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a b s t r a c t

High-resolution display environments built on networked, multi-tile displays have emerged as an
enabling tool for collaborative, distributed visualization work. They provide ameans to present, compare,
and correlate data in a broad range of formats and coming from a multitude of different sources.
Visualization of these distributed data resources may be achieved from a variety of clustered processing
and display resources for local rendering andmay be streamed on demand and in real-time from remotely
rendered content. The latter is particularly important when multiple users want to concurrently share
content from their personal devices to further augment the sharedworkspace. This paper presents a high-
quality video streaming technique allowing remotely generated content to be acquired and streamed to
multi-tile display environments from a range of sources and over a heterogeneous wide area network.

The presented technique uses video compression to reduce the entropy and therefore required
bandwidth of the video stream. Compressed video delivery poses a series of challenges for display on tiled
video walls which are addressed in this paper. These include delivery to the display wall from a variety of
devices and localities with synchronized playback, seamless mobility as users move and resize the video
streams across the tiled display wall, and low latency video encoding, decoding, and display necessary
for interactive applications. The presented technique is able to deliver 1080p resolution, multimedia
rich content with bandwidth requirements below 10 Mbps and low enough latency for constant
interactivity. A case study is provided, comparing uncompressed and compressed streaming techniques,
with performance evaluations for bandwidth use, total latency, maximum frame rate, and visual quality.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Tiled display environments offer high resolution display
resources at a scale unparalleled by other display technologies.
These higher resolution display surfaces allow for larger datasets
to be visualized on larger workspaces and support new modes
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of collaboration among users. Several techniques currently exist
for filling the high pixel count with certain types of data, but
challenges still exist for displaying many types of content on tiled
display environments, such as awide range of desktop applications
and tools that researchers are already familiar with, and sharing
content from multiple sources which are external to the display
environment.

While projects like the OptiPortal research initiative [1] that
are developing cost-effective tiled display wall technology from
commodity components aim to increase access to tiled display
walls, wide spread adoption of tiled display environments will
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not occur until users can access and visualize their data in a way
that they are familiar with. Despite the benefits higher resolution
display walls provide, an interim solution is necessary until these
tiled display walls support all of the visualization functionality
researchers need.

Until now a popular solution has been to stream remote
content directly from rendering nodes in an uncompressed format
that requires high bandwidth interconnects. The high bandwidth
required for this streaming limits the types of devices that can
provide content, as well as the total resolution and update rate of
the content streamed.

To address the issue of high speed network dependence we
present a new framework for streaming remote content to tiled
display environments using low latency H.264 video compression.
The use of video compression on a video stream significantly
reduces the required bandwidth and network resources which
provides several improvements over uncompressed streaming.
Real-time video streaming capabilities become accessible to a
new class of bandwidth constrained devices such as wireless
laptops. Also, the number of concurrent video streams that can be
sent over existing high speed network infrastructure is increased,
allowing collaboration with multiple concurrent content streams
on a network with a 1 Gbps bandwidth or significantly less.

This paper describes the implementation of a complete end-
to-end system for streaming desktop content to tiled display
walls as outlined in Fig. 1. It also addresses the challenges of
streaming compressed video to a tiled display wall including
acquisition of a range of source content, extremely low-latency
video encoding, efficient network transport over heterogeneous
wide area networks, video decompression, and visualization on
a tiled display system. Also addressed is the issue of mobility,
allowing the users to dynamically reposition and resize each video
stream anywhere on the tiled display wall without interruption.

The presented framework provides support for the acquisition
and display of a variety of desktop and video content, allowing
users the freedom to visualize and collaborate on tiled display
walls with conventional desktop applications, HD video cameras,
video game consoles, and almost any device which outputs to an
HDMI or DVI interface.

