

 :ارائه شده توسط

ه فا �� سايت ��

� مرجع �� ه شده جديد�� �� مقا�ت ��

ت معت � �# از ن%$

http://tarjomefa.com/

NTFS Basics

The Windows NT file system (NTFS) provides a combination of

performance, reliability, and compatibility not found in the FAT file
system. It is designed to quickly perform standard file operations such

as read, write, and search - and even advanced operations such as file-
system recovery - on very large hard disks.

Formatting a volume with the NTFS file system results in the creation of

several system files and the Master File Table (MFT), which contains
information about all the files and folders on the NTFS volume.

The first information on an NTFS volume is the Partition Boot Sector,
which starts at sector 0 and can be up to 16 sectors long. The first file

on an NTFS volume is the Master File Table (MFT).

The following figure illustrates the layout of an NTFS volume when
formatting has finished.

Figure 5-1 Formatted NTFS Volume

This chapter covers information about NTFS. Topics covered are listed

below:

 NTFS Partition Boot Sector
 NTFS Master File Table (MFT)

 NTFS File Types
 NTFS File Attributes

 NTFS System Files
 NTFS Multiple Data Streams

 NTFS Compressed Files
 NTFS & EFS Encrypted Files

� Using EFS
� EFS Internals

� $EFS Attribute
� Issues with EFS

 NTFS Sparse Files
 NTFS Data Integrity and Recoverability

The NTFS file system includes security features required for file servers

and high-end personal computers in a corporate environment. The NTFS

file system also supports data access control and ownership privileges
that are important for the integrity of critical data. While folders shared

on a Windows NT computer are assigned particular permissions, NTFS
files and folders can have permissions assigned whether they are shared

or not. NTFS is the only file system on Windows NT that allows you to
assign permissions to individual files.

The NTFS file system has a simple, yet very powerful design. Basically,

everything on the volume is a file and everything in a file is an attribute,
from the data attribute, to the security attribute, to the file name
attribute. Every sector on an NTFS volume that is allocated belongs to
some file. Even the file system metadata (information that describes the

file system itself) is part of a file.

What's New in NTFS5 (Windows 2000)

Encryption The Encrypting File System (EFS) provides the core file
encryption technology used to store encrypted files on NTFS volumes.

EFS keeps files safe from intruders who might gain unauthorized
physical access to sensitive, stored data (for example, by stealing a
portable computer or external disk drive).

Disk Quotas Windows 2000 supports disk quotas for NTFS volumes.
You can use disk quotas to monitor and limit disk-space use.

Reparse Points Reparse points are new file system objects in NTFS

that can be applied to NTFS files or folders. A file or folder that contains
a reparse point acquires additional behavior not present in the

underlying file system. Reparse points are used by many of the new
storage features in Windows 2000, including volume mount points.

Volume Mount Points Volume mount points are new to NTFS. Based

on reparse points, volume mount points allow administrators to graft
access to the root of one local volume onto the folder structure of
another local volume.

Sparse Files Sparse files allow programs to create very large files but
consume disk space only as needed.

Distributed Link Tracking NTFS provides a link-tracking service that

maintains the integrity of shortcuts to files as well as OLE links within
compound documents.

Partition Boot Sector

Table 5-1 describes the boot sector of a volume formatted with NTFS.
When you format an NTFS volume, the format program allocates the

first 16 sectors for the boot sector and the bootstrap code.

Table 5-1 NTFS Boot Sector

Byte

Offset

Field

Length

Field Name

0x00 3 bytes Jump Instruction

0x03 LONGLONG OEM ID

0x0B 25 bytes BPB

0x24 48 bytes Extended BPB

0x54 426 bytes Bootstrap Code

0x01FE WORD End of Sector
Marker

On NTFS volumes, the data fields that follow the BPB form an extended
BPB. The data in these fields enables Ntldr (NT loader program) to find

the master file table (MFT) during startup. On NTFS volumes, the MFT is
not located in a predefined sector, as on FAT16 and FAT32 volumes. For

this reason, the MFT can be moved if there is a bad sector in its normal
location. However, if the data is corrupted, the MFT cannot be located,

and Windows NT/2000 assumes that the volume has not been
formatted.

