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Abstract

Probabilistic approaches are common in the analysis of reliability of complex engineering systems. However, they require quan-
titative historical failure data for determining reliability characteristics. In many real-world areas, such as e.g., nuclear engineering,
quantitative historical failure data are unavailable or become inadequate and only qualitative data such as expert opinions, which
are described in linguistic terms, can be collected and then used to assess system reliability. Moreover, experts are more comfort-
able justifying event failure likelihood using linguistic terms, which capture uncertainties rather than by expressing judgments in
a quantitative manner. New techniques are therefore needed that will help construct models of reliability of complex engineering
system without being confined to quantitative historical failure data. The objective of this study is to develop a fuzzy reliability
algorithm to effectively generate basic event failure probabilities without reliance on quantitative historical failure data through
qualitative data processing. The originality of this study comes with an introduction of linguistic values articulated in terms of
component failure possibilities in order to qualitatively assess basic event failure possibilities treated as inputs of the proposed
model and generate basic event failure probabilities as its outputs. To demonstrate the feasibility and effectiveness of the proposed
algorithm, actual basic event failure probabilities collected from nuclear power plant operating experiences are compared with the
failure probabilities generated by the algorithm. The results demonstrate that the proposed fuzzy reliability algorithm arises as
a suitable alternative for the probabilistic reliability approach when quantitative historical failure data are unavailable.
© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Safety is a major issue in complex and safety critical engineering systems such as nuclear engineering systems. The
problems of safety assessment have been studied by many researchers using various methods. In reliability theory, it is
commonly assumed that components of a complex engineering system are described by precise probability distribu-
tions describing their reliability characteristics. However, this might not be the case in some real-world applications.
If a system whose reliability has to be assessed is new, there will not be sufficient statistical data to estimate relia-
bilities of its component. Data used to determine these reliabilities may also arise from various sources. Therefore,
the assumption of precise failure probability distributions of system component might be arguable. These difficulties
emphasize the need for new techniques, which could effectively determine basic event failure probabilities without
the need to resort to quantitative historical failure data.

Fuzzy set theory was first introduced as a useful tool to complement conventional reliability theories in [36]. Since
then, there have been a number of approaches where the technology of fuzzy sets was used to evaluate system reli-
ability. For example, in Bing et al. [3], a fuzzy linear regression method is combined with a finite element method
to evaluate the reliability of mechanical structures. In this approach, a membership function of a triangular fuzzy
number is used to express the structure stress. In order to overcome the limitation of the traditional failure mode, ef-
fects and criticality analysis (FMECA), a fuzzy rule-based approach has been implemented in [5,13,52]. Furthermore,
Zio et al. [56] developed a fuzzy expert system for human reliability analysis to elicitate factors influencing condi-
tional human error for two dependence successive operator actions in a nuclear power plant accident. In Karimi and
Hüllermeier [24], fuzzy set theory has been used to complement probability theory to assess the risk of natural dis-
aster when statistical data and/or physical knowledge are insufficient for probabilistic analysis. Meanwhile, Ding and
Lisnianski [11] developed a fuzzy universal generating function in which fuzzy numbers used to represent the state
probability and fuzzy composition operators were introduced to assess the reliability of a multi-state system. More-
over, Pandey and Tyagi [38] proposed a profust reliability to evaluate degradable systems and a fuzzy numbers-based
method to assess system failure rate parameters.

We can also encounter some natural language-based system assessment methods which are used when quantita-
tive data is unavailable or inadequate to invoke probabilistic reliability models [6–8,18,20,29]. In addition, real-world
case studies indicate that experts are more comfortable justifying event failure likelihoods using natural languages/lin-
guistic terms such as ‘low failure possibility’, ‘medium failure possibility’, and ‘high failure possibility’ to represent
component failure likelihood rather than quantitative judgment [12,33]. For example, it is common for experts to
say that ‘there is a low possibility that the component A fails’ rather than the probability of failure of the compo-
nent A is ‘1.5E−3’. These terms can be quantified with the use of membership functions of the corresponding fuzzy
sets [7,53].

Fuzzy sets have also been incorporated in the fault tree analysis for assessing the safety of nuclear power plants.
Fuzzy probabilities have been used to represent basic event failures for assessing the occurrence probability of a
typical emergency core cooling system [34]. A fuzzy uncertainty importance measure has been proposed to quantify
the source of uncertainty in the fault tree analysis completed for the reactor protective system (WASH-1400) [45].
The importance measure has been used to identify critical components in the fault tree analysis for the auxiliary
feedwater system of Angra-I Westinghouse nuclear power plant [15] and for the containment cooling system of a
typical four-loop pressurized water reactor [17]. However, those existing applications cannot assess basic event failure
probabilities without historical failure data.

The motivation of this study is how to obtain basic event failure probabilities when basic events do not have
probability distributions of their lifetime to failures. Therefore, we develop a fuzzy reliability algorithm to assess
basic event failure probabilities through qualitative linguistic value processing without the need to engage basic event
failure probability distribution. There are several aspects of originality of this study: (1) a use of qualitative linguistic
values in terms of failure likelihoods to assess basic event failure possibilities and (2) an integration of the proposed
fuzzy reliability algorithm into the quantification of the top event failure probability of the fault tree analysis. The
proposed algorithm of fuzzy reliability exhibits two advantages: (1) an ability to assess basic event failure probabilities
of new engineering systems using expert opinions articulated in linguistic terms; (2) an ability to capture factors of
subjectivity and imprecision of expert linguistic assessments of the description of the basic event failure probabilities.
To demonstrate the feasibility of the proposed algorithm, nuclear event failure probabilities generated by the algorithm
are compared with the reliability data taken from the actual nuclear power plant operating experiences.
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The paper is organized as follows. Section 2 briefly outlines some research carried out in the area of system
reliability involving fuzzy sets. Problem statement along with a general flow of processing is given in Section 3.
Section 4 presents the proposed fuzzy reliability algorithm in detail. A validation of the algorithm is described in
Section 5. Section 6 is focused on the verification of the algorithm. Finally, conclusions and further research directions
are offered in Section 7.

2. Preliminary studies

Generally, system reliability is assessed in a probabilistic manner by using quantitative historical failure data.
However, if the event is absent (not recorded) or, we are provided with inadequate (too few data to draw sound
statistical inference), improper (poor record keeping), and inaccurate data, in the modeling of system reliability, we
resort ourselves to expert opinions [6,7,12,20]. Expert opinions have also been successfully implemented in risk
analysis [26,32]. These opinions are commonly expressed linguistically and the words used in the description form
a term set of linguistic values.

Linguistic values are introduced in the fuzzy reliability approach to characterize phenomena that are too complex
or ill-defined. The advantage of using linguistic values in engineering system safety analysis is that they can intuitively
and easily express expert opinions that cannot be adequately represented in a numeric way [21,28,29,31].

The granularity of the set of linguistic values that are commonly used in engineering system safety depends on the
number of linguistic terms; commonly this number varies from four to nine. The granularity level is decided upon
by experts in the field and in line with the situation of the case of the interest. For example, in offshore engineering
systems, five to seven linguistic values are used for antecedents and four linguistic values are used for consequences
in the fuzzy rules [27,42,53]. Meanwhile, Guimaraes and Lapa use five linguistic values to estimate the safety level of
the containment cooling system of a nuclear power plant [16].