In the following sections we describe the components of the
system thatmake this possible and present a performance analysis
between streaming of uncompressed RGB pixel streams, single
frame compressed streams, and H.264 compressed streams. We
are able to demonstrate that using the system outlined in this
paper, H.264 compressed video streams provide a higher frame
throughput, lower end-to-end latency, and require significantly
less bandwidth than uncompressed RGB streams while providing
a higher quality and lower bandwidth usage than competing real-
time single frame compression approaches.

2. Related work

This paper bridges contributions from two disjoint areas of
research: displaying content on tiled display walls, and streaming
desktop content for collaboration.

2.1. Scalable tiled display wall applications

Several existingmiddleware systemsprovide access to different
content in tiled display environments. Chromium [2] and DMX [3]
are the most non-invasive middleware in terms of allowing
generic applications to be run. They both operate by intercepting
graphical API calls of an application running on a dedicated head
node and rerouting them to a distributed display application.
These approaches restrict scalability because content has to be
distributed from one computer running the application to the

Fig. 1. An example of 4 live video streams on a 32 screen tiled display wall.
Researchers and a remote collaborator compare a collection of images from
previous San Diego County fires with video streams of a real-time wind flow
visualization, current fire locationsmap on a tablet, and live panoramic images from
various San Diego County locations on a laptop.

display wall, limiting the amount of content to that which can be
processed by the head node. Furthermore, Chromium only works
with OpenGL applications, and can only run one application at a
time, and DMX onlyworkswith X11 environments and has limited
support for hardware accelerated graphics such as OpenGL. While
both of these approaches allow easy access to certain subsets of
existing applications, both are limited in scalability and neither are
a solution for collaborative visualization as neither approach can
bring together content from multiple source computers.

SAGE is a pixel streaming middleware which takes raw RGB
input from a source application and streams it to a tiled display
wall [4]. It can display simultaneous content frommultiple sources
and those sources can be subdivided across a rendering cluster in
order to parallelize applications which are data, CPU, or graphics
intensive. In this way, SAGE improves upon scalability by allow-
ing rendering to be parallelized and enables collaborative input by
displaying streams from multiple sources. Because SAGE streams
raw RGB pixel data, bandwidth usage can be very high. Applica-
tions streaming high resolution content to multiple displays re-
quire 10 Gbps interconnects and networking hardware with even
higher bisection bandwidth as the aggregate bandwidth to all of
the displays can well exceed 10 Gbps. Furthermore, applications
must be recompiled to take use of the SAGE Application Interface
Library (SAIL).

Careful segmentation of the SAGE stream is required in order
to conserve the bandwidth of data sent to each display node
and computational effort is required to segment the video stream
each frame. SAGE facilitates the segmentation of the rendered
streamgeometry tomatch the output geometry on the tiled display
wall. This requires communication between the rendered source
and the display nodes whenever users want to move or resize
content on the display wall, resulting in mobility latency. In this
paper’s approach, the video bandwidth is much lower and can
be distributed to all nodes, so there is no delay when moving or
resizing content.

For collaboration betweenmultiple SAGE displaywalls, Renam-
bot et al. [5] implement a network utility, called SageBridge, which
dynamically re-segments the rendered streamswhen streaming to
multiple display walls. Jeong et al. [6] improve on the collaborative
display of SAGE streams by introducingmacro-block segmentation
as a replacement for per-pixel image segmentation acrossmultiple
displays. This simplifies the task of segmenting and distributing a
large stream, reducing the load on the SageBridge machines when
collaborating between a large number of display walls. CGLX [7] is
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another scalable tiled display wall middleware which uses a dis-
tributed rendering approach to improve scalability. It uses the dis-
play nodes as the rendering nodes, and all rendering is done on
computers connected directly to the display devices. This allows
very scalable applications as each display node only loads and pro-
cesses the data it needs for its display. However, like SAGE, appli-
cations must be rebuilt to use the CGLX middleware. Based on this
approach, applications for high resolution image exploration [8,9]
and HD video playback from files [10] have been designed, which
use significantly less network bandwidth for display than previ-
ous approaches. We build upon this approach and leverage the
distributed computational power of the display nodes to receive,
decode, and display compressed video streams using lower band-
width than uncompressed approaches. Like Chromium and DXM,
CGLX is only able to run one application at a time. However, by
integrating support for collaborative video streaming directly into
CGLX, support for collaborative video stream content is provided
to all CGLX applications.