The following example illustrates the boot sector of an NTFS volume

formatted while running Windows 2000. The printout is formatted in
three sections:

 Bytes 0x00- 0x0A are the jump instruction and the OEM ID (shown

in bold print).
 Bytes 0x0B-0x53 are the BPB and the extended BPB.

 The remaining code is the bootstrap code and the end of sector
marker (shown in bold print).

 Physical Sector:Cyl 0, Side 1, Sector 1
 00000000:EB 52 90 4E 54 46 53 20 -20 20 20 00 02 08
00 00 .R.NTFS
 00000010:00 00 00 00 00 F8 00 00 -3F 00 FF 00 3F 00
00 00?...?...
 00000020:00 00 00 00 80 00 80 00 -4A F5 7F 00 00 00
00 00J.......

 00000030:04 00 00 00 00 00 00 00 -54 FF 07 00 00 00
00 00T.......
 00000040:F6 00 00 00 01 00 00 00 -14 A5 1B 74 C9 1B
74 1Ct..t.
 00000050:00 00 00 00 FA 33 C0 8E -D0 BC 00 7C FB B8
C0 073.....|....
 00000060:8E D8 E8 16 00 B8 00 0D -8E C0 33 DB C6 06
0E 003.....
 00000070:10 E8 53 00 68 00 0D 68 -6A 02 CB 8A 16 24
00 B4 ..S.h..hj....$..
 00000080:08 CD 13 73 05 B9 FF FF -8A F1 66 0F B6 C6
40 66 ...s......f...@f
 00000090:0F B6 D1 80 E2 3F F7 E2 -86 CD C0 ED 06 41
66 0F?.......Af.
 000000A0:B7 C9 66 F7 E1 66 A3 20 -00 C3 B4 41 BB AA
55 8A ..f..f....A..U.
 000000B0:16 24 00 CD 13 72 0F 81 -FB 55 AA 75 09 F6
C1 01 .$...r...U.u....
 000000C0:74 04 FE 06 14 00 C3 66 -60 1E 06 66 A1 10
00 66 t......f`..f...f
 000000D0:03 06 1C 00 66 3B 06 20 -00 0F 82 3A 00 1E
66 6Af;....:..fj
 000000E0:00 66 50 06 53 66 68 10 -00 01 00 80 3E 14
00 00 .fP.Sfh.....>...
 000000F0:0F 85 0C 00 E8 B3 FF 80 -3E 14 00 00 0F 84
61 00>.....a.
 00000100:B4 42 8A 16 24 00 16 1F -8B F4 CD 13 66 58
5B 07 .B..$......fX [..
 00000110:66 58 66 58 1F EB 2D 66 -33 D2 66 0F B7 0E
18 00 fXfX.-f3.f......
 00000120:66 F7 F1 FE C2 8A CA 66 -8B D0 66 C1 EA 10
F7 36 f......f..f....6
 00000130:1A 00 86 D6 8A 16 24 00 -8A E8 C0 E4 06 0A
CC B8$.........
 00000140:01 02 CD 13 0F 82 19 00 -8C C0 05 20 00 8E
C0 66f
 00000150:FF 06 10 00 FF 0E 0E 00 -0F 85 6F FF 07 1F
66 61o...fa
 00000160:C3 A0 F8 01 E8 09 00 A0 -FB 01 E8 03 00 FB
EB FE
 00000170:B4 01 8B F0 AC 3C 00 74 -09 B4 0E BB 07 00
CD 10<.t........
 00000180:EB F2 C3 0D 0A 41 20 64 -69 73 6B 20 72 65
61 64A disk read
 00000190:20 65 72 72 6F 72 20 6F -63 63 75 72 72 65
64 00 error occurred.