Linguistic values present in human reasoning, can be formalized as membership functions of fuzzy sets [20,55]. The
selection of a certain type of membership function depends on the nature of the problem at hand [30]. Previous studies
indicate that trapezoidal and triangular fuzzy numbers (membership functions) form a sound practical alternative
to reflect uncertainties, inaccuracy and fuzziness of human justifications involving in linguistic values [12,20,44,51,
55]. Furthermore, Onisawa [35] has proposed a logarithmic function to fit the very small error possibility, which is
expressed by a fuzzy subset of the unit interval [0,1], to the nature of human judgment. This function considers the
proportionality of human sensation to the logarithmic value of a physical quantity.

3. Problem statement

Probabilistic safety assessment (PSA) by fault tree analysis (FTA) has been considered as an important tool to
assess the safety level of nuclear power plants (NPP). In this safety assessment, nuclear safety analysts must have
confidence in the input data to gain confidence in the results. On the basis of this consideration, it is recommended to
use plant specific data, which can be taken from operator logs and maintenance logs. Since the estimation of failure
probabilities of rare events with high consequences is the focus of the NPP PSA, it is often very difficult to obtain
component failure data, which are specific to that NPP. It is inevitable to obtain component failure data from other
sources such as data from other NPPs or nuclear industries other than NPPs or non-nuclear experiences. However,
these data sources carry uncertainties such as imprecision, ambiguity, and/or vagueness.

Since nuclear and other complex engineering systems do not come with historical failure data, expert opinions
are often used to determine basic event failure likelihoods. Therefore, it is necessary to capture the subjectivity and
imprecision of component failure probabilities in FTA. Hence, we propose a fuzzy reliability algorithm combining
fuzzification and defuzzification modules to assess basic event failure probabilities through qualitative data processing.
The objective of the fuzzification module is to convert basic event qualitative data expressed in terms of failure
possibilities, which are subjectively assessed by experts, into the operational format of fuzzy numbers. The objective
of the defuzzification module is to transform fuzzy numbers into a single scalar quantity to be used to generate basic
event failure probabilities as the outputs of the algorithm.

The proposed fuzzy reliability algorithm developed to generate basic event failure probabilities from qualitative
data consists of five functional modules, which are briefly described in this section. In the sequel, the details of the
modules and the quantification steps of the algorithm are given in Section 4. An overall architecture of the quantifica-
tion process is shown in Fig. 1.
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Fig. 1. Structure of the quantification process of the proposed fuzzy reliability algorithm.

1) Linguistic value and membership function module: This module defines the terms of linguistic values used to rep-
resent basic event failure possibilities and their corresponding mathematical representation. The inputs for this module
come from safety analysts, who understand the systems, as well as qualitative data. It consists of two sub-modules,
i.e., linguistic value sub-module and membership function of fuzzy set sub-module. The output of the linguistic value
sub-module is a set of qualitative linguistic values (H ), to express basic event failure possibilities. Basic event failure
possibilities could be graded based on the type of the components or the likelihood of failure occurrences. Based on
the component types, for example, very low failure possibility can be used to represent components, which are rigid
and very unlikely to be failure even once. Meanwhile, the term very high failure possibility can be used to represent
components, which have many moving parts and are near certain to fail several times. Based on the likelihood of
failure occurrences, for example, very low failure possibility can be used to represent components whose predicted
failure probabilities could be less than 10−8. Meanwhile, very high failure possibility can be used to represent com-
ponents whose predicted failure probabilities could be greater than 10−3. This grading will, of course, be different for
different application. For instance, 10−3 could be defined as high failure possibility for nuclear accidents but as low
failure possibility for motorcycle accidents. Therefore, safety analysts have to define this failure possibility grading
based on the system problems at hands, the extent of the gathered information and the expert knowledge. Moreover,
Yu and Park [54] stated that defining the failure possibility distribution is a matter of subjective opinion. This set of
qualitative linguistic values (H ) will be used by experts in the expert evaluation module to subjectively assess basic
event failure likelihoods.

Meanwhile, the outputs of the membership function of fuzzy set sub-module are membership functions to represent
each member of H . These fuzzy sets represent qualitative basic event failure possibilities defined in the [0,1] universe
of discourse. This means that the closer the fuzzy probabilities are to 0, the less likely the basic events are to fail. On
the other hand, the closer the fuzzy probabilities are to 1, the more likely the basic events are to fail. Meanwhile, the
horizontal axis represents the failure probability of basic events, which is also defined between 0 and 1. This means
that the closer the fuzzy numbers are to the point of origin, the lower the basic event failure probabilities are. On the
other hand, the farther the fuzzy numbers are from the point of origin, the higher the basic event failure probabilities
are. These phenomena can easily be understood from Table 1 and Fig. 2 below.

It is also important to note that membership function used in this module can have different form for different
engineering systems. To assign values for those failure possibility membership functions, safety analysts may choose
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Table 1
Nuclear event failure likelihood values.

Nuclear event failure possibilities Failure probabilities

Very Low (VL) <1.0E−8
Low (L) 1.0E−8–1.0E−7
Reasonably Low (RL) 1.0E−7–1.0E−6
Moderate (M) 1.0E−6–1.0E−5
Reasonably High (RH) 1.0E−5–1.0E−4
High (H ) 1.0E−4–1.0E−3
Very High (VH) >1.0E−3

Fig. 2. Graphical representation of the nuclear event membership functions.

a technique coming from the six straightforward methods described by Ross [43], i.e. intuition, inference, rank or-
dering, neural networks, genetic algorithms, and inductive reasoning. The membership functions developed in this
module will then be used in the fuzzification module to generate basic event final membership functions.

H = {very low, low,moderate, . . . , very high} (1)

U = {
very low(u), low(u),moderate(u), . . . , very high(u)

}
(2)

As noted earlier, there are m linguistic terms, say very low, low, moderate, . . . , very high where each of them is
described by fuzzy sets and the corresponding membership functions, say very low(u), low(u), moderate(u), . . . , and
very high(u).

2) Expert evaluation module: This evaluation module generates a set of qualitative data representing basic event
failure possibilities. Inputs to this module are a set of basic events from the system fault tree under evaluation, a set
of experts to subjectively evaluate basic event failure and a set of basic event subjective assessment coming from the
experts. An expert is a person who is familiar with the system, understands the system working environment, and
has considerable training in and knowledge of the system operation. Cooke et al. [9] recommended three indicators
to choose experts, i.e. the number of scientific publications, recommendations from a wide range of experts, and
experiences with previous similar studies. By scoring each criteria and sum-up the total score, the experts whose
expertise are more relevant to the study what it is intended for will be properly selected.