2.2. Streaming desktop content

While applications must be specifically adapted to use the
SAGEApplication Interface Library, requiring them tomanage their
own display pixels in order to provide them to the library, SAGE
does provide a specially designed VNC client which connects with
SAIL, allowing SAGE to pull content from any VNC server running
applications of interest. Stodle et al. [11] also demonstrate using
VNC to distribute a laptop’s display to multiple users over a local
network for collaboration.

While VNC works well for remotely accessing traditional
desktop applications, where only small parts of the application
windows change at a time,moremultimedia intensive applications
can consume large amounts of bandwidth and computational
resources, resulting in latency and incomplete screen updates.
Nieh et al. [12] performa thoroughperformance analysis on several
thin client solutions and demonstrate that even given sufficient
bandwidth, those thin clients are unable to provide high quality
video display due to inherent update latencies.

Several solutions attempt to reduce the latency and improve the
update throughput of thin clients. Tan-Atichat and Pasquale [13]
address VNC’s low framerate performance in high-latency net-
works by increasing the pull request rate from the client to improve
the framerate that the server delivers. While this does increase
the framerate, it also increases the network bandwidth used and
cannot improve the framerate in bandwidth restricted networks.
The fact that they stream uncompressed pixels limits the max-
imum resolution and framerate, and requires connections faster
than 1 Gbps for desktop-resolution streaming, as demonstrated by
Holub et al. [14].

Barrato et al. [15] intercept X11 display calls and transmit draw-
ing commands instead of the rendered RGB pixels themselves.
They also add an application to assist in video playback by sending
video data instead of the decompressed frames. For other types of
multimedia aswell as rendered content such as scientific visualiza-
tion applications, their approach will not provide an improvement
in bandwidth usage or latency.

2.3. Compressed streaming

To address the bandwidth usage of streaming RGB pixels, many
solutions adapted a real-time image compression format called
DXT compression. DXT was originally designed for compressing
textures used in video games andother graphics applications. It has
become a popular choice for real-time image compression because
of the universal support for DXT decompression by graphics
hardware as well as highly optimized libraries available that can

do real-time DXT encoding of HD-resolution images at high frame
rates. UltraGrid [16] uses DXT compression to deliver 1080i 60 Hz
video at 250 Mbps instead of the 1.5 Gbps uncompressed video
would require. Support for DXT has also been added to SAGE [17,6].
However, DXT compression only offers a fixed compression ratio of
six-to-one whereas tiled display walls are often tens to hundreds
of times the resolution of a normal desktop. DXT compression
also produces significant visual artifacts, in part because the color
space is restricted to 16-bit colors. Section 8 demonstrates the poor
image reproduction quality of this compression approach.

De Winter et al. [18] demonstrate using H.264 video encoding
to deliver desktop multimedia content to thin clients with both a
better compression ratio and higher quality. These efforts focus on
several H.264 encoding options and how those affect bandwidth
usage and latency. They measure a variety of content including of-
fice applications, 3D video games, web browsing, and video play-
back, and demonstrate a significant bandwidth savings compared
to other thin client solutions such as VNC, X11 forwarding, and
FreeNX. Kimball et al. [19] also utilize H.264 video compression
for a multimedia centric remote control and streaming applica-
tion. Their research focuses on reducing bandwidth and latency to
allow training simulations to be run and streamed remotely from
across the country. While the compression latency they achieve is
low enough for real-time interaction, neither of these address the
requirements to transmit and display the encoded video on tiled
display walls.

