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With the rapid increases in processing speed and memory of low-cost computers, it is not surprising that
various advanced computational learning tools such as neural networks have been increasingly used for
analyzing or modeling highly nonlinear multivariate engineering problems. These algorithms are useful
for analyzing many geotechnical problems, particularly those that lack a precise analytical theory or
understanding of the phenomena involved. In situations where measured or numerical data are available,
neural networks have been shown to offer great promise for mapping the nonlinear interactions (depen-
dency) between the system’s inputs and outputs. Unlike most computational tools, in neural networks no
predefined mathematical relationship between the dependent and independent variables is required.
However, neural networks have been criticized for its long training process since the optimal configura-
tion is not known a priori. This paper explores the use of a fairly simple nonparametric regression algo-
rithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the
relationship between the inputs and outputs, and express the relationship mathematically. The main
advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate
the contributions of the input variables, and its computational efficiency. First the MARS algorithm is
described. A number of examples are then presented that explore the generalization capabilities and
accuracy of this approach in comparison to the back-propagation neural network algorithm.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Many geotechnical engineering problems rely on the use of
empirical methods expressed in the form of equations or design
charts, to determine the response of the system to input variables.
This is usually because of an inadequate understanding of the
physical phenomena involved in the multivariate problem, or the
system is too complex to be described mathematically. A typical
example is the determination of the undrained frictional resistance
of piles in clay. Based on field load test data, empirical methods
have been proposed in which the adhesion is related to the un-
drained shear strength as well as other factors such as the pile
length by an empirical coefficient.

For problems involving several design (input) variables and
nonlinear responses, particularly with statistically dependent in-
put variables, regression methods are usually adopted. However,
regression models become computationally impractical for prob-
lems involving a large number of design variables, particularly
when mixed or statistically dependent variables are involved. An-
other criticism of regression methods lies in their strong model
assumptions.
All rights reserved.
An alternative soft computing technique is the use of artificial
neural networks (ANNs). An ANN has a parallel-distributed archi-
tecture with a number of interconnected nodes, commonly re-
ferred to as neurons. The neurons interact with each other via
weighted connections. Each neuron is connected to all the neurons
in the next layer. By far the most commonly used ANN model is
known as the back-propagation (BP) algorithm [1]. In the BP algo-
rithm, the ANN ‘‘learns’’ the complicated model relationship from
examples of input and output patterns through modifying the con-
nection weights to reduce the errors between the actual output
values and the target output values. This is carried out by minimiz-
ing the defined error function (e.g., sum squared error) using the
gradient descent approach. Validation of neural network perfor-
mance is carried out by ‘‘testing’’ with a separate set of data that
was never used in training process, to assess the generalization
capability of the trained neural network model to produce the cor-
rect input–output mapping.

Generalization is influenced by factors such as the size of the
training data, how representative the data is of the problem to
be considered, and the physical complexity of the problem. Finding
the optimal BP architecture is also important. The BP algorithm has
been criticized for its computational inefficiency i.e. long process to
determine the optimal network configuration since this is not
known a priori. Too few hidden neurons may mean that the net-
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work is unable to model the nonlinear problem correctly. An exces-
sive number of neurons will result in unnecessary arithmetic cal-
culations and high computation cost and may cause a
phenomenon called ‘‘overfitting’’, in which the network learns
insignificant aspects of the training set i.e. the intrinsic noise in
the data. Determining the optimal number of hidden neurons is
commonly carried out by a trial-and-error approach through
repeatedly increasing the number of hidden neurons till no further
improvement in the network performance is obtained. Aside from
finding the optimal number of hidden neurons and the number of
hidden layers, finding the optimal BP architecture is a difficult task
that also involves determining the optimal transfer function and
learning rate, as well as the maximum number of training cycles
(epochs), all of which require considerable computational effort.
Various self-pruning NN algorithms have also been proposed, for
example initially starting with a network that is a purposely overfit
model, and then trimming it down to the appropriate size. How-
ever, neural networks implemented with these algorithms are gen-
erally just as computationally intensive since retraining is required
each time a hidden neuron or weighted connection is removed.

As highlighted by Shahin et al. [2], ANN has been successfully
applied to a number of geotechnical engineering problems includ-
ing pile capacity, settlement of foundations, soil properties and
behavior, liquefaction, site characterization, earth retaining struc-
tures, dams, blasting and mining, slope stability, geoenvironmental
engineering, rock mechanics, tunneling and underground caverns.

This paper explores the use of another promising procedure
known as multivariate adaptive regression spline (MARS) [3] to
model nonlinear and multidimensional relationships. As with neu-
ral networks, no prior knowledge of the form of the function is re-
quired in MARS. The main advantages of MARS are its capacity to
find the complex data mapping in high-dimensional data and pro-
duce simple, easy-to-interpret models, and its ability to estimate
the contributions of the input variables. Previous applications of
MARS algorithm in civil engineering include modeling doweled
pavement performance, predicting shaft resistance of piles in sand,
estimating deformation of asphalt mixtures, analyzing shaking ta-
ble tests of reinforced soil wall, and determining the undrained
shear strength of clay [4–9]. In this paper, a number of examples
are presented to demonstrate the function approximating capacity
of MARS and its efficiency in a noisy data environment. In addition,
comparative performance of the predictions between BP and MARS
were carried out for six practical examples in geotechnical
engineering.
Fig. 1. Knots and linear splines for a simple MARS example.

Table 1
Calculation of error measures.

Measure Calculation

Coefficient of determination (R2)
R2 ¼ 1�

1
n

Pn

i¼1
ðyðiÞ�f ðxðiÞ ÞÞ2

1
n

Pn

i¼1
ðyðiÞ�yÞ2

Mean Squared Error (MSE) MSE ¼ 1
n

Pn
i¼1ðyðiÞ � f ðxðiÞÞÞ2

Mean Absolute Error (MAE) MAE ¼ 1
n

Pn
i¼1jyðiÞ � f ðxðiÞÞj

y is the mean of the target values of y(i); f(x(i)) is model predictions; n denotes the
number of data points in the used set, training or testing set.
2. Details of MARS

MARS is a nonlinear and nonparametric regression method that
models the nonlinear responses between the inputs and the output
of a system by a series of piecewise linear segments (splines) of dif-
fering gradients. No specific assumption about the underlying
functional relationship between the input variables and the output
is required. The end points of the segments are called knots. A knot
marks the end of one region of data and the beginning of another.
The resulting piecewise curves (known as basis functions), give
greater flexibility to the model, allowing for bends, thresholds,
and other departures from linear functions.