In real-world applications, the experts may have different levels of expertise, background and working experience.
Hence, they may demonstrate different perceptions about the same events and subjectively provide different assess-
ment. To reflect their differences of assessment, different justification weights from 0 to 1 may be assigned to every
expert. Cooke and Goossens [10] have formulated two key performance-based indicators to weight experts, i.e. cali-
bration and informativeness. This technique needs ‘seed variables’ whose values have been known but at the time of
assessment the experts do not know those values. Using calibration questions, the probabilities of experts to correctly
answer the questions can be drawn. The seed variables and the calibration questions must be as closely as possible to
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Fig. 3. Description of links presented by (3)–(7).

the problems that the study is intended to solve [26]. This technique has also been implemented in Tuomisto et al. [47]
to weight experts on air pollution epidemiology and can also be implemented in this module to weight experts.

B = {b1, b2, . . . , bl} and B ∈ FT (3)

E = {e1, e2, . . . , en} (4)

W =
{

w1,w2, . . . ,wn; 0 �wi � 1 and
n∑

i=1

wi = 1

}
(5)

There are l basic events in the system fault tree FT , say b1, b2, . . . , bl which are subjectively evaluated by n experts,
say e1, e2, . . . , en which have justification weights of say, w1,w2, . . . ,wn where each weight is defined in space [0,1]
and the total weight must be 1.

In the basic event evaluation process, the experts e1, e2, . . . , and en subjectively justify the failure possibility of the
basic event b1, for example, as very low, low, . . . , and low, respectively as in (6).

Y = {{very low, low, . . . , low}, {. . .}, . . . , {. . .}} (6)

Y is the set of the basic event subjective assessment coming from the experts. This module then generates the matrix
of basic event qualitative data (Ql) in (7). For example, the qualitative data for the basic event b1 are very low, low,
. . . , and low.

Ql =
[ very low low · · · low

· · · · · · · · · · · ·
· · · · · · · · · · · ·

]
(7)

The links described by (3)–(7) are visualized in Fig. 3.
Since the objective of the proposed algorithm is to integrate basic event qualitative data into the quantitative phase

of fault tree analysis, the proposed fuzzy reliability algorithm implements a fuzzification technique to convert quali-
tative linguistic values into their corresponding mathematical forms described by the membership functions of fuzzy
sets and a defuzzification technique to convert those fuzzy quantities into their corresponding scalar quantities in the
form of nuclear event failure possibility scores. Each technique is realized in a module as follows.

3) Fuzzification module: In this algorithm, basic event failures are subjectively assessed by experts using qualitative
linguistic values in terms of failure possibilities as in (6). Since the purpose of the algorithm is to generate quantitative
failure probabilities from qualitative failure possibilities, the objective of this fuzzification module is to quantify basic
event qualitative data taken from the expert evaluation module into their corresponding quantitative data in the form
of membership function of fuzzy numbers taken from the linguistic value and membership function module. This
module, then, aggregates those n subjective quantitative data coming from n experts in (8) to generate a vector of final
quantitative data in (9) to reach consensus for every basic event in (3).

Qn =
[ very low(u) low(u) · · · low(u)

· · · · · · · · · · · ·
· · · · · · · · · · · ·

]
(8)

Qn shown in (8) is the corresponding quantitative data of the qualitative data Ql in (7), for example, the quantitative
data for the basic event b1 are very low(u), low(u), . . . , and low(u), where each of them is represented as a fuzzy set
and described by the corresponding membership functions.
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MB =

⎡
⎢⎢⎢⎣

b1(u)

b2(u)
...

bl(u)

⎤
⎥⎥⎥⎦ (9)

MB is a vector of l basic event final quantitative data where each of them is aggregated from its n quantitative data
subjectively evaluated by n experts in (8). For example, b1(u) is the final quantitative data for the basic event b1,
which is aggregated from its n quantitative data, very low(u), low(u), . . . , low(u). This b1(u) is given in the form of
a membership function of a fuzzy set.

The weighted averaging operator can be used to aggregate two or more values of different importance. It is a
generalization of the arithmetic mean in the sense we assign different weights (importance) to every single value
involved in the aggregation process. This technique has been implemented in multi-criteria and multi-expert decision
making to aggregate the criteria given by the experts [14,28,46] and in system reliability analysis to aggregate the
fuzzy justifications coming from experts [18]. Other aggregation operators, which consider the weight of individual
value, can be implemented in this module as well.

4) Defuzzification module: The final quantitative data taken from the fuzzification module is still in the form of
fuzzy numbers whereas the calculation of the actual reliability requires a single scalar quantity. Therefore, the output
generated by the fuzzification module need to be transformed into a scalar quantity. Defuzzification is a process of
synthesis the output of fuzzy systems, which incorporates the representations of imprecision and/or uncertainties, to
be a single scalar quantity as opposed to a fuzzy set [25]. Apparently, there is no unique way to realize defuzzifica-
tion and a method being selected is problem-oriented [21]. Therefore, safety analysts need to find the most suitable
defuzzification technique for their area of investigation.

The objective of this defuzzification module is to generate a vector of l basic event failure possibility scores from
the basic event final quantitative data taken from the fuzzification module.

RB
s =

⎡
⎢⎢⎢⎣

R
b1
s

R
b2
s
...

R
bl
s

⎤
⎥⎥⎥⎦ (10)

RB
s is a vector of l basis event failure possibility scores where each of them is a single scalar quantity, which is

defuzzified from its final quantitative data. For example, R
b1
s is the failure possibility score for the basic event b1,

which is defuzzified from b1(u).
5) Failure probability generator module: This failure probability generator module generates a vector of basic event

failure probabilities (Rbk ) from their corresponding quantitative failure possibilities taken from the defuzzification
module.

RB =

⎡
⎢⎢⎣

Rb1

Rb2

...

Rbl

⎤
⎥⎥⎦ (11)

RB is a vector of l basis event failure probabilities where each of them is generated from its corresponding failure
possibility score. For example, Rb1 is the failure probability for the basic event b1, which is generated from R

b1
s .

4. A fuzzy reliability algorithm

The proposed fuzzy reliability algorithm generates basic event failure probabilities from qualitative data, which
are expressed in terms of failure possibilities using qualitative linguistic values. The inputs to the algorithm are the
linguistic values, membership functions of fuzzy sets, basic events of the fault tree of the system under evaluation,
experts and their justification weights, and expert subjective evaluation as in (1)–(6). The output of the algorithm is a
set of failure probabilities representing the all l basic event failures as in (11).

The proposed fuzzy reliability algorithm consists of five steps and each step corresponds to a module presented in
Fig. 1. In the sequel, we elaborate on their details.
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Fig. 4. The links between the linguistic value and the membership function of fuzzy sub-set sub-modules.

4.1. Linguistic value and membership function development

In this step, we develop a failure possibility distribution to be implemented in the linguistic value sub-module based
on the likely failure occurrences and the membership functions of fuzzy sets to be implemented in the membership
function of fuzzy set sub-module using the inductive reasoning approach. The failure possibility distribution is a set of
m qualitative linguistic values used to scale basic event failure possibilities from the lowest rates to the highest rates
as in (1). The membership functions to represent these qualitative linguistic values are in the form of triangular fuzzy
numbers as in (12) to represent the ith linguistic value in (1).

ui(x) =

⎧⎪⎨
⎪⎩

uL
i (x), a � x � b

uR
i (x), b � x � c

0, otherwise

(12)

This development process is realized in the linguistic value and membership function module shown in Fig. 1.
The links between the linguistic value sub-module and the membership function of fuzzy sub-set sub-module are
visualized in Fig. 4.