This paper’s proposed approach is able to stream high
resolution desktop content and video to tiled display walls using
much less bandwidth than previous approaches. This allows for
a higher frame throughput of video data with lower latencies,
for tens to hundreds of video streams to fit through a single
gigabit connection, and for devices onwireless networks to stream
desktop and video data to tiled display environments. We address
the issue of mobility and synchronization as the video streams are
moved across tile display boundaries and our solution is able to
deliver high-resolution video (1080p 30 Hz) using under 10 Mbps
bandwidth.

3. System overview

The streaming framework consists of two major components:
the video streaming application which acquires, compresses, and
sends the video stream, and the display framework which runs as
part of the cglX middleware on a tiled display wall. The streaming
application runs on a desktop computer. It has options to select
the input source, such as local screen capture, or a list of hardware
capture devices, such as a camera or a capture card. After selecting
the source device a target bitrate is entered for the video encoder,
which can be adjusted to optimize for the network bandwidth
available or the type of content being captured. Finally, a network
address is entered to match the configuration of the receiving
display wall.

The visualization framework for receiving and displaying video
streams is integrated with the cglX tiled display visualization
middleware. By default, each running application will accept
and display incoming video streams on the configured multicast
address and port. Multiple streams from multiple sources can
connect using the same address and port and can join and leave
at any time. As each video stream is received, it is displayed on the
screen in tandem with the running application content. The user
is then free to resize and reposition it anywhere on the display
wall. Applications that wantmore control over the display of video
streams can explicitly disable and enable them using an API call.
Furthermore, applications can request direct access to the video
texture to draw it in a customway. In this case, the video texture is
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still automatically updated and globally synchronized each frame
by cglX.

The presented system enables video streaming to tiled display
environments from a wide range of devices, including many
environments which do not have sufficient bandwidth to support
uncompressed streaming. While video compression is at the heart
of the bandwidth reduction, several other important components
are integral to this flexible video acquisition, streaming, and
display system, as shown in Fig. 2.

The Source Management component acquires video stream
source frames fromanumber of sources including desktop capture,
hardware devices, and video files. A modular driver API allows
users to implement drivers for custom sources such as propriety
hardware devices.

The Encoding Engine tunes the video compression for real-time,
low latency entropy reduction on commodity desktop processors.
Video encoding is computationally expensive, and software based
video encoders for HD-resolution content are typically used in
an offline mode due to the time it takes to encode high-quality
video. While hardware based video encoders are used in a myriad
of consumer devices for real-time video streaming, they lack
the flexibility to read from a large variety of sources that this
framework provides. Careful experimentation and tuning have
lead to a set of encoding parameters that reduce encoding latency
and facilitate real-time compression.

The Network Transport provides a system for efficient network
transmission of the compressed video packets to all of the display
nodes aswell as a tool for application level routing across heteroge-
neous, wide area networks. A custom, light-weight protocol, sim-
ilar to RTP (Real Time Protocol) was designed to be able to stream
from one-to-many using UDP multicast to efficiently deliver to all
of the tiled display wall nodes. An application called VideoRouter
was written to also facilitate streaming across heterogeneous net-
work boundaries when direct multicast transport to the display
wall is not suitable.

Finally Decoding Engine provides a mechanism for efficient
video decoding, color conversion, and synchronized display on
tiled display environments. A custom shader application converts
the decoded video back to RGB color on the GPU to further reduce
latency. Decoding of multiple video streams is parallelized, and
the current display timestamp for each video is broadcast by the
middleware’s synchronization node when it changes. Users can
freely move and resize each of the video streams anywhere on the
display wall without delay in tandem with other display content
from any application running on the cglX middleware.

4. Source management

The sourcemanagement component is the interface to all of the
hardware and software acquisition devices which provide the live
source frames for each video stream. It communicates with each
acquisition source by way of a custom interface driver. Each driver
advertises the availability of video frames at a specific resolution,
color format, and sampling rate. The driver obtains source image
frames as they become available and uses a callback based signal-
ingmechanism to notify the encoding enginewhen each newvideo
frame is available. The use of drivers serves as an abstraction layer
by providing a uniform interface to the subsequent components in
the streaming architecture. It also allows modular video sources
to be added or removed as appropriate from a number of differ-
ently equipped physicalmachine configurations based on available
hardware and operating system architecture.

