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Abstract This paper proposes an adaptive Wiener filtering
method for speech enhancement. This method depends on
the adaptation of the filter transfer function from sample
to sample based on the speech signal statistics; the local
mean and the local variance. It is implemented in the time
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domain rather than in the frequency domain to accommo-
date for the time-varying nature of the speech signals. The
proposed method is compared to the traditional frequency-
domain Wiener filtering, spectral subtraction and wavelet
denoising methods using different speech quality metrics.
The simulation results reveal the superiority of the proposed
Wiener filtering method in the case of Additive White Gaus-
sian Noise (AWGN) as well as colored noise.

Keywords Speech enhancement · Wiener filter · Spectral
subtraction · Wavelet denoising

1 Introduction

Speech signals are the most widely used signals between
humans, to convey messages. Hence, the researchers gave
a large attention to speech processing and proposed lots of
researches in speech and hearing sciences (Ying et al. 2008;
Wu et al. 2000). Speech processing systems are used in a
wide variety of applications such as speech coding for com-
munications, speech recognition for automatic information
systems and speech pre-processing for aids to hearing im-
paired persons. These systems are designed under the as-
sumption that corruptive background noises are absent. In
a noisy environment, speech enhancement is suggested to
improve the performance of these systems.

Speech enhancement is a word used to describe algo-
rithms, which can be used to improve the quality, decrease
the hearing fatigue of noisy speech, increase intelligibility,
and improve the performance of the voice communication
systems (Quatieri 2002). On the other hand, no speech en-
hancement systems can improve both speech quality and in-
telligibility. Basically, speech intelligibility can be viewed
as an aspect of quality, since high-quality speech always
gives good intelligibility, and unintelligible speech would
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not be classified as having high quality. In many previous
researches, speech enhancement increases the quality but
reduces the intelligibility (Kusumoto et al. 2005). Several
methods have been proposed for this purpose like the spec-
tral subtraction method, the signal subspace method, the
Wiener filtering method, and the wavelet denoising method
(Boll 1979; Berouti et al. 1979; Ephriam and Van Trees
1993; Haykin 1996; Lim and Oppenheim 1978). The im-
provement of the speech Signal-to-Noise Ratio (SNR) is the
goal of most techniques.

Spectral subtraction is one of the traditional methods
used for enhancing speech degraded by additive station-
ary background noise (Deller et al. 2000; Ghanbari and
Karami 2004; Ghanbari et al. 2004). It can be categorized
as a non-parametric method, which needs an estimate of the
noise spectrum. A common problem for spectral subtraction
method is the characteristic of the residual noise called mu-
sical noise. Spectral subtraction also does not attenuate noise
sufficiently during the silence period.

Wiener filtering (Boll 1979) is an alternative method to
spectral subtraction for enhancing the speech signal. The
Wiener filter is a linear filter employed to recover the origi-
nal speech signal from the noisy signal by minimizing the
Mean Square Error (MSE) between the estimated signal
and the original one. Wavelet de-noising (Vaseghi 2000;
Manikandan 2006; Shao and Chang 2005) is another method
based on wavelet decomposition of the noisy signal and
thresholding in the wavelet domain to remove noise. The
wavelet transform is exploited to decompose the noisy sig-
nal into sub-bands, and the reduction of noise is performed
by either hard or soft thresholding. The disadvantage of this
method is that it tends to distort some useful components of
the original speech as well. There are also some other meth-
ods that adapt the statistical model of a recognizer to iden-
tify noise characteristics before speech enhancement (Boll
1979).

In this paper, we present an adaptive Wiener filtering
method for speech enhancement. This method considers the
local statistics of the speech signal, and it is carried out in the
time domain. The rest of the paper is organized as follows.
In Sect. 2, a review of the spectral subtraction method is pre-
sented. In Sect. 3, the traditional frequency-domain Wiener
filtering method is revisited. In Sect. 4, the wavelet hard and
soft thresholding is illustrated. Section 5 presents the sug-
gested adaptive Wiener filtering method for speech enhance-
ment. In Sect. 6, a comparison study between the proposed
method and the traditional methods is presented. Finally, the
concluding remarks are given in Sect. 7.