MARS generates basis functions by searching in a stepwise
manner. An adaptive regression algorithm is used for selecting
the knot locations. MARS models are constructed in a two-phase
procedure. The forward phase adds functions and finds potential
knots to improve the performance, resulting in an overfit model.
The backward phase involves pruning the least effective terms.
An open source code on MARS from Jekabsons [10] is used in car-
rying out the analyses presented in this paper.
Let y be the target output and X = (X1, . . . ,XP) be a matrix of P in-
put variables. Then it is assumed that the data are generated from
an unknown ‘‘true’’ model. In case of a continuous response this
would be

y ¼ f ðX1; . . . ;XPÞ þ e ¼ f ðXÞ þ e ð1Þ

in which e is the distribution of the error. MARS approximates the
function f by applying basis functions (BFs). BFs are splines (smooth
polynomials), including piecewise linear and piecewise cubic func-
tions. For simplicity, only the piecewise linear function is expressed.
Piecewise linear functions are of the form max(0, x � t) with a knot
occurring at value t. The equation max(.) means that only the posi-
tive part of (.) is used otherwise it is given a zero value. Formally,

maxð0; x� tÞ ¼
x� t; if x P t

0; otherwise

�
ð2Þ

The MARS model f(X), is constructed as a linear combination of
BFs and their interactions, and is expressed as

f ðXÞ ¼ b0 þ
XM

m¼1

bmkmðXÞ ð3Þ

where each km(X) is a basis function. It can be a spline function, or
the product of two or more spline functions already contained in
the model (higher orders can be used when the data warrants it;
for simplicity, at most second-order is assumed in this paper). The
coefficients b are constants, estimated using the least-squares
method.

Fig. 1 shows a simple example of how MARS would use piece-
wise linear spline functions to attempt to fit data. The MARS math-
ematical equation is expressed as

y ¼ 4:4668þ 1:1038 � BF1� 3:997 � BF2þ 1:967 � BF3 ð4Þ

where BF1 = max(0, x � 16), BF2 = max(0, 16 � x) and BF3 = max(0,
25 � x). The knots are located at x = 16 and 25. They delimit three
intervals where different linear relationships are identified.

The MARS modeling is a data-driven process. To fit the model in
Eq. (3), first a forward selection procedure is performed on the



Fig. 2. Curve fitting using MARS: (a) sine function; (b) exponential function.
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training data. A model is constructed with only the intercept, b0,
and the basis pair that produces the largest decrease in the training
error is added. Considering a current model with M basis functions,
the next pair is added to the model in the form

b̂Mþ1kmðXÞmaxð0;Xj � tÞ þ b̂Mþ2kmðXÞmaxð0; t � XjÞ ð5Þ

with each b being estimated by the method of least squares. As a ba-
sis function is added to the model space, interactions between BFs
that are already in the model are also considered. BFs are added un-
til the model reaches some maximum specified number of terms
leading to a purposely overfit model.

To reduce the number of terms, a backward deletion sequence
follows. The aim of the backward deletion procedure is to find a
close to optimal model by removing extraneous variables. The
backward pass prunes the model by removing the basis functions
with the lowest contribution to the model until it finds the best
sub-model. Thus, the basis functions maintained in the final opti-
mal model are selected from the set of all candidate basis func-
tions, used in the forward selection step. Model subsets are
compared using the less computationally expensive method of
Generalized Cross-Validation (GCV). The GCV equation is a good-
ness of fit test that penalizes large numbers of BFs and serves to re-
duce the chance of overfitting. For the training data with N
observations, GCV for a model is calculated as follows [11]

GCV ¼
1
N

PN
i¼1½yi � f ðxiÞ�2

1� Mþd�ðM�1Þ=2
N

h i2 ð6Þ

in which M is the number of BFs, d is the penalizing parameter, N is
the number of observations, and f(xi) denotes the predicted values
of the MARS model. The numerator is the mean squared error of
the evaluated model in the training data, penalized by the denom-
inator. The denominator accounts for the increasing variance in the
case of increasing model complexity. Note that (M � 1)/2 is the
number of hinge function knots. The GCV penalizes not only the
number of the model’s basis functions but also the number of knots.
A default value of 3 is assigned to penalizing parameter d [3]. At
each deletion step a basis function is removed to minimize Eq.
(3), until an adequately fitted model is found. MARS is an adaptive
procedure because the selection of BFs and the variable knot loca-
tions are data-based and specific to the problem at hand.

After the optimal MARS model is determined, by grouping to-
gether all the BFs that involve one variable and another grouping
of BFs that involve pairwise interactions (and even higher level
interactions when applicable), the procedure known as analysis
of variance (ANOVA) decomposition [3] can be used to assess the
contributions from the input variables and the BFs.

As mentioned previously, the BP algorithm has been criticized
for its computational inefficiency i.e. long process to determine
the optimal network configuration since this is not known a priori
but has to be determined through a trial-and-error approach.
MARS is computationally more efficient at finding the optimal
model as it essentially builds flexible models by fitting linear
regressions and approximates the model by segmenting separate
slopes in distinct intervals of the input variables. The variables to
use and the knot locations of the intervals for each variable are
determined via a fast but intensive search procedure. The forward
selection and backward deletion procedure also ensures that an
optimal model can be found.