 000001A0:0D 0A 4E 54 4C 44 52 20 -69 73 20 6D 69 73
73 69 ..NTLDR is missi
 000001B0:6E 67 00 0D 0A 4E 54 4C -44 52 20 69 73 20
63 6F ng...NTLDR is co
 000001C0:6D 70 72 65 73 73 65 64 -00 0D 0A 50 72 65
73 73 mpressed...Press
 000001D0:20 43 74 72 6C 2B 41 6C -74 2B 44 65 6C 20
74 6F Ctrl+Alt+Del to
 000001E0:20 72 65 73 74 61 72 74 -0D 0A 00 00 00 00
00 00 restart........
 000001F0:00 00 00 00 00 00 00 00 -83 A0 B3 C9 00 00
55 AAU.

The following table describes the fields in the BPB and the extended BPB

on NTFS volumes. The fields starting at 0x0B, 0x0D, 0x15, 0x18, 0x1A,
and 0x1C match those on FAT16 and FAT32 volumes. The sample values
correspond to the data in this example.

Byte
Offset

Field
Length

Sample Value Field Name

0x0B WORD 0x0002 Bytes Per Sector

0x0D BYTE 0x08 Sectors Per Cluster

0x0E WORD 0x0000 Reserved Sectors

0x10 3 BYTES 0x000000 always 0

0x13 WORD 0x0000 not used by NTFS

0x15 BYTE 0xF8 Media Descriptor

0x16 WORD 0x0000 always 0

0x18 WORD 0x3F00 Sectors Per Track

0x1A WORD 0xFF00 Number Of Heads

0x1C DWORD 0x3F000000 Hidden Sectors

0x20 DWORD 0x00000000 not used by NTFS

0x24 DWORD 0x80008000 not used by NTFS

0x28 LONGLONG 0x4AF57F0000000000 Total Sectors

0x30 LONGLONG 0x0400000000000000

Logical Cluster

Number for the file
$MFT

0x38 LONGLONG 0x54FF070000000000

Logical Cluster

Number for the file
$MFTMirr

0x40 DWORD 0xF6000000
Clusters Per File
Record Segment

0x44 DWORD 0x01000000
Clusters Per Index
Block

0x48 LONGLONG 0x14A51B74C91B741C
Volume Serial

Number

0x50 DWORD 0x00000000 Checksum

Protecting the Boot Sector

Because a normally functioning system relies on the boot sector to

access a volume, it is highly recommended that you run disk scanning
tools such as Chkdsk regularly, as well as back up all of your data files

to protect against data loss if you lose access to a volume.

 NTFS Master File Table (MFT)

Each file on an NTFS volume is represented by a record in a special file
called the master file table (MFT). NTFS reserves the first 16 records of
the table for special information. The first record of this table describes
the master file table itself, followed by a MFT mirror record. If the first
MFT record is corrupted, NTFS reads the second record to find the MFT

mirror file, whose first record is identical to the first record of the MFT.
The locations of the data segments for both the MFT and MFT mirror file

are recorded in the boot sector. A duplicate of the boot sector is located
at the logical center of the disk.

The third record of the MFT is the log file, used for file recovery. The

seventeenth and following records of the master file table are for each
file and directory (also viewed as a file by NTFS) on the volume.

Figure provides a simplified illustration of the MFT structure:

Figure 5-2 MFT Structure

The master file table allocates a certain amount of space for each file
record. The attributes of a file are written to the allocated space in the
MFT. Small files and directories (typically 1500 bytes or smaller), such
as the file illustrated in next figure, can entirely be contained within the

master file table record.

Figure 5-2 MFT Record for a Small File or Directory:

This design makes file access very fast. Consider, for example, the FAT
file system, which uses a file allocation table to list the names and

addresses of each file. FAT directory entries contain an index into the
file allocation table. When you want to view a file, FAT first reads the file

allocation table and assures that it exists. Then FAT retrieves the file by
searching the chain of allocation units assigned to the file. With NTFS,

as soon as you look up the file, it's there for you to use.

Directory records are housed within the master file table just like file
records. Instead of data, directories contain index information. Small

directory records reside entirely within the MFT structure. Large

directories are organized into B-trees, having records with pointers to
external clusters containing directory entries that could not be contained

within the MFT structure.

