity
and it may be assumed that such computation may act
throughout the visual cortex with localized saliency
computation observed at every layer of the visual hierarchy
in line with more general models of visual attention
(Desimone & Duncan, 1995; Tsotsos et al., 1995). There
also exists considerable neurophysiological support in
favor of this type of selection architecture. In particular
the response of cells among early visual areas appears to
be affected by attention at a relatively late time course
relative to higher visual areas (Martı́nez et al., 1999;
Nobre et al., 1997; Roelfsema, Lamme, & Spekreijse,
1998) and furthermore the early involvement of higher
visual areas in attention-related processing is consistent
with accounts of object-based attention (Tipper &
Behrmann, 1996; Somers, Dale, Seiffert, & Tootell, 1999).
In a recent influential result, it was shown that

focused attention gives rise to an inhibitory region
surrounding the focus of attention (Hopf et al., 2006).
This result is a prediction of a hierarchical selection
architecture (Tsotsos et al., 1995) along with the ability to
attend to arbitrarily sized and shaped spatial regions
(Müller & Hübner, 2002); these considerations elude
explanation within the traditional saliency map paradigm

in its current form and are more consistent with a
distributed hierarchical selection strategy (Kastner &
Pinsk, 2004). It is also important to note that even for
basic features, an important consideration is the scale at
which analysis is performed with regard to conclusions
that emerge from the proposal. It is evident that varying
the extent of surround suppression might have some effect
on the pop-out observed in a case such as that appearing in
Figure 9. Under the assumption of a hierarchical repre-
sentation in which features are represented at each layer
with increasing extent of receptive field size and surround,
one has a definition that is less sensitive to scale (for
example, in embedding AIM within the hierarchical
selective attention architecture of Tsotsos et al., 1995). It
is also worth noting that in order to explain a result such
as that of Enns and Rensink (1990) whereby targets
defined by unique 3D structure pop-out, or that of
Ramachandran (1988) whereby shape defined by shading
results in pop-out, the global definition proposed by
Torralba et al. (2006) would require a summary represen-
tation of more complex types of features such as 3D
structures or shape from shading based on global receptive
fields. These considerations raise questions for any defi-
nition of saliency in which the determination is based on
global scene statistics. The case is even stronger if one
considers pop-out effects associated with faces although
there remains some contention that demonstrations of pop-
out effects associated with faces are a result of confounds
associated with simpler features (Hershler & Hochstein,
2005, 2006). As a whole, a hierarchical representation of
salience based on a local judgment of information is the
only account that appears to be consistent with the entire
range of effects described.
The preceding discussion serves to establish the

generality of the proposal put forth by AIM. The portion
of saliency computation that is of interest is the normal-
ization or local gain control observed as a product of the
context of a stimulus. This is an aspect of computation
that is only a minor consideration within other models and
accounted for based on a crude or general mechanism
within a normalization operation with only loose ties to
visual circuitry (Itti et al., 1998).
In conclusion, we have put forth a proposal for saliency

computation within the visual cortex that is broadly
compatible with more general models concerning how
attention is achieved. In particular, the proposal serves to
provide the missing link in observing pop-out behaviors
that appear within models that posit a distributed strategy
for attentional selection; a subset of attention models for
which favorable evidence is mounting. The proposal is
shown to agree with a broad range of psychophysical
results and allows the additional possibility of simulating
apparent high-level pop-out behaviors. Finally, the model
demonstrates considerable efficacy in explaining fixation
data for two qualitatively different data sets demonstrating
the plausibility of a sampling strategy based on informa-
tion seeking as put forth in this paper.
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