3. LR_MARS

Linear regression is commonly used statistical method for pre-
dicting values of a dependent variable from observed values of a
set of predictor variables. Logistic Regression (LR) is a variation
of linear regression for situations where the dependent variable
is not a continuous parameter but rather a binary event (e.g.,
yes/no, good/bad, 0/1). The value predicted by LR is the probability
of an event, ranging from 0 to 1. LR is more appropriate than linear
regression for assessing classification problems such as the seismic
liquefaction potential example presented later as it allows for bin-
ary outputs where each individual liquefaction record is classified
as liquefied or non-liquefied (0 for non-liquefied case while 1 for
liquefied case). Eq. (1) is applicable for the case of a continuous re-
sponse of a MARS model. For a binary response, assuming Pr is the
estimated probability that an individual case is liquefied, then the
LR_MARS model is

logitPrðy ¼ 1Þ ¼ f ðX1; . . . ;XPÞ þ e ð7Þ

in which the distribution of the error e is an exponential. Further,
Eq. (7) can be expressed as

ln
Pr

1� Pr

� �
¼ f ðXÞ ¼ b0 þ

XM

m¼1

bmkmðXÞ ð8Þ

or

eln Pr
1�Prð Þ ¼ ef ðXÞ ¼ e

b0þ
XM

m¼1

bmkmðXÞ

ð9Þ

The estimated liquefaction probability is

Pr ¼
1

1þ e�f ðXÞ ¼
1

1þ e�b0�
PM

m¼1
bmkmðXÞ

ð10Þ



Fig. 3. A two-variable function for surface fitting.

Fig. 4. Surface fitting using MARS: (a) using BFs of linear spline; (b) using BFs of cubic spline.
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in which the b values are estimated using the least-squares method
as in Eq. (3).

4. Neural network analysis and performance measures

In the six geotechnical examples analyzed using MARS in the
next section, the same data were also analyzed using a Matlab-
based back-propagation algorithm BPNN for comparative pur-
poses. For simplicity, these BPNN models are assumed to have a
single hidden layer. The optimal BPNN architecture is obtained
through a trial and error procedure, by varying the number of hid-
den neurons and the transfer function type (logsigmoid, tansigm-
oid, or purelin). Table 1 shows the various performance measures
used to compare the predictions of the two metahueristic methods.
In addition, the processing speed (CPU time) for both methods are
also presented.

For the final example (seismic liquefaction assessment) in
which the dependent variable is not a continuous parameter but
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rather a binary event, a common measure of evaluating the perfor-
mance of a pattern-classification model is to determine the success
rate SR (the percentage of correctly classified cases).
5. Analyses using MARS

Nine examples are presented to illustrate the application and
accuracy of MARS. Firstly, three examples consisting of fairly com-
plicated mathematical functions (with single or two variables) are
presented to demonstrate the function approximating capacity of
MARS. This is followed by an example to evaluate the MARS effi-
ciency in analyzing a hypothetical nonlinear function in which
noise (error) is introduced. The last six are practical geotechnical
examples that highlight the capability of MARS in modeling non-
linear multivariate problems.
5.1. Simple function approximation

In this example, MARS was used to analyze two complicated
nonlinear functions consisting of a single variable:

y ¼ 0:6 sinðpxÞ þ 0:3 sinð3pxÞ þ 0:1 sinð5pxÞð�1 < x < 1Þ ð11Þ

Table 2
Summary of HP-pile input variables and outputs.

Inputs and
outputs

Parameters and parameter descriptions

Input variables Hammer Hammer
weight

Variable 1 (x1)
y ¼ e10xðx�1Þ sinð12pxÞð0 < x < 1Þ ð12Þ

Fig. 2a and b show the learning results of the above two functions
obtained by MARS. The high coefficient of determination R2 value
Fig. 5. MARS approximations: (a) large error variance of r2 = 1; (b) small error
variance of r2 = 0.25.
indicates that MARS is highly accurate in approximating these
two functions.

5.2. Two-dimensional approximation

Fig. 3 shows a two-variable function (Eq. (13)), which has been
widely used for model performance validation.

y ¼ sinð0:83px1Þ cosð1:25px2Þð�1 < x1; x2 < 1Þ ð13Þ

To approximate this function, two MARS models with 45 BFs of lin-
ear and cubic spline functions respectively are used as shown in
Fig. 4a and b. R2 values of 0.9976 and 0.9991 show that MARS mod-
els with sufficient BFs can be used to approximate a two-dimen-
sional function accurately.

5.3. Function approximation with noise

A polynomial function y = 3x3 with Gaussian noise e is used to
verify the generalization capability and accuracy of MARS for the
case of a rather large error variance (i.e., noisy data). The x is
Energy Variable 2 (x2)
Hammer cushion
material

Area Variable 3 (x3)
Elastic
modulus

Variable 4 (x4)

Thick Variable 5 (x5)
Helmet
weight

Variable 6 (x6)

Pile information Length Variable 7 (x7)
Penetration Variable 8 (x8)
Diameter Variable 9 (x9)
Section area Variable 10

(x10)
L/D Variable 11

(x11)
Soil information Quake at toe Variable 12

(x12)
Damp at shaft Variable 13

(x13)
Damp at toe Variable 14

(x14)
Shaft
resistance

Variable 15
(x15)

Ultimate pile capacity Qu (kN) Variable 16
(x16)

Stroke Variable 17
(x17)

Outputs Maximum compressive stress MCS (MPa)
Maximum tensile stress MTS (MPa)
BPF

Table 3
MARS models to predict MCS, MTS and BPF.

Outputs MARS models

MCS MTS BPF

Type of BFs Piecewise-cubic Piecewise-linear Piecewise-linear
No. of BFs 42 43 40
Max interaction 2 2 2
R2 of training data 0.928 0.965 0.986
R2 of testing data 0.944 0.944 0.983
GCV 5.127 0.374 0.164
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uniformly distributed between �1 and 1 and e is normally distrib-
uted with mean value of 0. Two cases were considered, one with a
smaller error (variance of 0.25) and one with a larger error (vari-
ance of 1.0). In addition, two types of spline functions (linear spline
functions and cubic spline functions with the maximum number of
BFs set as 6) were used. Fig. 5 shows the scatter plots with the cor-
responding MARS regression curves of this example. Also displayed
in the plot is the exact curve of y = 3x3. The plots show that the
MARS approximation almost completely overlays the exact func-
tion, yielding a very good fit to the data, even in the case of a rather
large error variance.