A variety of input device drivers were implemented to demon-
strate the utility and flexibility of the streaming framework, includ-
ing capture from hardware devices and a software-based desktop
capture driver. For hardware device support, a driver wrapping the

Fig. 2. The streaming system architecture.

Microsoft DirectShow Capture API was used. This covers a wide
range of cameras and video capture hardware. Video capture cards
can be used to capture the video output of another computer. In ad-
dition to capture from hardware devices, a software capture driver
was developed for instances where video capture hardware is not
available. This driver uses native screen capture API calls to col-
lect the entire desktop or a subregion, such as one specific display
when multiple monitors are attached. Fullscreen desktop images
can be acquired at a rate above 20 frames per second on a moder-
ately equipped workstation despite the system overhead involved
in the acquisition of the desktop bitmap. For hardware devices, in-
put video frames are delivered as fast as 60 Hz.

5. Encoding engine

The encoding engine performs the entropy reduction process
for the input image sequence data and provides compressed frame
data to the network transport engine. Image frames are received
from the source management component in their native color for-
mat and are converted into encoder-standard YUV420 colorspace.
Then video encoding is performed using the FFMPEG and libx264
video codec library with support for the H.264 video codec.

Low latency real-time compression is achieved by selecting
encoding options which eliminate multi-frame dependence,
eliminating any multi-frame buffering in the encoder. The first
option is to disable bi-directional frames,which require a following
frame before they can be resolved. Second, lookahead rate control
is disabled. By default, lookahead rate control provides accurate
bitrate allocation decision making to the x264 encoder, but
induces a latency equal to the number of frames in the lookahead
group as input frames must be buffered. Disabling the lookahead
rate control and instead using a conventional hysteresis based
scanning technique can be achieved without any frame buffering.
Finally, using multiple threads for parallel encoding improves
encoding throughput but adds an extra frame of latency for
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each additional encoding thread. Instead, a slice based threading
model is used, which partitions each frame into multiple image
slices and performs parallel encoding on each slice. While this
achieves less effective entropy coding because optimizations
cannot be performed across slice boundaries, it reduces single
frame encoding time without requiring extra frame buffering.

A further optimization to reduce the maximum per-frame
encoding time is to enable intra-frame refresh. Normally a group of
pictures contains an intra-frame and multiple inter-frames. Each
intra-frame contains a single image which is compressed spatially
but not temporally. These frames serve to refresh the reference for
the inter-frames that follow. Whenever there is a change in scene
or high motion this refresh makes the subsequent inter-frames
more efficient. However, intra-frame size is generally significantly
larger than inter-frames and their encoding takes longer too.
Because of this, there are spikes in both encoding time and
bandwidth usage. In order to smooth out these spikes, intra-frame
refresh periodically refreshes columns of macro-blocks instead of
whole frames. This spreads the intra-frame over multiple frames
and results in amore uniform time and bandwidth distribution and
reduces the maximum encoding cost.

Once the frame dependent latencies have been eliminated,
the single frame encoding cost is dependent on several encoding
parameters which affect the quality and compression efficiency at
the cost of extra computation. We refer the reader to De Winter
et al. [18] for a discussion of the effects these parameters have. In
general, the right parameter values will depend on the processing
power and network bandwidth available andmay need to be tuned
to provide the appropriate speed and quality trade-off.

6. Network transport

It is important to consider how compressed video is distributed
to the display nodes, both from a local network and from a
remote location, as to how it effects latency and bandwidth usage.
Streaming approaches that send only the visible portions to each
display node can avoid data duplication. However, segmenting a
video into subregions is not feasible when using a compressed
video stream. Instead, a full copy of the compressed video is
delivered to each node. This has the advantage that each node
receives the same data, which can be done efficiently by using UDP
multicast to transmit the video stream from the source to all of the
display nodes. Instead of the source having to send data packets to
each node individually, multicast allows the networking hardware
to duplicate each packet of video data to all nodes.