2 Spectral subtraction

Spectral subtraction is one of earliest and important meth-
ods used for speech enhancement. It is based on subtract-

ing the noise spectrum from the noisy signal spectrum
to obtain an estimate of the clean signal spectrum, and
then reconstructing the signal from the estimated spectrum
(Lim and Oppenheim 1978; Ghanbari and Karami 2004;
Ghanbari et al. 2004; Handel 2007). Different techniques
are used for calculating the spectrum of a speech signal. The
signal can be passed through a filter bank to produce a se-
ries of sub-band signals, or a spectral transformer such as
the Discrete Fourier Transform (DFT) can be applied to the
signal. Let x(n) be a noisy signal (Handel 2007):

x(n) = s(n) + v(n) (1)

where s(n) is the clean signal, and v(n) is the noise. As-
sume that the clean signal and the noise are uncorrelated.
The spectral subtraction method is applied as follows (Han-
del 2007):

Ŝ(ω) = (∣∣X(ω)
∣∣ − ∣∣N̂(ω)

∣∣) exp
(
j∠X(ω)

)
(2)

where Ŝ(ω) is the estimated short term spectral magnitude
of the clean signal, N̂(ω) is the estimated noise magni-
tude spectrum, and X(ω) is the noisy observation magni-
tude spectrum. The estimated time-domain speech signal is
obtained as the inverse Fourier transform of Ŝ(ω).

From Eq. (2), the estimation of the clean speech signal
is based on obtaining an accurate spectral estimate of the
noise. In fact, the noise spectrum is not available; an aver-
aged estimate of the noise is different from the actual noise
contents in the instantaneous speech spectrum. By subtract-
ing a smoothed estimate of the noise spectrum, some sinu-
soidal energy appears at various frequencies in the estimated
speech. This energy represents musical tones, which affect
the quality of the enhanced speech, and are impossible to
remove completely (Boll 1990).

The degradation of the intelligibility of the enhanced
speech is the main limitation of the spectral subtraction tech-
nique, especially at low SNR levels (Boll 1990). Efficiency
could be improved by improving the performance of the
speech silence detection algorithm.

3 Wiener filter

Wiener filtering is another method to suppress noise in
speech signals. It is based on minimizing the MSE between
the estimated signal magnitude spectrum Ŝ(ω) and the orig-
inal signal magnitude spectrum S(ω). The formulation of
the optimal wiener filter is as follows (Lim and Oppenheim
1979):

H(ω) = Ss(ω)

Ss(ω) + Sn(ω)
(3)

where Ss(ω) and Sn(ω) represent the estimated power spec-
tra of the noise-free signal and the background noise, which
are assumed uncorrelated and stationary. After calculating
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the transfer function of the Wiener filter, the speech signal is
recovered through (Lim and Oppenheim 1979):

Ŝ(ω) = X(ω)H(ω) (4)

In a modified Wiener filter, an adjustable parameter α has
been included in the following generalized form Lim and
Oppenheim (1979):

H(ω) =
(

Ss(ω)

Ss(ω) + βSn(ω)

)α

(5)

where β is the noise suppression factor.

4 Wavelet denoising

As wavelet analysis has its basis emulating the front-end
auditory periphery, efforts have been made to take advan-
tage of this signal-processing tool for speech enhancement.
The mostly used approach is based on the non-linear thresh-
olding of the wavelet coefficients, which bridges the multi-
resolution analysis and non-linear filtering. The Threshold-
ing process is a denoising process.

The wavelet transform decomposes the noisy speech sig-
nal into two component coefficients; approximation or low-
pass coefficients and details or high-pass coefficients. Each
of the approximation or the detail components has half the
length of the original speech signal. Most of the speech sig-
nal energy is concentrated in the approximation component
(Sheikhzadeh 2001). So, the effect of noise on the approx-
imation component is small and on the detail component
is large. If a thresholding process is performed on the de-
tail component, it reduces the noise significantly, leaving the
signal energy unaffected.

4.1 Thresholding principles

Assume that the wavelet transform of the noisy signal x(n)

in Eq. (1) is given by X. Thresholding is performed on the
detail components of X. There are generally two ways of
thresholding; hard thresholding and soft thresholding. Hard
thresholding is defined as follows (Johnstone and Silverman
1997):

ThrHard(X,T ) =
{

X |X| > T

0 |X| < T
(6)

where T is the selected threshold value.
And soft thresholding is defined as follows (Johnstone

and Silverman 1997):

Thrsoft(X,T ) =
{

sgn(X)(|X| − T ) |X| > T

0 |X| < T
(7)

where

sgn(x) =
⎧
⎨

⎩

−1 if x < 0
0 if x = 0
1 if x > 0

(8)

Both of these two methods suffer from distortion of the
speech, because they set coefficients that may carry some
useful information to zero, resulting in observable sharp
time frequency discontinuities in the speech spectrogram.