5.4. HP-pile drivability

This HP-pile drivability example illustrates the use of MARS for
analyzing a multivariate problem with a large dataset. Jeon and
Rahman [12] developed a BP model to predict pile drivability in
terms of maximum compressive stresses (MCS), maximum tensile
stresses (MTS), and blow per foot (BPF). The database consisted of
4072 HP pile test results from 67 projects. Due to the large data-
base and the variety of input variables, Joen and Rahman [12] di-
vided the data into five categories based on the ultimate pile
capacity Qu (Q1: 133.4–355.9 kN; Q2: 360.0–707.3 kN; Q3:
707.4–1112.1 kN; Q4: 1112.2–1774.8 kN; Q5: 1774.9–3113.7 kN).
For each group 70% of the observations were randomly selected
for training and the remaining for testing. It should be noted that
the units for MCS and MTS have been converted to MPa from the
Fig. 6. Comparison of MCS using MARS and BPNN: (a) training; (b) testing.
original ksi units used in [12]. Seventeen variables including ham-
mer, hammer cushion material, pile, soil parameters, ultimate pile
capacities, and stroke were used as inputs to predict the three tar-
get outputs. A summary of the input variables and outputs is listed
in Table 2.

This problem has been reanalyzed using MARS and BPNN (with
single hidden layer and sigmoid transfer function). For brevity,
only analyses for category Q1 type are considered in this paper.
For the BPNN models, the optimum numbers of hidden neurons
are 9, 8, and 7 for MCS, MTS and BPF, respectively. Table 3 lists
the MARS models to predict MCS, MTS and BPF, using 42, 43 and
40 BFs, respectively.

Figs. 6–8 show the BPNN and MARS predictions for MCS, MTS
and BPF for the training and testing data patterns. For both meth-
ods, high R2 are obtained.

Comparisons of R2, MSE and MAE in Rows 4–6 of Table 4 indi-
cate that BPNN gives only marginally better predictions than
MARS. For testing samples of MTS and BPF, the MARS model is
more accurate than BPNN. Therefore, both MARS and BPNN can
serve as reliable tools for the prediction of HP-pile drivability.
Table 5 displays the ANOVA decomposition of the developed MARS
models for MCS, MTS and BPF respectively. The first column in Ta-
ble 5 lists the ANOVA function number. The second column gives
an indication of the importance of the corresponding ANOVA func-
tion, by listing the GCV score for a model with all BFs correspond-
ing to that particular ANOVA function removed. This GCV score can
be used to evaluate whether the ANOVA function is making an
Fig. 7. Comparison of MTS using MARS and BPNN: (a) training; (b) testing.



Fig. 8. Comparison of BPF using MARS and BPNN: (a) training; (b) testing.

Table 5
ANOVA decomposition of MARS models.

Function MCS MTS BPF

GCV Variable(s) GCV Variable(s) GCV Variable(s)

1 28.82 1 1.038 5 24.906 1
2 8.346 3 440.294 6 9.75 2
3 7.073 4 157.345 7 1.76 13
4 10.226 6 315.809 8 3.005 15
5 5.629 8 248.269 11 8.034 16
6 11.184 12 24.539 17 2.976 17
7 48.344 17 434.92 3 7 52.387 1 3
8 8.048 1 3 0.882 3 17 0.37 1 6
9 11.846 1 6 4.068 5 7 0.235 1 13

10 21.733 1 17 1.413 5 11 0.231 1 16
11 63.062 2 4 781.18 6 7 43.396 2 3
12 8.017 3 4 43.195 6 8 0.357 2 4
13 4.976 4 5 0.821 6 9 0.403 2 16
14 6.136 4 15 25.549 6 11 0.557 2 17
15 6.108 6 7 1.398 6 16 0.28 3 13
16 7.952 6 8 2.67 6 17 0.705 4 15
17 9.052 6 14 11.224 7 17 0.227 4 17
18 5.05 6 17 48.843 8 17 0.191 6 15
19 8.8 7 17 0.802 11 15 0.221 7 15
20 5.278 8 17 144.465 11 17 0.375 13 15
21 4.979 12 16 1.197 14 17 0.984 16 17
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important contribution to the model, or whether it just marginally
improves the global GCV score. The third column provides the
standard deviation of this function. The fourth column gives the
number of BFs comprising the ANOVA function. The last column
gives the particular input variables associated with the ANOVA
function. Fig. 9 gives the plots of the relative importance of the in-
put variables for the three MARS models, which is evaluated by the
increase in the GCV value caused by removing the considered vari-
ables from the developed MARS model. It can be observed that var-
iable 17 (Stroke) is the most important parameter in the MCS
model, followed by variable 1 (Hammer weight). Variable 6 (Hel-
met weight) and variable 8 (Penetration) are significantly impor-
tant in determining MTS. Variable 1 (Hammer weight) and
variable 2 (Hammer energy) are the two most important parame-
Table 4
Modeling accuracy comparison between BPNN and MARS.

Geotechnical applications BPNN

Training Testing

R2 MSE MAE R2 MSE

Pile drivability MCS 0.998 2.635 1.126 0.982 22.06
MTS 0.964 6.673 15.13 0.903 15.72
BPF 0.998 0.008 0.066 0.976 0.131

Tunneling 0.873 43.13 4.186 0.689 27.62
Collapse potential 0.911 4.409 1.514 0.914 4.329
Drilled shafts 0.877 0.004 0.047 0.836 0.005
Diaphragm wall 0.987 65.69 6.059 0.986 61.84
Liquefaction Overall SR: 97.1%

SR in predicting liquefied: 98.1%
ters for estimating BPF. Apart from the ability to estimate the con-
tributions of the input variables, another distinct advantage of
MARS lies in its convergence speed. Rows 2–4 of Table 6 list the
CPU processing time using BPNN and MARS. The advantage of
the processing speed of MARS is obvious.