4.2. Basic event failure possibility evaluation

In this step, we collect a set of expert subjective evaluation about basic event failure possibilities as given in (6).
Experts answer specific questions about basic event failure possibilities by choosing one failure possibility from m

predefined failure possibilities in (1). Using (7), the matrix of basic event qualitative data is generated as a reply to
questions assuming the form.

What is the failure possibility of the basic event bi? Is it very low, low, . . . , or very high?

Ql =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h
e1b1
i h

e2b1
i h

e3b1
i · · · h

enb1
i

h
e1b2
i h

e2b2
i h

e3b2
i · · · h

enb2
i

h
e1b3
i h

e2b3
i h

e3b3
i · · · h

enb3
i

...
...

...
...

...

h
e1bl

i h
e2bl

i h
e3bl

i · · · h
enbl

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(13)

where h
ej bk

i is the ith failure possibility in H of the basic event bk evaluated by the expert ej . Meanwhile, i is the
index of the failure possibility in (1), k is the index of the basic event in (3), and j is the index of the expert in (4). For
example, the failure possibility of the basic event b2 (k = 2) is subjectively evaluated by the expert e3 (j = 3) as very

low (i = 1). Therefore, h
ej bk

i = h
e3b2
1 = very low. This step is completed in the expert evaluation module as shown in

Fig. 1.

4.3. Fuzzification process

This step takes the basic event qualitative data Ql from the expert evaluation module and the corresponding mem-
bership function ui(x) from the linguistic value and membership function module and then generates a matrix of
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quantitative data, which are basic event final membership function. Using (8)–(9), the matrix of basic event final
quantitative data is expressed as follows.

Qn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u
e1b1
i u

e2b1
i u

e3b1
i · · · u

enb1
i

u
e1b2
i u

e2b2
i u

e3b2
i · · · u

enb2
i

u
e1b3
i u

e2b3
i u

e3b3
i · · · u

enb3
i

...
...

...
...

...

u
e1bl

i u
e2bl

i u
e3bl

i · · · u
enbl

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(14)

where u
ej bk

i is the membership function of the basic event bk to represent the failure possibility hi justified by the
expert ej . For example, the failure possibility of the basic event b2 is subjectively evaluated by the expert e3 as very

low. The linguistic value of very low is an h1 in H , then u
ej bk

i = u
e3b2
1 = uvery low(x), which comes from (2).

MB =

⎡
⎢⎢⎢⎢⎢⎢⎣

ub1(x)

ub2(x)

ub3(x)
...

ubl (x)

⎤
⎥⎥⎥⎥⎥⎥⎦

= Qn ×

⎡
⎢⎢⎢⎢⎣

w1
w2
w3
...

wn

⎤
⎥⎥⎥⎥⎦ (15)

where ubi (x) is the final membership function for the ith basic event, which is aggregated from its n quantitative data,
wi is the weight for the ith expert, n is the number of expert, and l is the number of basic events.

We consider the weighted averaging operator in (15) as the most appropriate aggregation technique for this al-
gorithm because it represents real situation in which experts may justify the same basic event with different failure
possibilities. This step is performed in the fuzzification module in Fig. 1.

4.4. Defuzzification process

In this step, basic event failure possibility scores are generated from their final membership function taken from
the fuzzification module. It is very important to choose a suitable defuzzification technique for a specific application.
Among the diversity of the methods, we use the area defuzzification technique (ADT) to realize this algorithm for
nuclear safety assessment. It is a suitable technique for defuzzifying the membership functions of fuzzy numbers
into a failure possibility score for a nuclear safety assessment involving qualitative linguistic values [40,41]. More
specifically, the method returns a numeric value computed as follows.

ADT = d
(
μ

Ã
(x)

) = x1y0 +
d∫

x2

μR

Ã
(x) dx (16)

where y0 is the centroid point of the real fuzzy number Ã on the vertical axis, x1 is the intersection point between the
line y0 and the left membership function μL

Ã
(x) on the horizontal axis, and x2 is the intersection point between the

line y0 and the right membership function μR

Ã
(x) on the horizontal axis.

Using (10), the vector of basic event failure possibilities is generated as follows.⎡
⎢⎢⎢⎢⎢⎢⎣

R
b1
s

R
b2
s

R
b3
s
...

R
bl
s

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

d(ub1(x))

d(ub2(x))

d(ub3(x))
...

d(ubl (x))

⎤
⎥⎥⎥⎥⎥⎥⎦

(17)
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R
bi
s is a failure possibility score for the ith basic event, which is defuzzified from its final quantitative data d(ubi (x)),

and l is the number of basic events. This step is completed in the defuzzification module in Fig. 1.

4.5. Basic event failure probability generation

This step generates basic event failure probabilities from their corresponding failure possibility scores taken from
the defuzzification module. By using the logarithmic function proposed by Onisawa [35] as expressed in (18) and
integrating with (11), the set of basic event failure probabilities can be described as (19).

Rbi
s = 1

1 + [K × log( 1
Rbi

)]3
(18)

R
bi
s is the failure possibility score and Rbi is the failure probability of the basic event bi . K is a constant representing

the safety criterion, which equals to 0.435 [33,35,37].

Rbi =
{

1
10z , R

bi
s �= 0

0, R
bi
s = 0

(19)

Rbi is a failure probability for the ith basic event and z = [ 1−R
bi
s

R
bi
s

]1/3 × 2.301. This process is completed by the failure

probability generator module in Fig. 1.
The logarithmic function in (18) reflects a fact that human error may still occur even though the error probability

used to derive the error possibility very small. From the reliability analysis point of view, the failure possibility and
the error possibility are regarded to be the same entity.

5. Algorithm verification

In this section, we describe how the proposed fuzzy reliability algorithm is validated. To investigate the feasibility of
the proposed algorithm, the actual failure probabilities taken from the US Combustion Engineering reactor protection
system (CERPS) during the period 1984 through 1998 operating experience, which are well documented in Wierman
et al. [50], are compared to the failure probabilities generated by the algorithm. Many authors in the past have used
this data source to validate their experimental studies.

Bondavalli and Filippini [4] used this data source to validate their proposed stochastic Petri net to assess the
availability and performance of the safety function of the reactor protection system. In the study by Bartha et al. [1],
this data was used to validate their proposed periodic and outage testing methodology of the reactor protection systems
in the Paks Nuclear Power Plant. Meanwhile, Kang and Han [23] used this data source to calculate alpha parameters
to make the common cause failure event failure probabilities suitable for the emergency diesel generator for Ulchin
Unit 3. Bickel [2] used this data set to evaluate the risk implications of the core protection calculator system failure in
the reactor protection system.