The use of UDP multicast removes the necessity for any of the
receiving nodes to communicate directly with the video stream
source as the video is moved between different display nodes.
Nodes that do not need to display the video can still receive the
video stream without putting additional strain on the network, al-
lowing nodes to buffer frames for when the video is moved from
one display to another. In this way, the streaming is display lo-
cation agnostic, a strong advantage over previous methods which
incur computational overhead and update latency when reposi-
tioning the video stream.

For streaming from wide area networks, using UDP multicast
may not be possible due to network policies or high packet loss
rate. In these situations, other network protocols can be used
to send video packets to a bridging node on the display cluster
network. A simple bridging application called VideoRouter was
written to accept either TCP or UDP video streams and retransmit
them to the display nodes via multicast. A custom streaming
protocol similar to RTP (Real Time Protocol) was created to assist in
network transport, wide area network routing using VideoRouter,
and in display synchronization. Each compressed video stream is
packetized and encapsulated with a delivery header. The delivery

header contains the packet count, frame number, presentation
timestamp, dimensions of the video stream, and a unique 32-bit
identifier. The packet count and frame number allow the packets
to be ordered correctly by the receiving nodes. The presentation
timestamp is used to synchronize the update of each sequential
video frame across all of the display nodes. The unique identifier
is used for stream specific routing by VideoRouter and also to
differentiate multiple video streams simultaneously received on
the same address by the display nodes. Furthermore, it can be used
by cglX applications to indicate contextual information about each
video stream.

It is important to understand the limits of this network strategy
as the number of video streams and display tiles grows large and
the bandwidth approaches the limits of the network. Using 10
Mbps video streams and a 10 Gbps network, 1000 video streams
can be distributed simultaneously via multicast to all display
nodes. In this situation, the input and output bitrates match.
However if multiple incoming ports supporting 10 Gbps are used,
the bottleneck will be the multicast output. Using the subscription
features of multicast to only subscribe to the subset of video
streams each display node currently needs can reduce the output
bottleneck. However, the total multicast bisection bandwidth on
a switch may not be larger than the output of a single port. In
this case, switching to a strictly UDP distribution method may
increase the total number of video streams that can be delivered
to the display nodes. Adapting the VideoRouter utility to use UDP
distribution could facilitate this change without any modification
to the streaming client, however switching to a UDP distribution
method would introduce latency when video is moved to new
tiles. In practice, this method handles 10 s of simultaneous video
streams on display walls with many 10 s of displays. Further
research into network distribution methods may be required for
display walls with 1000 s of display screens and 1000 s of video
streams.

7. Decoding engine

Receiving and presenting the video streams on each of the
display nodes involves several steps, including receiving the
video packets and reassembling them into video frame data,
decoding each video frame, uploading the decoded frames to the
GPU, converting from YUV420 to RGB color format, and finally
displaying the video frame on the tiled display with synchronized
updating. A streamlined processwithminimal latency is described.

A receiving and decoding systemwaits for new video frames to
be received on the network, then passes received video frames to a
set of decoding threads, one per video stream. All that is needed
to start decoding a video stream is the width and height of the
video which is included in the header of each intra-frame sent,
allowing decoding to start at any time on an already streaming
video. Decoding is performed by the FFMPEG library. Each frame
gets decoded into a buffer in YUV420 color format. The decoded
image buffer, the frame number, presentation time stamp, and
channel ID are passed to an upload queue for uploading and display
via the GPU.

After being decoded, each frame has to be converted from
YUV420 into RGB before it can be displayed. This can be a CPU
intensive operation that adds a lot of latency. Instead of being
converted to RGB on the CPU and then uploaded to the GPU, the
color conversion happens on the GPU. Since the YUV420 color
format is half the size of RGB, the upload to theGPU is quicker. Also,
the conversion on the GPU is able to utilize themassive parallelism
of processing units and memory bandwidth on the GPU, reducing
the conversion time.