Table 7 lists the BFs of the MARS model for BPF and their corre-
sponding equations. The interpretable MARS model to predict BPF
is given by

BPF ¼ 7:469þ 0:177 � BF1þ 0:059 � BF2þ 0:268 � BF3

� 0:103 � BF4� 0:554 � BF5þ 1:024 � BF6� 3:306

� BF7þ 2:165 � BF8þ 0:042 � BF9� 0:032 � BF10

þ 0:012 � BF11� 0:007 � BF12þ 0:376 � BF13

� 0:002 � BF14� 0:027 � BF15þ 16:685 � BF16

� 41:224 � BF17þ 0:376 � BF18� 1:247 � BF19

� 1:935 � BF20� 0:0323 � BF21þ 0:065 � BF22

� 0:165 � BF23� 0:0004 � BF24þ 0:001 � BF25

þ 0:0004 � BF26þ 0:25 � BF27� 0:0001 � BF28

� 0:0003 � BF29� 0:042 � BF30þ 0:139 � BF31

� 42:828 � BF32þ 0:002 � BF33� 10:708 � BF34

þ 54:887 � BF35þ 15:119 � BF36� 0:054 � BF37

þ 0:025 � BF38þ 0:019 � BF39þ 0:057 � BF40 ð14Þ
MARS

Training Testing

MAE R2 MSE MAE R2 MSE MAE

3.344 0.928 89.80 5.480 0.944 67.82 5.957
2.049 0.917 15.11 21.22 0.944 9.088 2.246
0.163 0.986 0.064 0.190 0.983 0.198 0.094
3.639 0.906 31.94 3.236 0.721 24.77 3.576
1.507 0.948 2.556 1.282 0.926 3.715 1.524
0.058 0.876 0.004 0.048 0.812 0.006 0.060
5.715 0.938 303.6 12.21 0.949 233.2 11.43

Overall SR: 90.6%

SR in predicting liquefied: 95.2%



Table 6
Processing time comparison between BPNN and MARS (units: s).

Geotechnical applications BPNN MARS

Pile drivability MCS 25.37 30.31
MTS 41.39 18.14
BPF 48.41 17.69

Tunneling 34.71 3.83
Collapse potential 154.02 2.16
Drilled shafts 105.20 0.17
Diaphragm wall 6.31 1.11
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5.5. Prediction of surface settlement associated with tunneling
operation

Ground movements and surface settlements associated with
tunnel operations are a major concern in the design of tunnels in
urban areas as excessive movements can damage nearby building
and utilities. Using instrumented data and data from the tunnel
operational parameters and the geological parameters, various
procedures including the use of empirical equations, simple equa-
Fig. 9. Relative importance of the input variables selected in the MARS models: (a)
MCS; (b) MTS; and (c) BPF.

Liquefaction 11.06 0.17

Using a PC with 3.0 GHz Intel Core2Quad Q9650 processor, 4 GB RAM.
tions based on the theory of elasticity or the numerical tools such
as the finite element method are available for prediction of surface
settlements. Using a total of 148 instrumented sections of settle-
ment data obtained from three separate mass rapid transit projects
in Singapore, Goh and Hefney [13] developed an ANN model to
predict the tunnel settlement. This example has been reanalyzed
using BPNN and MARS. A total of eight inputs that represented
the tunnel geometry, geological conditions and the earth pressure
balance (EPB) operation factors as shown in Table 8 were consid-
ered. A total of 115 observations of the settlement were randomly
selected as the training data and the remaining 33 data samples
were used for testing the validity of the developed neural network.
The optimal BPNN model consisted of five hidden neurons.

For the MARS model, the logarithmic values of parameters EP, E,
GP and St were used as it was found that this substantially im-
able 7
asis functions and corresponding equations of MARS model for BPF prediction.

Basis function Equation

BF1 max(0, x2 � 33)
BF2 max(0, 33 � x2)
BF3 max(0, x16 � 70)
BF4 max(0, 70 � x16)
BF5 max(0, x17 � 6)
BF6 max(0, 6 � x17)
BF7 max(0, x1 � 3.3)
BF8 max(0, 3.3 � x1)
BF9 max(0, x15 � 63)
BF10 max(0, 63 � x15)
BF11 BF2 �max(0, x16 � 50)
BF12 BF2 �max(0, 50 � x16)
BF13 BF7 �max(0, 270.9 � x3)
BF14 BF1 �max(0, x3 � 272)
BF15 BF1 �max(0, 272 � x3)
BF16 max(0, x13 � 0.16)
BF17 max(0, 0.16 � x13)
BF18 BF10 �max(0, 0.22 � x13)
BF19 BF8 �max(0, x6 � 2.79)
BF20 BF8 �max(0, 2.79 � x6)
BF21 BF6 �max(0, 70 � x16)
BF22 BF1 �max(0, 4.85 � x17)
BF23 BF9 �max(0, 1.099 � x6)
BF24 BF9 �max(0, x7 � 35)
BF25 BF9 �max(0, 35 � x7)
BF26 BF2 �max(0, 408 � x4)
BF27 BF8 �max(0, x16 � 50)
BF28 BF9 �max(0, x4 � 285)
BF29 BF9 �max(0, 285 � x4)
BF30 BF5 �max(0, 33 � x2)
BF31 BF17 �max(0, x3 � 228)
BF32 BF17 �max(0, 228 � x3)
BF33 BF5 �max(0, 285 � x4)
BF34 BF16 �max(0, x5 � 4.5)
BF35 BF8 �max(0, x13 � 0.23)
BF36 BF8 � �max(0, 0.23 � x13)
BF37 BF6 �max(0, x2 � 47.2)
BF38 BF6 �max(0, 47.2 � x2)
BF39 BF7 �max(0, x3 � 255)
BF40 BF7 �max(0, 255 � x3)
T
B



Table 8
Summary of tunnel settlement input variables and output.

Inputs and
outputs

Parameters and parameter descriptions

Input variables Cover H (m) Variable 1
(x1)

Advance rate AR (mm/min) Variable 2
(x2)

Earth pressure EP (kPa) Variable 3
(x3)

Mean SPT above crown level S1 (blows/
300 mm)

Variable 4
(x4)

Mean tunnel SPT S2 (blows/300 mm) Variable 5
(x5)

Mean moisture content MC (%) Variable 6
(x6)

Mean soil elastic modulus E (MPa) Variable 7
(x7)

Grout pressure GP (kPa) Variable 8
(x8)

Output Maximum surface settlement St (mm)
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proved the MARS’s training process. The tunnel settlement analysis
using MARS adopted 16 BFs of linear spline functions with second-
order interaction. A plot of MARS and BPNN predicted St values
versus the measured for the training and testing samples is shown
in Fig. 10. A comparison between BPNN and MARS in Row 7 of
Table 4 indicates that MARS model is slightly more accurate than
Fig. 10. Comparison of measured and predicted St.
BPNN. Row 5 of Table 6 suggests that MARS outperforms BPNN
in terms of processing speed.