Component failure probabilities in Wierman et al. [50] are presented in three different values, i.e. best estimate,
lower bound, and upper bound reliability values. The best estimate reliability value is the recommended reliability data
to be used in the FTA. Meanwhile, the upper and the lower bound reliability values represent a range of reliability data
estimation. To verify the feasibility and the applicability of the proposed algorithm, the basic event failure probabilities
generated by the proposed algorithm have to be between the upper and the lower bound reliability values and as close
as possible to the best estimate reliability value. If the results show that the generated failure probabilities are beyond
the range of the reliability data estimation, the membership functions to represent the qualitative data need to be
explored in more detail.

6. An illustrative case study

This section describes the data sets used to verify the proposed algorithm and quantify the algorithm performance
as well as carry out result analysis to verify the feasibility of the proposed algorithm.
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Table 2
The basic event failure probabilities of the CERPS fault tree.

Basic events Failure description Known failure probability

Lower bound Best estimate Upper bound

b1 Trip breaker local hardware faults 4.3E−6 1.8E−5 4.5E−5
b2 Shunt trip device local faults 6.3E−6 1.5E−4 5.5E−4
b3 Under-voltage coil device local faults 1.4E−4 1.1E−3 3.5E−3
b4 Channel trip unit (bi-stable) fails to trip at its set point 3.4E−5 5.0E−4 1.8E−3
b5 Channel analog core protection calculator fails to send a signal

to the trip unit
1.6E−3 7.6E−3 2.0E−2

b6 Channel digit protection calculator fails to send a signal to the trip
unit

6.5E−4 2.7E−3 6.8E−3

b7 Channel reactor vessel pressure sensor/transmitter fails to detect a
high pressure and sends a signal to the trip unit

1.1E−5 1.1E−4 3.5E−4

b8 Channel reactor vessel temperature/transmitter (cold or hot leg)
fails to detect a low level and sends a signal to the trip unit

4.2E−4 8.4E−4 1.5E−3

b9 Manual scram switch fails to operate upon demand 4.1E−5 1.3E−4 2.8E−4
b10 Control rod (or associated control rod drive) fails to insert fully

into core upon demand
3.4E−7 1.7E−5 6.4E−5

b11 Channel logic relay fails to de-energize upon demand 2.2E−5 2.6E−4 8.8E−4
b12 CCF 2 of 8 trip breaker local hardware faults 1.9E−7 1.0E−6 2.7E−6
b13 CCF 2 of 4 trip breaker local hardware faults 8.0E−8 7.1E−7 2.2E−6
b14 CCF 2 of 8 shunt trip device local faults 3.9E−7 1.1E−6 4.0E−5
b15 CCF 2 of 4 shunt trip device local faults 2.5E−7 8.7E−6 3.3E−5
b16 CCF 2 of 8 under-voltage coil device local faults 5.1E−6 5.4E−5 1.8E−4
b17 CCF 2 of 4 under-voltage coil device local faults 2.3E−6 3.7E−5 1.3E−4
b18 CCF specific 2 of 3 bi-stables associated with either a pres-

sure (P) or temperature (T) signal (T&M)
1.1E−6 2.6E−5 9.5E−5

b19 CCF specific 3 of 4 bi-stables associated with either a pressure (P)
or temperature (T) signal

1.4E−7 7.2E−6 2.8E−5

b20 CCF specific 4 of 6 bi-stables (T&M) 3.7E−8 1.7E−6 6.6E−6
b21 CCF specific 6 of 8 bi-stables 7.1E−9 7.7E−7 2.9E−6
b22 CCF 2 of 3 analog core protection calculators (T&M) 4.9E−5 3.8E−4 1.2E−3
b23 CCF 3 of 4 analog core protection calculators 1.3E−5 1.7E−4 5.6E−4
b24 CCF 2 of 3 digital core protection calculators (T&M) 2.3E−5 1.4E−4 3.8E−4
b25 CCF 3 of 4 digital core protection calculators 6.3E−6 5.7E−5 1.8E−4
b26 CCF 2 of 3 pressure sensor/ transmitters (T&M) 3.0E−7 5.0E−6 1.8E−5
b27 CCF 3 of 4 pressure sensor/ transmitters 4.0E−8 1.5E−6 5.8E−6
b28 CCF 2 of 3 temperature sensor/ transmitters (T&M) 8.0E−6 3.7E−5 9.8E−5
b29 CCF 3 of 4 temperature sensor/ transmitters 7.5E−7 1.0E−5 3.5E−5
b30 CCF specific 2 of 4 manual trip switches 7.4E−7 5.0E−6 1.5E−5
b31 CCF specific 2 of 4 trip breaker shunt trip device power 2.3E−7 2.5E−6 8.3E−6
b32 CCF 50% (18 of 36) or more CRD/rods fail to insert 7.5E−10 3.6E−8 1.4E−7
b33 CCF specific 6 of 12 logic relays (T&M) 4.8E−9 1.6E−7 6.0E−7
b34 CCF specific 12 of 24 logic relays 5.3E−10 4.3E−8 1.7E−7
b35 CCF 3 of 3 logic relays (T&M) 4.8E−9 4.7E−7 1.8E−6
b36 CCF 6 of 6 logic relays 8.2E−10 2.0E−7 7.2E−7
b37 CCF 2 of 4 trip relays 5.7E−7 4.8E−6 1.5E−5

6.1. Basic event data sets

A reactor protection system is one of many safety systems in commercial reactors that comprises numerous elec-
tronic and mechanical components to produce an automatic or manual rapid shutdown when the reactor experiences
disturbed conditions and requires a trip to stop the nuclear reaction. Basic events used here are taken from the CERPS
fault tree presented in Wierman et al. [50].

We can see from Table 2 that there are 37 basic events to be assessed. To illustrate how the proposed algorithm
generates the basic event failure probabilities of the CERPS fault tree, we choose two basic events from Table 2, i.e.
b5 and b18. The failure probabilities for all other basic events generated by the algorithm are shown in Appendix A.
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Table 3
The results of the experimentations to find parameters for μVL(x) and μVH(x).

Experimentation goals Membership functions Generated failure probabilities

Finding a membership function representing the very low failure possibility (0.00,0.04,0.08) 6.36E−13
(0.00,0.03,0.05,0.08) 1.30E−12

Finding a membership function representing the very high failure possibility (0.92,0.96,1.00) 1.03E−03
(0.92,0.95,0.97,1.00) 1.87E−03

6.2. Basic event assessment process by the fuzzy reliability algorithm

For illustration purposes, let us assume that the higher management level assign seven experts with the same level
of expertise about the Combustion Engineering reactor protection system to evaluate those basic events shown in
Table 2. Therefore, we assign to all the seven experts the same justification weight of 1/7.

6.2.1. Linguistic value and membership function development
Based on the likely failure occurrences and the range of nuclear event failure data collected from nuclear power

plant operating experiences (10−13–10−2) [22,39,49,50], seven qualitative linguistic values are defined to assess basic
event failure possibilities as in (20).