The YUV420 color format frame buffer is uploaded to a set
of special textures in YUV color format consisting of one full
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(a) Frame before color change. (b) Frame after color change on source computer.

(c) Frame after color change propagates to tiled display.

Fig. 3. In the testing setup a 60 frame per second video camera is used to record the changes in the source computer (1) andmeasure the time until the changes propagate to
the head node (2) and tiled display wall (3). Image (a) shows the source computer and tiled displays with a white indicator window. Image (b) shows the indicator window
on the source computer changing to red. Image (c), captured 12 frames later, shows the head node and tiled display now display the red window. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

resolution single channel texture for the luminance and two
half resolution single channel textures for the two chrominance
channels. Then that texture is rendered into an RGB24 texture
using a custom shader program to do the color conversion.

Once the RGB texture has been generated, a signal is raised
to notify the application that a new frame is ready. Progression
from one frame to the next is synchronized by the head node.
A timestap attached to each frame indicates when it should be
displayed. When that time is reached, the head node sets a flag
and all display nodes switch to the next video frame texture during
their next draw cycle.

The actual drawing of the frame’s texture can be handled either
by the CGLX library, and be drawn as a rectangular window drawn
on top of the application, or the application itself can draw the
texture. Because it is an RGB texture, the video stream texture
is straightforward to integrate with application specific scene
geometry. Each video stream is tagged with a unique identifier so
custom applications can indicate individual video context.

8. Performance analysis

To qualify our system using H.264 compressed video, we
compare its performance to uncompressed RGB streaming with
no video compression and single-frame DXT compression. We
measure the total latency of the system from generation of a
frame on the source computer to display on the tiled display wall.
We also report the bandwidth usage for each method, as well as
the maximum sustained frame rate of the streams over wireless,
gigabit, and 10 gigabit networks.

8.1. Test setup

Using a 60 frame per second camera, we are able tomeasure the
end to end latency to within approximately 17ms.We use a highly
visible single frame event, changing the color of a window on the
desktop, and measure how long it takes to propagate through the
system. To simulate the type of multimedia desktop interactions
we are targeting, a mix of 720P HD video and desktop application

windows fill the desktop. Fig. 3 shows two frames from a recorded
video showing the transition of the color window from green to
blue. The tests are performed on a laptop with a 2.4 GHz Intel Core
2 Duo processor using 802.11 N wireless and on a desktop with an
Intel Core i7 Extreme 3.33 GHz processor using 1 and 10 gigabit
switched ethernet. The test usage scenarios on the laptop include
software desktop capture at a resolution of 1440 × 900 and an
embedded camera at a resolution of 720 × 480. On the desktop
computer, software desktop capture as well as hardware capture
using anEMS ImagingXtremeRGB-Ex2 capture card [20] are tested.
The card is used to capture the DVI output directly from the video
card at a resolution of 1920 × 1200. The desktop software capture
is able to provide quicker access to the desktop image, but at lower
frame rate, while the hardware capture device can provide a higher
frame rate at the cost of added latency. Each of these scenarios is
tested using real-timeH.264 encoding, real-time DXT compression
using FastDXT [21], and uncompressed RGB.

For the tests on the laptop, the video streams are sent via TCP to
the VideoRouter application which is running on the tiled display
wall’s head node. From there it is retransmitted in UDP multicast
to all of the wall nodes. On a low-latency network, the use of TCP
does not add significant latency or jitter to the video delivery, but
was found necessary due to the higher packet-loss ratewhen using
wireless. The tests on the desktop computer are performed using
direct UDP multicast to the tiled display wall.