The ANOVA parameter relative importance assessment indi-
cates that the two most important variables are MC (mean mois-
ture content) and EP (earth pressure). For brevity, the ANOVA
decomposition data has been omitted. Table 9 lists the BFs and
their corresponding equations. It is noted from Table 9 that of
the 16 BFs, 13 BFs with interaction terms are integrated in this
model (excluding BF1, BF5 and BF10), indicating that the model
is not simply additive and that interaction terms play a signifi-
cantly important role. The interpretable MARS model is given by

logðStÞ ¼ 1:4764� 4:0327 � BF1� 13:466 � BF2þ 3:8852

� BF3þ 0:7561 � BF4� 0:0619 � BF5� 0:3573

� BF6� 12:328 � BF7� 2:9412 � BF8þ 0:082

� BF9þ 0:4218 � BF10� 1:7684 � BF11� 3:8127

� BF12� 88:602 � BF13þ 0:4682 � BF14� 0:0036

� BF15þ 0:0256 � BF16 ð15Þ
5.6. Prediction of collapse potential for compacted soils

Collapse, which is the additional deformation of compacted
soils when wetted, is responsible for considerable damage to build-
ings, embankments and earth dams that rest on compacted fills.
The influence of various parameters on the amount of collapse
has been discussed by many investigators. Collapse potential is as-
sessed through different methods, including simple empirical
equations based on statistical regression, experimental procedures
Table 9
Basis functions and corresponding equations of MARS model for settlement
prediction.

Basis function Equation

BF1 max(0, log(EP) � 2.0492)
BF2 max(0, log(E) � 1.8921) ⁄max(0, log(GP) � 2.1761)
BF3 BF1 �max(0, MC � 16.8)
BF4 BF1 �max(0, 16.8 �MC)
BF5 max(0, MC � 35.7)
BF6 max(0, log(E) � 1.8921) �max(0, H � 23)
BF7 max(0, 2.0492 � log(EP)) �max(0, log(GP) � 2.5065)
BF8 max(0, 2.0492 � log(EP)) �max(0, 2.5065 � log(GP))
BF9 max(0, 35.7 �MC) �max(0, 2.0622 � log(E))
BF10 max(0, MC –17.5)
BF11 max(0, 1.8921 � log(E)) �max(0, log(GP) � 1.6628)
BF12 BF10 �max(0, log(EP) � 1.9469)
BF13 max(0, 1.8921 � log(E)) �max(0, 2.0362 � log(EP))
BF14 max(0, 22 � H) �max(0, log(GP) � 2.4771)
BF15 max(0, 22 � H) �max(0, 25.67 � S1)
BF16 max(0, 22 � H) �max(0, 3.25 � S1)

Table 10
Summary of collapse potential input variables and output.

Inputs and output Parameters and parameter descriptions

Input variables Sand content: sand (%) Variable 1 (x1)
Silt content: silt (%) Variable 2 (x2)
Clay content: clay (%) Variable 3 (x3)
Coefficient of uniformity: CU Variable 4 (x4)
Coefficient of curvature: CC Variable 5 (x5)
Liquid limit: LL Variable 6 (x6)
Plasticity index: PI Variable 7 (x7)
Initial water content: x (%) Variable 8 (x8)
Initial dry unit weight: cd (kN/m3) Variable 9 (x9)
Pressure at wetting: Pw (kPa) Variable 10 (x10)

Output Collapse potential (%)



Fig. 11. Performance of MARS model for CP: (a) training; (b) testing.
Fig. 12. Performance of MARS model for a: (a) training; (b) testing.
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such as single and double oedometer tests and neural networks.
After compiling a more comprehensive database consisting of
192 oedometer tests and 138 similar datasets available in the liter-
ature, Habibagahi and Taherian [14] employed neural networks to
predict the amount of collapse. Table 10 lists the ten inputs for
neural network model to predict the collapse potential.
Table 11
Basis functions and corresponding equations of MARS model for CP prediction.

Basis function Equation

BF1 max(0, 17.07 � cd)
BF2 max(0, CU � 50)
BF3 max(0, 50 � CU)
BF4 BF3 �max(0, PI � 11.2)
BF5 BF3 �max(0, 11.2 � PI)
BF6 max(0, Pw � 800)
BF7 max(0, 800 � Pw)
BF8 BF7 �max(0, 16.09 � cd)
BF9 BF3 �max(0, LL � 25)
BF10 BF3 �max(0, 25 � LL)
BF11 BF7 �max(0, x � 5.4)
BF12 max(0, 16.9 �x) �max(0, 12.7 � PI)
BF13 BF1 �max(0, PI � 5)
BF14 BF1 �max(0, 5 � PI)
BF15 max(0, 16.9 �x) �max(0, cd � 13.5)
BF16 BF7 �max(0, 12.7 � PI)
BF17 max(0, 16.9 �x) �max(0, Pw � 400)
BF18 max(0, 16.9 �x) �max(0, 400 � Pw)
BF19 max(0, x � 16.9) �max(0, 8.9 � Clay)
Using the same training and testing datasets, this problem is
reanalyzed by means of BPNN (three hidden neurons) and MARS.
The MARS model adopted 19 BFs of linear spline functions with
second-order interaction. A plot of the BPNN and MARS predicted
collapse potential values versus the actual values for the training
and testing patterns are shown in Fig. 11. Comparison between
BPNN and MARS in Row 8 of Table 4 indicates that the MARS model
is slightly more accurate. Row 6 of Table 6 suggests that MARS also
outperforms BPNN in processing time.

The ANOVA parameter relative importance assessment indi-
cates that the two most significant variables are Pw (pressure at
wetting) and CU (coefficient of uniformity). For brevity, the ANOVA
decomposition data has been omitted. Table 11 lists the BFs and
their corresponding equations. 16 of the total 19 BFs are interac-
Table 12
Basis functions and corresponding equations of MARS model for a prediction.