4.2 How to choose the threshold

The choice of the threshold value can be made in several
ways. Donoho derived the following formula based on an
AWGN assumption (Johnstone and Silverman 1997):

T = σ
√

2 log(N) (9)

where T is the threshold value, N is the length of the noisy
signal, and σ = MAD/0.6745, with MAD denoting the ab-
solute median estimated on the first scale of the wavelet co-
efficients.

Johnstone and Silverman proposed a level dependent
thresholding method to deal with correlated noise, where for
each frequency interval, the threshold is proportional to the
standard deviation of the noise in that interval (Bahoura and
Rouat 2001; Shao and Chang 2005):

λa = σa

√
2 log(Na) (10)

with σa = MADa/0.6745, Na is the number of samples
in scale a, and MADa is the absolute median estimated at
scale a.

Although the wavelet denoising method does not re-
quire a speech or noise model, and can be applied to a
broader class of signals, merely a general thresholding on
the wavelet coefficients does not guarantee a good perfor-
mance.

5 Adaptive Wiener filtering

This proposed adaptive Wiener filter benefits from the vary-
ing local statistics of the speech signal. A block diagram of
the adaptive Wiener filtering method is illustrated in Fig. 1.
In the filtering process, the estimated local mean mx and lo-
cal variance σ 2

x of the signal x(n) are exploited.

Fig. 1 Speech enhancement with adaptive Wiener filter
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Fig. 2 Time-domain waveform
and spectrogram of the clean
male signal

It is assumed that the additive noise v(n) is of zero mean
and has a white nature with variance σ 2

v . Thus, the power
spectrum Pv(ω) can be approximated by:

Pv(ω) = σ 2
v (11)

Consider a small segment of the speech signal in which the
signal x(n) is assumed to be stationary, The signal x(n) can
be modeled by:

x(n) = mx + σxw(n) (12)

where mx and σx are the local mean and standard deviation
of x(n). w(n) is a unit variance noise with a zero mean. So,
the mean of the original signal ms is equal to mx .

Within this small segment of speech, the Wiener filter
transfer function can be approximated by:

H(ω) = Ps(ω)

Ps(ω) + Pv(ω)
= σ 2

s

σ 2
s + σ 2

v

(13)

From Eq. (13), the impulse response of the wiener filter can
be obtained by:

h(n) = σ 2
s

σ 2
s + σ 2

v

δ(n) (14)

From Eq. (14), the enhanced speech signal ŝ(n) within this
local segment can be expressed as:

ŝ(n) = ms + (
x(n) − ms

) σ 2
s

σ 2
s + σ 2

v

δ(n)

= ms + σ 2
s

σ 2
s + σ 2

v

(
x(n) − ms

)
(15)

If it is assumed that ms and σs are updated at each sample,
we can say that:

ŝ(n) = ms(n) + σ 2
s (n)

σ 2
s (n) + σ 2

v

(
x(n) − ms(n)

)
(16)

We can estimate ms(n) in Eq. (16) from x(n) as follows:

m̂s(n) = 1

(2M + 1)

n+M∑

k=n−M

x(k) (17)

where (2M + 1) is the number of samples in the short seg-
ment used in the estimation.

To measure the local signal statistics in the system of
Fig. 2, we have σ 2

x = σ 2
s + σ 2

v , and hence,

σ̂ 2
s (n) =

{
σ̂ 2

x (n) − σ̂ 2
v , if σ̂ 2

x (n) > σ̂ 2
v

0, otherwise
(18)

where

σ̂ 2
x (n) = 1

(2M + 1)

n+M∑

k=n−M

(
x(k) − m̂x(n)

)2 (19)

By this proposed method, we guarantee that the filter
transfer function is adapted from sample to sample based
on the speech signal local statistics.