H = {VL,L,RL,M,RH,H,VH}
= {very low, low, reasonably low,moderate, reasonably high,high, very high} (20)

Nuclear events with ‘very low failure possibilities (VL)’ mean that the failure probabilities of these events are
predicted to be less than 10−8 and very unlikely to become failures. Nuclear events with ‘very high failure pos-
sibilities (VH)’ mean the failure probabilities of these events are predicted to be greater than 10−3 and are near
certain to become failures. Events with ‘low’ (L), ‘reasonably low’ (RL), ‘moderate’ (M), ‘reasonably high’ (RH),
and ‘high’ (H ) failure possibilities are up-graded from ‘very low’ to ‘very high’ failure possibilities and their failure
likelihood values are shown in Table 1 Section 3.

Since previous researches confirm that trapezoidal and triangular fuzzy numbers form a sound practical alternative
to reflect uncertainties, inaccuracy and fuzziness of human justifications involving in linguistic values [12,51] and have
smooth transitions from one linguistic term to another term [48], these types of membership functions are considered
in this study to represent nuclear event failure possibilities in (20). In addition, based on the fact that the real nuclear
event reliability data are mostly less than 10−2 and could be of order 10−5 to 10−13 [22,39,49,50], the algorithm has
to be able to generate basic event failure probabilities, which are between 10−2 and 10−13. This rule can be defined
in a fuzzy rule as follows.

If Ã = {Ãi | i = 1,2, . . . , n} and R = {
Ri = f (Ai)

∣∣ i = 1,2, . . . , n
}

then 10E−13 � Ri � 10E−2

where Ãi is a normal fuzzy number and Ri is a failure probability generated by the algorithm from the normal fuzzy
number Ãi [41].

In this study, the inductive reasoning is used to develop the membership values in (21)–(27) to represent those ba-
sic event failure possibilities in H . In the experimentation, firstly, we tried to find which membership function could
be used to generate higher failure probability range by comparing the failure probabilities generated by those two
membership functions. In this first experimentation, we also tried to find the left most and the right most membership
functions of each fuzzy numbers, which could generate nuclear event failure probabilities within the range of the real
nuclear event failure probabilities. The results, which are shown in Table 3, confirm that the triangular membership
function can generate bigger failure probability range than the trapezoidal membership function can do. The triangular
membership functions also can produce smaller failure probabilities than that produced by trapezoidal membership
functions. These experimentation results justify that nuclear event failure possibilities should be mathematically rep-
resented by the membership functions of triangular fuzzy numbers.

Those two triangular fuzzy numbers in Table 3 are then used to represent nuclear events with the very low
failure possibility, i.e. μVL(x), and the very high failure possibility, i.e. μVH(x), as given in (21) and (27), respec-
tively.
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Table 4
The results of the experimentations to find parameters for μM(x).

Experimentation goals Membership functions Generated failure probabilities

Finding a membership function representing the moderate failure possibility (0.35,0.50,0.65) 6.39E−05
(0.40,0.50,0.60) 7.91E−05
(0.45,0.50,0.55) 9.65E−05

The membership parameters for other five failure possibilities are then generated by segmenting the area between
the two membership functions in Table 3, i.e. μVL(x) and μVH(x). To find the parameters of the membership functions
for moderate failure possibility, i.e. μM(x), we segmented the area between μVL(x) and μVH(x) into two areas by
choosing the center of the Cartesian plane, which is 0.50, as its core. Then, we varied the pair of its left and right
supports to find the parameters that could generate the lowest failure probabilities for the moderate failure possibility.
We chose the lowest failure probabilities because nuclear event failure probabilities are mostly very small. The results
of this experimentation are shown in Table 4.

From Table 4, we then chose the triangular membership function of (0.35, 0.50, 0.65) to mathematically represent
nuclear events with moderate failure possibilities, i.e. μM(x), as in (24).

To find membership parameters for reasonably high failure possibility, i.e. μRH(x), and high failure possibility,
i.e. μH (x), we follow the rule saying that fuzzy sub-sets, which are distributed in the Cartesian plane, overlap [43].
Based on this specific character, since the right support for the μM(x) is 0.65, then we chose 0.63 as the left sup-
port for μRH(x). We also use symmetrical membership functions to mathematically represent nuclear event failure
possibilities. Therefore, the right support for the μRH(x) is 0.83. Hence, the triangular membership function of
(0.63,0.73,0.83) is used to represent nuclear events with reasonably high failure possibilities, i.e. μRH(x), as in (25).
Meanwhile, since the left support for the μVH(x) is 0.92, then we chose 0.93 as the right support and 0.81 as the left
support for the μH (x). Hence, the triangular membership function of (0.81,0.87,0.93) is used to represent nuclear
events with high failure possibilities, i.e. μH (x), as in (26).

Using the same segmentation procedures, we finally chose those membership functions of triangular fuzzy numbers
shown below and graphically shown in Fig. 2 Section 3, to describe nuclear event qualitative failure possibilities
defined in (20).

uVL(x) =

⎧⎪⎨
⎪⎩

x
0.04 , 0.00 � x � 0.04
0.08−x

0.04 , 0.04 � x � 0.08

0, x � 0.08

(21)

uL(x) =

⎧⎪⎨
⎪⎩

x−0.07
0.06 , 0.07 � x � 0.13

0.19−x
0.06 , 0.13 � x � 0.19

0, otherwise

(22)

uRL(x) =

⎧⎪⎨
⎪⎩

x−0.17
0.10 , 0.17 � x � 0.27

0.37−x
0.10 , 0.27 � x � 0.37

0, otherwise

(23)

uM(x) =

⎧⎪⎨
⎪⎩

x−0.35
0.15 , 0.35 � x � 0.50

0.65−x
0.15 , 0.50 � x � 0.65

0, otherwise

(24)

uRH(x) =

⎧⎪⎨
⎪⎩

x−0.63
0.10 , 0.63 � x � 0.73

0.83−x
0.10 , 0.73 � x � 0.83

0, otherwise

(25)

uH (x) =

⎧⎪⎨
⎪⎩

x−0.81
0.06 , 0.81 � x � 0.87

0.93−x
0.06 , 0.87 � x � 0.93 (26)
0, otherwise
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uVH(x) =

⎧⎪⎨
⎪⎩

x−0.92
0.04 , 0.92 � x � 0.96

1.00−x
0.04 , 0.96 � x � 1.00

0, x � 0.92

(27)

6.2.2. Basic event failure possibility evaluation
There are four inputs in this process. One of the inputs is the failure possibility distribution H taken from the lin-

guistic value and membership function module as in (20). The other three inputs are a set of seven expert weights (W ),
a set of 37 basic events of the CERPS fault tree (B) and a matrix of expert subjective evaluation (Y ) as shown below.

W = {wi | i = 1,2,3, . . . ,7 and wi = 1/7} (28)

B = {
bi

∣∣ i = 1,2, . . . ,37 and bi ∈ FT(CERPS)
}

(29)

Y =

⎡
⎢⎢⎢⎢⎣

M RL M RL M RL RL
RH M M M RH M RH
VH VH VH VH VH VH VH
...

...
...

...
...

...
...

RL RL RL RL RL RL RL

⎤
⎥⎥⎥⎥⎦ (30)

Table 5 represents the matrix Y in the tabular form to easily understand how each expert evaluates basic event failure
possibilities. Those values in Table 5 could be obtained by requesting that each expert completes a questionnaire about
basic event failure possibilities. The questions there could assume the following format.