Basis function Equation

BF1 max(0, su �0.301)
BF2 max(0, 0.301 � su)
BF3 max(0, su �0.23)
BF4 max(0, 0.23 � su) ⁄ maxð0;r0vm � 0:314Þ
BF5 maxð0;0:23� suÞ �maxð0;0:314� r0vmÞ
BF6 BF2 �maxð0;0:194� r0vmÞ
BF7 maxð0;r0vm � 0:141Þ �maxð0;0:455� suÞ
BF8 BF2 �maxð0;0:242� r0vmÞ
BF9 maxð0;r0vm � 0:141Þ �maxð0;0:259� suÞ
BF10 maxð0;0:163� r0vmÞ



Table 13
Summary of parameters influencing diaphragm wall excavation performance.

Parameter Parameter description Range

CU=r0v Soil shear strength ratio 0.21, 0.25, 0.29, 0.34
E50/CU Soil stiffness 100, 200, 300
c (kN/m3) Soil unit weight 15, 17, 19
T (m) Soft clay thickness 25, 30, 35
B (m) Excavation width 20, 30, 40, 50, 60
h (m) Excavation depth 8, 11, 14, 17, 20
EI (�106 kNm2/m) Wall stiffness 0.36, 1.21, 2.88, 5.63
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tion terms with second-order (excluding BF1, BF2 and BF3), indi-
cating that the model is not simply additive and that interaction
terms play a significantly important role. The interpretable MARS
model is given by

CP ð%Þ ¼ �0:2524þ 0:7743 � BF1þ 0:2376 � BF2þ 0:2131

� BF3� 0:1755 � BF4� 0:057 � BF5� 0:0184

� BF6þ 0:01 � BF7þ 0:0032 � BF8þ 0:0206 � BF9

þ 0:0343 � BF10� 0:001 � BF11þ 0:0843 � BF12

þ 0:0645 � BF13� 0:4218 � BF14� 0:1665 � BF15

þ 0:0007 � BF16þ 0:0019 � BF17� 0:0026 � BF18

� 0:7086 � BF19 ð16Þ
5.7. Estimating the undrained side resistance for drilled shafts

The determination of the side resistance of drilled shafts is
essentially based on the total stress or alpha (a) method developed
by Tomlinson [15], in which the side resistance or adhesion is re-
lated to the undrained shear strength su by an empirical coefficient
denoted a, the adhesion factor. Subsequently, Randolph and Mur-
phy [16], Semple and Rigden [17], Kulhawy and Jackson [18], and
Chen and Kulhawy [19] demonstrated that a is influenced by the
mean effective overburden stress r0vm; su, the effective stress fric-
tion angle �/, etc. Goh et al. [20] analyzed the undrained side resis-
tance database from Chen and Kulhawy [19] using a hybrid
Bayesian neural network. Using the database of Goh et al. [20], this
problem has been reanalyzed using BPNN and MARS. The database
was compiled from 127 field load tests on drilled shafts in a variety
of cohesive soil profiles. The dataset was separated randomly into a
training set of 85 observations and a testing set of 42 observations.
The BPNN structure consisted of two input neurons representing
r0vm and su, five hidden neurons, and an output neuron represent-
ing a. The MARS model adopted 10 BFs of linear spline functions
with second-order interaction. A plot of the BPNN and MARS pre-
dicted a values versus the measured values for the training and
testing patterns are shown in Fig. 12. The comparison between
BPNN and MARS in Row 9 of Table 4 indicates that the performance
measures for the MARS and BPNN models are similar. Row 7 of Ta-
ble 6 suggests that MARS outperforms BPNN in computational
speed.

The ANOVA parameter relative importance assessment indi-
cates that su is more important than r0vm in determining a. For
cu=500 kPa

Eu=500cu

2E=2.0E7 kN/m

20 m
17 m
14 m
11 m

8 m
5 m

Stiff Clay

B/2

2 m

T

Final excavation 
depth  He

20 m

EA=3.8E6 kN

h

d

strut

Soft Clay

γ =20 kN/m3

Fig. 13. Cross-sectional soil and wall profile (figure from Xuan [17]).

Fig. 14. Performance of MARS model for diaphragm wall deflection: (a) training; (b)
testing.
brevity, the ANOVA decomposition has been omitted. Table 12 lists
the BFs and their corresponding equations. The interpretable MARS
model is given by

a ¼ �0:6512� 14:103 � BF1þ 16:684 � BF2þ 14:095 � BF3

� 1259:6 � BF4� 85:959 � BF5þ 77:076 � BF6

þ 1:7772 � BF7� 31:175 � BF8� 40:356 � BF9� 3:063

� BF10 ð17Þ
5.8. Prediction of diaphragm wall deflections in soft clays

For excavations in built-up urban areas with deep deposits of
soft clays, it is essential to control ground movements to minimize
damage to adjacent structures and facilities. Diaphragm walls are



Table 14
Basis functions and corresponding equations of MARS model for diaphragm wall
deflection prediction.

Basis function Equation

BF1 maxð0; lnðEI=cwh4
avgÞ � 7:313Þ

BF2 maxð0;7:313� lnðEI=cwh4
avgÞÞ

BF3 max(0, E50/CU � 200)
BF4 max(0, 200 � E50/CU)
BF5 max(0, c � 17)
BF6 max(0, 17 � c)
BF7 maxð0;CU=r0v � 0:25Þ
BF8 maxð0;0:25� CU=r0v Þ
BF9 max(0, h �17)
BF10 max(0, 17 � h)
BF11 max(0, T � 30)
BF12 max(0, 30 � T)
BF13 BF6 �maxð0; lnðEI=cwh4

avgÞ � 7:313Þ
BF14 BF6 �maxð0;7:313� lnðEI=cwh4

avgÞÞ
BF15 BF7 �maxð0; lnðEI=cwh4

avgÞ � 8:176Þ
BF16 BF7 �maxð0;8:176� lnðEI=cwh4

avgÞÞ
BF17 BF10 �maxð0; lnðEI=cwh4

avgÞ � 7:313Þ
BF18 BF10 �maxð0;7:313� lnðEI=cwhavg4ÞÞ
BF19 BF10 �max(0, T � 30)
BF20 BF10 �max(0, 30 � T)
BF21 max(0, B � 40)
BF22 max(0, 40 � B)

Fig. 15. Performance of BPNN model for estimating seis
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often used to minimize ground movements and damage to adja-
cent structures. The limiting wall deflection is typically taken to
be a percentage of the excavation height. Many empirical methods
(e.g., Mana and Clough [21]) have been proposed for estimating
wall movements.