6 Simulation results

For the evaluation purpose, we have used a speech signal for
the sentence “We were away year ago” for a male and for
a female. We used speech quality metrics such as the SNR,
segmental SNR (SNRseg), Log-Likelihood Ratio (LLR) and
Spectral Distortion (SD). We first began with the male signal
and added AWGN to it with SNRs of −5 and 5 dB. The
results of all enhancement methods explained above on the
male speech signal for SNR of 5 dB are shown in Figs. 2
to 8.
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Fig. 3 Time-domain waveform
and spectrogram of the noisy
male signal with AWGN at
SNR = 5 dB

Fig. 4 Time-domain waveform
and spectrogram of the
enhanced signal using the
spectral subtraction method.
SNR = 5.0439 dB,
SNRseg = 5.0164 dB,
LLR = 0.2336, SD = 8.4721 dB

Fig. 5 Time-domain waveform
and spectrogram of the
enhanced signal using the
Wiener filtering method.
SNR = 4.9880 dB,
SNRseg = 4.9604 dB,
LLR = 0.2383, SD = 8.5090 dB
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Fig. 6 Time-domain waveform
and spectrogram of the
enhanced male signal using the
hard thresholding technique.
SNR = 6.5002 dB,
SNRseg = 6.4605 dB,
LLR = 0.1945, SD = 7.6423 dB

Fig. 7 Time-domain waveform
and spectrogram of the
enhanced male signal using the
soft thresholding technique.
SNR = 6.4884 dB,
SNRseg = 6.4506 dB,
LLR = 0.1942, SD = 7.6463 dB

Fig. 8 Time-domain waveform
and spectrogram of the
enhanced male signal using the
adaptive Wiener Filtering
method. SNR = 6.8726 dB,
SNRseg = 6.8423 dB,
LLR = 0.1609, SD = 7.3006 dB
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Fig. 9 Time-domain waveform
and spectrogram of the noisy
male signal with colored noise
at SNR = 5 dB

Fig. 10 Time-domain
waveform and spectrogram of
the enhanced male signal using
the spectral subtraction method.
SNR = 5.0571 dB,
SNRseg = 5.0235 dB,
LLR = 0.1340, SD = 8.5551 dB

Fig. 11 Time-domain
waveform and spectrogram of
the enhanced male signal using
the Wiener filtering method.
SNR = 5.0005 dB,
SNRseg = 4.9668 dB,
LLR = 0.1333, SD = 8.5926 dB
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Fig. 12 Time-domain
waveform and spectrogram of
the enhanced male signal using
the hard thresholding method.
SNR = 5.5011 dB,
SNRseg = 5.4711 dB,
LLR = 0.3625, SD = 8.1469 dB

Fig. 13 Time-domain
waveform and spectrogram of
the enhanced male signal using
the soft thresholding method.
SNR = 6.5776 dB,
SNRseg = 6.5449 dB,
LLR = 0.2606, SD = 7.5809 dB

Fig. 14 Time-domain
waveform and spectrogram of
the enhanced male signal using
the adaptive Wiener Filtering
method. SNR = 6.1153 dB,
SNRseg = 6.0893 dB,
LLR = 0.3831, SD = 7.7822 dB
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Fig. 15 Output SNR vs. input SNR for all methods on the male signal
in the AWGN case

Fig. 16 SNRseg vs. input SNR for all methods on the male signal in
the AWGN case

For the colored noise case, we simulated colored noise
by lowpass filtering of the AWGN prior to adding it to the
signal. We also tested all speech enhancement methods on
the male and the female signals in the presence of colored
noise. The results of the tests for the male signal at SNR
equal 5 dB are shown in Figs. 9 to 14. Figure 15 shows the
output SNR versus the input SNR for all methods on the
male signal. Figure 16 shows the SNRseg versus the input
SNR for all methods on the male signal. Figure 17 shows
the variation of the LLR versus the input SNR for all meth-
ods on the male signal. Figure 18 shows the variation of the
SD versus the input SNR for all methods on the male signal.
The case of the colored noise has also been studied in the
comparison and its results are given in Figs 19 to 22. A sim-
ilar study has been repeated on the female signal, and the
results are tabulated in Tables 1 to 4.These results are all in
favor of the proposed adaptive Wiener filtering method.