8.2. Results versus uncompressed streaming

The measured values compare the bandwidth usage (Fig. 4),
end-to-end latency (Fig. 5), and transmitted frames per second
(Fig. 6), and demonstrate that H.264 encoded video out-performs
uncompressed RGB in each category. H.264 compressed video is
able to deliver both a higher frame rate and a lower end-to-
end latency than uncompressed RGB even when a high network
bandwidth is available, demonstrating that sending uncompressed
video takes a significant amount of processing resources that slow
down the pipeline. In addition to the improved video delivery,
the bandwidth needed to transmit the H.264 video is around two
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Fig. 4. Bandwidth comparison between streaming methods.

Fig. 5. Latency comparison between streaming methods, as measured by a 60
frame per second video camera.

Fig. 6. Sustained frame rate comparison between streaming methods.

Fig. 7. Peak signal to noise ratio comparison between H.264 (top plot) and DXT
encoding (bottom plot).

orders of magnitude less than the uncompressed video. Since the
network bandwidth is not a limiting factor, theH.264 tests perform
about equally well in both 1 and 10 Gbps networks. Furthermore
the performance of H.264 on a laptop using a wireless network
is better than the performance of uncompressed RGB both on a
laptop and on a desktop using a 1 Gbps network. These results
indicate that H.264 compression is a beneficial replacement for
uncompressed RGB streaming.

8.3. Results versus DXT compressed streaming

TheDXT compressed video performs better than uncompressed
RGB but still under-performs H.264 in several aspects. In all tests,
DXT uses at least an order of magnitude more bandwidth. This
causes a drop in performance overwireless bandwidth, resulting in
both lower frame throughput and higher latency. However, when
the bandwidth is sufficient, DXT is able to provide a higher frame
throughput, and due to its lower computational cost compared to
H.264, the latency is lower in both 1 and 10 Gbps tests.

However, the image quality of DXT is inferior to H.264. Fig. 7
shows the peak signal to noise ratio (PSNR) of the compressed
images compared to the original versions. The analysis was done
using the same test scenario.While PSNR is not as good of a quality
assessment as subjectivemetrics, it is as effective as other objective
qualifiers [22]. It is also easy to measure and can serve as a good
classifier for quality.

As demonstrated in [23], images with a PSNR above 35 dB can
be classified with a low difference mean opinion score (DMOS),
or small visually detectable difference compared to the original
source, whereas PSNR values below 30 dB are classified with
moderate to high levels in visible change and subjectively poor
quality. It is demonstrated that H.264 offers a measured PSNR
whichwould be classified as high qualitywhile themeasured PSNR
for DXT compression would be rated as much lower in quality.
Furthermore, with a peak signal to noise ratio often above 40 dB,
H.264 can provide image quality rated as very little to no visual
difference from uncompressed RGB color.

8.4. Real use example

To demonstrate the usability of our system beyond perfor-
mance analysis, a real usage scenario was demonstrated as shown
in Fig. 1. Four live sources are shown: a laptop sending its full desk-
top and its camera and a desktop sending a video playing from file
and its desktop with video playing in a webpage. These are all dis-
played on a tiled display wall with full freedom tomove and resize
each of the streams.
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9. Conclusion

This paper presents an end-to-end system design for streaming
of H.264 compressed video to tiled display environments, target-
ing a wide range of input sources, including software only desk-
top capture and hardware video capture. The performance of this
system is evaluated on commodity desktops with 10 and 1 Gbps
network interfaces as well as laptops over a wireless network and
compared to other exiting approaching for streaming content to
display walls. The results show a higher number of frames de-
livered per second and lower end-to-end latency compared to
uncompressed RGB streaming while requiring two orders of mag-
nitude less bandwidth. Compared to solutions using single image
DXT compressed video streams, this approach provides an order of
magnitude better compression ratio and maintains a much higher
image quality with 10 dB higher PSNR. These results demonstrate
an end-to-end system capable of using video compression such as
H.264 for low latency, high-quality video streaming to tiled display
walls. We leverage the bandwidth savings of video compression
to bring orders of magnitude more content from a wider range of
source devices than previousmethods and to display these streams
on tiled displaywallswith no-latencymobility for user interaction.
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