Xuan [22] carried out extensive plane strain finite element anal-
yses to examine the excavation-induced wall deflections for a deep
deposit of soft clay supported by diaphragm walls and bracing. The
cross-sectional soil and wall profile are shown in Fig. 13. The major
parameters influencing excavation performance and the ranges of
these parameters are shown in Table 13. Because of symmetry,
only half of the cross-section was considered.

Finite element analyses were carried out for a total of 1120
cases to determine the maximum diaphragm wall deflection. Of
the 1120 cases, 840 observations were randomly chosen as the
training patterns and the remaining as the testing patterns for
the BPNN and MARS analyses. The BPNN structure consisted of se-
ven input neurons, three hidden neurons and the output neuron
representing the maximum wall deflection. The optimal MARS
model consisted of 22 BFs of linear spline functions with second-
order interaction. A plot of the MARS and BPNN predicted wall
deflection values versus the FEM calculated values for the training
and testing patterns are shown in Fig. 14. The results in in Row 10
of Table 4 indicates that the BPNN gives slightly better predictions
than MARS. However, Row 8 of Table 6 suggests that MARS outper-
forms BPNN in computational speed.
mic liquefaction potential: (a) training; (b) testing.



Fig. 16. Performance of MARS model for estimating seismic liquefaction potential: (a) training; (b) testing.
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The ANOVA parameter relative importance assessment indi-
cates that the two variables which contribute most to the dia-
phragm wall deflection are h (excavation depth) and B
(excavation width). For brevity, the ANOVA decomposition has
been omitted. Table 14 lists the BFs and their corresponding equa-
tions for the optimal MARS model. The interpretable MARS model
is given by

dh0 ¼ 165� 50:889 � BF1þ 66:598 � BF2� 0:1914 � BF3

þ 0:4956 � BF4� 10:324 � BF5þ 19:135 � BF6

� 326:34 � BF7þ 815:69 � BF8þ 4:9881 � BF9

� 6:1891 � BF10þ 7:4897 � BF11� 7:0073 � BF12

� 13:712 � BF13þ 24:131 � BF14þ 540:93 � BF15

� 331:28 � BF16þ 2:7716 � BF17� 4:5821 � BF18

� 1:1808 � BF19þ 0:8612 � BF20þ 0:5114 � BF21

� 1:5474 � BF22 ð18Þ
5.9. Evaluating seismic liquefaction potential

Simplified techniques based on an in situ testing measurement
index are commonly used to assess seismic liquefaction potential.
Most of these simplified charts or equations rely on the analysis of
liquefaction case histories. Statistical methods were commonly
adopted to assign probabilities of liquefaction through various sta-
tistical classification and regression analyses [23–26].

Based on the cone penetration test case records, Goh [27]
adopted a probabilistic neural network to evaluate seismic lique-
faction potential. The case records represent 104 sites that lique-
fied and 66 sites that did not liquefy. These case records are
reanalyzed using BPNN (six hidden neurons) and MARS based on
Logistic Regression (LR_MARS). The inputs consisted of six neurons
representing the earthquake magnitude M, the peak acceleration at
the ground surface amax, total vertical stress rv, the effective stress
r0v , measured cone tip resistance qc, and the mean grain size D50.
The datasets are divided into two parts: 114 are randomly selected
for training and the remaining for testing. The training and testing
results using BPNN are shown in Fig. 15.

LR_MARS model adopted 6 BFs of linear spline functions with
second-order interaction. The training and testing results are
shown in Fig. 16. A comparison between BPNN and MARS in Row
11 of Table 4 indicates that BPNN performs slightly better than
MARS. The BPNN model has an overall success rate SR of 97.1%.
The model accuracy in predicting liquefied cases is as high as
98.1%. The MARS model has an overall success rate of 90.6% and
an accuracy of 95.2% in predicting liquefied cases. However, Row



Table 15
Basis functions and corresponding equations of MARS model for seismic liquefaction
potential assessment.

Basis functions Expression

BF1 max(0, 13.85 � qc)
BF2 BF1 �max(0, 0.16 � amax)
BF3 max(0, M � 6.4)
BF4 max(0, 6.4 �M)
BF5 BF3 �max(0, 215.7 � rv)
BF6 BF1 �max(0, rv � 153)
f ðxÞ ¼ 1

1þe�ð�22:65þ3:44�BF1�72:35�BF2þ13:46�BF3�32:19�BF4�0:07�BF5�0:04�BF6Þ
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9 of Table 6 suggests that MARS outperforms BPNN in computa-
tional speed and provides an easy to interpret model, which is
shown in Table 15. The ANOVA parameter relative importance
comparison indicates that qc and M are the two most significant
parameters in assessing liquefaction potential. For brevity, the AN-
OVA decomposition data has been omitted.

6. Conclusions

This paper demonstrates the viability of MARS to model nonlin-
ear geotechnical engineering problems involving a multitude of
variables, as an alternative to BPNN. The examples presented have
demonstrated that in general the MARS and BPNN predictions are
similar in terms of accuracy and generalization, even in a rather
noisy environment. As mentioned previously, the BP algorithm
has been criticized for its computational inefficiency i.e. long pro-
cess to determine the optimal network configuration such as the
number of hidden neurons since this is not known a priori but
has to be determined through a trial-and-error approach. MARS
is computationally more efficient at finding the optimal model as
it essentially builds flexible models using linear regression and
approximates the model by segmenting separate slopes in distinct
intervals of the input variables. The variables to use and the knot
locations of the intervals for each variable are determined via a fast
but intensive search procedure. The forward selection and back-
ward deletion procedure also ensures that an optimal model can
be found. In addition, the resulting MARS model can be easily
interpreted. Since MARS explicitly defines the intervals (bound-
aries) for the input variables, the model enables engineers to have
an insight and understanding of where significant changes in the
data may happen. Additionally, MARS is able to assess the relative
importance of each variable through the ANOVA decomposition
process.
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