What is the failure possibility of the basic event bi? Is it VL, L, RL, M , RH, H , or VH?

Those justification results in Table 5 are just of illustrative character of experts to obtain the closest matching failure
probabilities to the known best estimate values.

The output of this process is generated using (13). For example, the qualitative data for basic events b5 and b18 are
shown in (31). The qualitative data for other basic events in B are generated by the same processes.

Ql =
[

VH VH VH VH VH VH VH
M RL RL M RL M M

]
(31)

6.2.3. Fuzzification process
In this process, the corresponding membership functions for qualitative data in (31) are taken from the linguis-

tic value and membership function module in Fig. 1. These membership functions are mathematically denoted
in (21)–(27). Using (15), for example, the final membership functions for basic events b5 and b18 are obtained as
follows.

[
ub5(x)

ub18(x)

]
=

[
uVH(x) uVH(x) uVH(x) uVH(x) uVH(x) uVH(x) uVH(x)

uM(x) uRL(x) uRL(x) uM(x) uRL(x) uM(x) uM(x)

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1/7
1/7
1/7
1/7
1/7
1/7
1/7

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Qn =
[

ub5(x)

ub18(x)

]
=

[
(0.92,0.96,1.00)

(0.27,0.40,0.53)

]
(32)

The complete basic event final membership functions generated in this step are given in Table 8 in Appendix A.

6.2.4. Defuzzification process
By substituting (16) into (17), the failure possibility scores for basic events, for example, b5 and b18 are generated

as follows.[
R

b5
s
b18

]
=

[
ADT(0.92,0.96,1.00)

ADT(0.27,0.40,0.53)

]
=

[
0.313333
0.112381

]
(33)
Rs
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Table 5
Expert justification results.

Basic events Basic event qualitative data assessed by

e1 e2 e3 e4 e5 e6 e7

b1 M RL M RL M RL RL
b2 RH M M M RH M RH
b3 VH VH VH VH VH VH VH
b4 RH H RH H RH H RH
b5 VH VH VH VH VH VH VH
b6 VH VH VH VH VH VH VH
b7 RH M RH M M M M

b8 H VH H VH VH H H

b9 M RH M M RH M M

b10 M RL M M RL RL RL
b11 RH RH RH RH M RH M

b12 L L RL L RL RL L

b13 L L RL RL RL L L

b14 L RL L RL L RL RL
b15 RL RL RL RL RL RL M

b16 M RL M M M M M

b17 M RL M M RL M M

b18 M RL RL M RL M M

b19 RL RL M RL RL RL RL
b20 RL L RL RL RL L RL
b21 L RL L RL L L RL
b22 H RH RH RH RH RH RH
b23 M RH RH M RH M M

b24 M RH M RH M RH M

b25 M M M M RL M M

b26 RL RL RL M RL RL L

b27 L L RL L L RL M

b28 M M M M RL RL M

b29 RL RL RL M RL M RL
b30 RL M RL RL L RL RL
b31 RL RL RL RL RL RL L

b32 L VL L L L L L

b33 L L L L L RL L

b34 L L L L L L VL
b35 L RL L RL L L L

b36 L L RL L L L L

b37 RL RL RL RL RL RL RL

The complete basic event failure possibility scores generated in this step are given in Table 8 in Appendix A.
Using (19), for example, the failure probabilities for basic events b5 and b18 are generated as follows.[

Rb5

Rb18

]
=

[
1.03E−03
2.62E−05

]
(34)

The complete basic event failure probabilities generated in this step are given in Table 8 in Appendix A. From
(34), we can see that the proposed algorithm generates basic event failure probabilities that are similar to the one
probabilistically calculated using historical failure data.

6.3. Analysis of results

Relative errors in Table 6 and Table 7 in Appendix A are calculated using the generated and the best estimate failure
probabilities. From Table 6, it can be seen that the failure probabilities generated by the proposed algorithm for the
basic event b18 is very close to the best estimate reliability value collected from the operating experiences. However,
the failure probabilities generated for the basic event b5 is very close to the lower bound reliability value.
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Table 6
b5 and b18 failure probabilities comparison.

Basic events Generated failure probabilities Known failure probabilities Relative error

Lower bound Best estimate Upper bound

b5 1.03E−03 1.6E−3 7.6E−3 2.0E−2 0.864983
b18 2.62E−05 1.1E−6 2.6E−5 9.5E−5 0.006028

From Table 7 and Figs. 5–6, we can see that the failure probabilities generated by the proposed algorithm for
35 basic events are very close to the best estimate reliability value collected from the operating experiences. However,
the failure probabilities generated for the other two basic events, i.e. b5 and b6, are very close to the lower bound
reliability values. These two exceptions might be caused by the incapability of the proposed algorithm to generate
failure probabilities greater than 1.03E−03. It will be interesting to see, in the future research, how the proposed
fuzzy reliability algorithm will perform for different membership functions and/or different applications.

Generally, these results have demonstrated that the proposed fuzzy reliability algorithm can be feasibly used as an
alternative approach for the conventional probabilistic reliability approach to assess basic event failure probabilities.
However, if the expertise disparities of the experts on the system under evaluation are very substantial, the weights
amongst experts will be different and, consequently, the basic event failure possibilities justified by them will also
be very different. This condition will cause the proposed algorithm generating higher relative errors. Hence, it is
important to note that the selection of the experts to subjectively evaluate basic event failure possibilities will affect
the generation of the basic event failure probabilities to some extents.

We also have to acknowledge that if basic events to be evaluated have quantitative probability distribution of
their lifetime to failures, conventional probabilistic reliability approach should be used. The calculation results of
this conventional approach will represent the actual reliability values of those basic events. To deal with vagueness
and imprecise information involved in statistical data, Hryniewicz [19] has proposed a fuzzy Bayesian method. On
the other hand, if the subjective justification is the only method to evaluate basic event failures, the proposed fuzzy
reliability algorithm offers a feasible and effective solution to generate basic event failure probabilities through the
qualitative data processing. Experts can intuitively and easily use their expertise and working experience to evalu-
ate basic event failure possibilities using qualitative linguistic values. From the illustrative character of the expert
justification that we have done in this case study, the distribution of membership functions used in this experiment
produce failure probabilities, which are closely match the actual failure probabilities collected from operating experi-
ences.

7. Conclusions and further studies

In real-world applications, when quantitative historical failure data are scarce or are not available at all, linguistic
values are often used by decision makers to assess system reliability. This study has proposed a fuzzy reliability
algorithm to handle qualitative data in order to assess basic events of fault trees through qualitative data processing.
Those data are described in terms of failure possibilities and represented by fuzzy numbers, to characterize basic
event failure likelihood. The key advantage of using linguistic values in system reliability assessment is that the
developed framework can intuitively and easily express expert opinions, which otherwise cannot be represented by
quantitative data. Using the case study, we demonstrated the performance of the algorithm by comparing the generated
failure probabilities with the actual failure probabilities collected from the operating experiences of the Combustion
Engineering reactor protection system. The results show that the proposed fuzzy reliability algorithm offers a very
good alternative approach to assess event reliability data when historical quantitative failure data is insufficient or
unavailable to invoke probabilistic methods.