Fig. 17 LLR vs. input SNR for all methods on the male signal in the
AWGN case

Fig. 18 SD vs. input SNR for all methods on the male signal in the
AWGN case

7 Conclusion

An adaptive Wiener filtering method for speech enhance-
ment has been presented in this paper. This method depends
on the adaptation of the filter impulse response from sample
to sample based on the speech signal statistics. The results
show that the proposed adaptive Wiener filtering method
has the best performance as compared to all other speech
enhancement methods mentioned in this paper at both low
and high SNR values. The proposed filter succeeds in both
the AWGN and the colored noise cases. This is attributed
to the adaptive nature of the filter impulse response. This
proposed adaptive Wiener filter has another advantage of
being dependent only on the noisy signal as a single in-
put.
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Fig. 19 Output SNR vs. input SNR for all methods on the male signal
in the colored noise case

Fig. 20 SNRseg vs. input SNR for all methods on the male signal in
the colored noise case

Fig. 21 LLR vs. input SNR for all methods on the male signal in the
colored noise case

Fig. 22 SD vs. input SNR for all methods on the male signal in the
colored noise case

Table 1 Results for SNR = −5 dB for the AWGN case

Signals Metric Noisy signal Spectral subtraction Wiener filtering Adaptive Wiener filtering Hard threshold Soft threshold

Male SNR −5.034 −5.0126 −5.0338 −2.1110 −2.3152 −2.7080

LLR 0.5663 0.5679 0.5656 0.3935 0.2701 0.3000

SNRseg −5.048 −5.0263 −5.0475 −2.1412 −2.3451 2.7315

SD 18.052 18.0208 18.0517 14.4264 14.6439 15.1937

Female SNR −5.070 −5.0550 −5.0699 −2.1248 −2.2984 −3.0666

LLR 0.3021 0.2993 0.3022 0.3776 0.3861 0.3781

SNRseg −5.104 −5.0889 −5.1037 −2.1674 −2.3434 −3.1055

SD 17.803 17.7814 17.8022 14.2275 14.5844 15.4801
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Table 2 Results for SNR = −5 dB for the colored noise case

Signals Metric Noisy signal Spectral subtraction Wiener filtering Adaptive Wiener filtering Hard threshold Soft threshold

Male SNR −4.9999 −4.9781 −4.9994 −2.0612 −2.2013 −2.6602

LLR 0.3070 0.3059 0.3065 0.2518 0.2147 0.2225

SNRseg −5.0251 −5.0033 −5.0246 −2.0923 −2.2294 −2.6938

SD 18.0640 18.0321 18.0634 14.5021 14.7059 15.2124

Female SNR −5.0002 −4.9849 −4.9998 −2.0534 −2.1545 −2.9303

LLR 0.3484 0.3470 0.3482 0.3268 0.2979 0.3208

SNRseg −5.0299 −5.0146 −5.0295 −2.0865 −2.1847 −2.9638

SD 17.7959 17.7745 17.7955 14.2892 14.2804 15.3252

Table 3 Results for SNR = 5 dB for the AWGN case

Signals Metric Noisy signal Spectral subtraction Wiener filtering Adaptive Wiener filtering Hard threshold Soft threshold

Male SNR 4.9877 5.0439 4.9880 6.8726 6.5002 6.4884

LLR 0.2383 0.2336 0.2383 0.1609 0.1945 0.1942

SNRseg 4.9601 5.0164 4.9604 6.8423 6.4605 6.4506

SD 8.5092 8.4721 8.5090 7.3006 7.6423 7.6463

Female SNR 4.9971 5.0399 4.9974 6.8373 6.9567 6.9486

LLR 0.3232 0.3434 0.3240 0.3004 0.2061 0.2063

SNRseg 4.9679 5.0106 4.9682 6.8021 6.9183 6.9097

SD 8.4378 8.4092 8.4376 7.2527 7.2023 7.2019

Table 4 Results for SNR = 5 dB for the colored noise case

Signals Metric Noisy signal Spectral subtraction Wiener filtering Adaptive Wiener filtering Hard threshold Soft threshold

Male SNR 5.0001 5.0571 5.0005 6.9061 6.5832 6.5776

LLR 0.1333 0.1340 0.1333 0.2900 0.2637 0.2606

SNRseg 4.9665 5.0235 4.9668 6.8673 6.5489 6.5449

SD 8.5928 8.5551 8.5926 7.3502 7.5738 7.5809

Female SNR 4.9998 5.0425 5.0001 6.8292 7.0006 6.9737

LLR 0.2104 0.2110 0.2105 0.2329 0.1754 0.1750

SNRseg 4.9733 5.0161 4.9736 6.7984 6.9591 6.9291

SD 8.4450 8.4177 8.4449 7.2977 7.1786 7.1911
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