While the study has offered an alternative modeling approach, there are still a number of interesting avenues to
pursue. First, the underlying model can be further refined and enriched by admitting various classes of fuzzy sets
(membership functions). Second, more experimentation using various data sets coming from other nuclear power
plants fault tree analysis would be advantageous to gain a better assessment of the performance of the model and the
linguistic analysis.
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Appendix A

Table 7
Basic event failure probabilities.

Basic events Generated failure probability Known failure probability Relative error

Lower bound Best estimate Upper bound

b1 1.82E−05 4.3E−6 1.8E−5 4.5E−5 0.009559
b2 1.48E−04 6.3E−6 1.5E−4 5.5E−4 0.016080
b3 1.03E−03 1.4E−4 1.1E−3 3.5E−3 0.067153
b4 4.77E−04 3.4E−5 5.0E−4 1.8E−3 0.045884
b5 1.03E−03 1.6E−3 7.6E−3 2.0E−2 0.864983
b6 1.03E−03 6.5E−4 2.7E−3 6.8E−3 0.619951
b7 1.14E−04 1.1E−5 1.1E−4 3.5E−4 0.040376
b8 8.32E−04 4.2E−4 8.4E−4 1.5E−3 0.009576
b9 1.14E−04 4.1E−5 1.3E−4 2.8E−4 0.119682
b10 1.82E−05 3.4E−7 1.7E−5 6.4E−5 0.068945
b11 2.32E−04 2.2E−5 2.6E−4 8.8E−4 0.107907
b12 7.59E−07 1.9E−7 1.0E−6 2.7E−6 0.240724
b13 7.59E−07 8.0E−8 7.1E−7 2.2E−6 0.069403
b14 1.28E−06 3.9E−7 1.1E−6 4.0E−5 0.163532
b15 7.54E−06 2.5E−7 8.7E−6 3.3E−5 0.133485
b16 4.87E−05 5.1E−6 5.4E−5 1.8E−4 0.097310
b17 3.63E−05 2.3E−6 3.7E−5 1.3E−4 0.019914
b18 2.62E−05 1.1E−6 2.6E−5 9.5E−5 0.006028
b19 7.54E−06 1.4E−7 7.2E−6 2.8E−5 0.047039
b20 2.02E−06 3.7E−8 1.7E−6 6.6E−6 0.189768
b21 7.59E−07 7.1E−9 7.7E−7 2.9E−6 0.013927
b22 3.85E−04 4.9E−5 3.8E−4 1.2E−3 0.012703
b23 1.48E−04 1.3E−5 1.7E−4 5.6E−4 0.131835
b24 1.48E−04 2.3E−5 1.4E−4 3.8E−4 0.054200
b25 4.87E−05 6.3E−6 5.7E−5 1.8E−4 0.144820
b26 5.54E−06 3.0E−7 5.0E−6 1.8E−5 0.107479
b27 1.78E−06 4.0E−8 1.5E−6 5.8E−6 0.186810
b28 3.63E−05 8.0E−6 3.7E−5 9.8E−5 0.019914
b29 1.21E−05 7.5E−7 1.0E−5 3.5E−5 0.205248
b30 5.54E−06 7.4E−7 5.0E−6 1.5E−5 0.107479
b31 3.04E−06 2.3E−7 2.5E−6 8.3E−6 0.214396
b32 4.26E−08 7.5E−10 3.6E−8 1.4E−7 0.182478
b33 2.03E−07 4.8E−9 1.6E−7 6.0E−7 0.267381
b34 4.26E−08 5.3E−10 4.3E−8 1.7E−7 0.010018
b35 4.15E−07 4.8E−9 4.7E−7 1.8E−6 0.117941
b36 2.03E−07 8.2E−10 2.0E−7 7.2E−7 0.013905
b37 4.37E−06 5.7E−7 4.8E−6 1.5E−5 0.089537

Table 8
Algorithm generated data summary.

Basic events Final membership functions Failure possibility scores Generated failure probabilities

b1 (0.25,0.37,0.49) 0.102619 1.82E−05
b2 (0.47,0.60,0.73) 0.178095 1.48E−04
b3 (0.92,0.96,1.00) 0.313333 1.03E−03
b4 (0.71,0.79,0.87) 0.249524 4.77E−04
b5 (0.92,0.96,1.00) 0.313333 1.03E−03

(continued on next page)
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Table 8 (continued)

Basic events Final membership functions Failure possibility scores Generated failure probabilities

b6 (0.92,0.96,1.00) 0.313333 1.03E−03
b7 (0.43,0.57,0.70) 0.165952 1.14E−04
b8 (0.86,0.91,0.96) 0.294286 8.32E−04
b9 (0.43,0.57,0.70) 0.165952 1.14E−04
b10 (0.25,0.37,0.49) 0.102619 1.82E−05
b11 (0.55,0.66,0.78) 0.202381 2.32E−04
b12 (0.13,0.21,0.29) 0.056190 7.59E−07
b13 (0.11,0.19,0.27) 0.050476 7.59E−07
b14 (0.13,0.21,0.29) 0.056190 1.28E−06
b15 (0.20,0.30,0.41) 0.083095 7.54E−06
b16 (0.32,0.47,0.61) 0.131905 4.87E−05
b17 (0.30,0.43,0.57) 0.122143 3.63E−05
b18 (0.27,0.40,0.53) 0.112381 2.62E−05
b19 (0.20,0.30,0.41) 0.083095 7.54E−06
b20 (0.14,0.23,0.32) 0.061905 2.02E−06
b21 (0.11,0.19,0.27) 0.050476 7.59E−07
b22 (0.66,0.75,0.84) 0.234286 3.85E−04
b23 (0.47,0.60,0.73) 0.178095 1.48E−04
b24 (0.47,0.60,0.73) 0.178095 1.48E−04
b25 (0.32,0.47,0.61) 0.131905 4.87E−05
b26 (0.18,0.28,0.38) 0.077381 5.54E−06
b27 (0.14,0.22,0.31) 0.060238 1.78E−06
b28 (0.30,0.43,0.57) 0.122143 3.63E−05
b29 (0.22,0.34,0.45) 0.092857 1.21E−05
b30 (0.18,0.28,0.38) 0.077381 5.54E−06
b31 (0.16,0.25,0.34) 0.067619 3.04E−06
b32 (0.06,0.12,0.17) 0.029524 4.26E−08
b33 (0.08,0.15,0.22) 0.039048 2.03E−07
b34 (0.06,0.12,0.17) 0.029524 4.26E−08
b35 (0.10,0.17,0.24) 0.044762 4.15E−07
b36 (0.08,0.15,0.22) 0.039048 2.03E−07
b37 (0.17,0.27,0.37) 0.073333 4.37E−06

Fig. 5. Failure probability comparison for basic events b1–b18.
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Fig. 6. Failure probability comparison for basic events b19–b37.
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