NTFS File Types

 NTFS File Attributes
 NTFS System Files

 NTFS Multiple Data Streams
 NTFS Compressed Files

 NTFS Encrypted Files
 Using EFS
 EFS Internals
 $EFS Attribute

 Issues with EFS
 NTFS Sparse Files

NTFS File Attributes

The NTFS file system views each file (or folder) as a set of file
attributes. Elements such as the file's name, its security information,

and even its data, are all file attributes. Each attribute is identified by an
attribute type code and, optionally, an attribute name.

When a file's attributes can fit within the MFT file record, they are called

resident attributes. For example, information such as filename and time
stamp are always included in the MFT file record. When all of the

information for a file is too large to fit in the MFT file record, some of its
attributes are nonresident. The nonresident attributes are allocated one

or more clusters of disk space elsewhere in the volume. NTFS creates
the Attribute List attribute to describe the location of all of the attribute
records.

Table 5-3 lists all of the file attributes currently defined by the NTFS file
system. This list is extensible, meaning that other file attributes can be

defined in the future.

Table 5-3 File Attributes Defined by NTFS

Attribute

Type
Description

Standard

Information

Includes information such as timestamp and link

count.

Attribute List Lists the location of all attribute records that do not

fit in the MFT record.

File Name A repeatable attribute for both long and short file
names. The long name of the file can be up to 255

Unicode characters. The short name is the 8.3, case-
insensitive name for the file. Additional names, or

hard links, required by POSIX can be included as
additional file name attributes.

Security

Descriptor

Describes who owns the file and who can access it.

Data Contains file data. NTFS allows multiple data

attributes per file. Each file typically has one
unnamed data attribute. A file can also have one or

more named data attributes, each using a particular
syntax.

Object ID A volume-unique file identifier. Used by the
distributed link tracking service. Not all files have

object identifiers.

Logged Tool

Stream

Similar to a data stream, but operations are logged to

the NTFS log file just like NTFS metadata changes.
This is used by EFS.

Reparse

Point

Used for volume mount points. They are also used by

Installable File System (IFS) filter drivers to mark
certain files as special to that driver.

Index Root Used to implement folders and other indexes.

Index
Allocation

Used to implement folders and other indexes.

Bitmap Used to implement folders and other indexes.

Volume

Information

Used only in the $Volume system file. Contains the

volume version.

Volume
Name

Used only in the $Volume system file. Contains the
volume label.

NTFS System Files

NTFS includes several system files, all of which are hidden from view on

the NTFS volume. A system file is one used by the file system to store
its metadata and to implement the file system. System files are placed
on the volume by the Format utility.

Table 5-4 Metadata Stored in the Master File Table

System File MFT Purpose of the File

File Name Record

Master file
table

$Mft 0 Contains one base file record for
each file and folder on an NTFS

volume. If the allocation
information for a file or folder is

too large to fit within a single
record, other file records are
allocated as well.

Master file
table 2

$MftMirr 1 A duplicate image of the first four
records of the MFT. This file
guarantees access to the MFT in

case of a single-sector failure.

Log file $LogFile 2 Contains a list of transaction steps
used for NTFS recoverability. Log

file size depends on the volume
size and can be as large as 4 MB.

It is used by Windows NT/2000 to
restore consistency to NTFS after a
system failure.

Volume $Volume 3 Contains information about the

volume, such as the volume label
and the volume version.

Attribute
definitions

$AttrDef 4 A table of attribute names,
numbers, and descriptions.

Root file
name

index

$ 5 The root folder.

Cluster
bitmap

$Bitmap 6 A representation of the volume
showing which clusters are in use.

Boot
sector

$Boot 7 Includes the BPB used to mount
the volume and additional

bootstrap loader code used if the
volume is bootable.

Bad
cluster file

$BadClus 8 Contains bad clusters for the
volume.

Security

file

$Secure 9 Contains unique security

descriptors for all files within a
volume.

Upcase
table

$Upcase 10 Converts lowercase characters to
matching Unicode uppercase

characters.

NTFS

extension
file

$Extend 11 Used for various optional

extensions such as quotas, reparse
point data, and object identifiers.

 12–15 Reserved for future use.

NTFS Multiple Data Streams

NTFS supports multiple data streams, where the stream name identifies
a new data attribute on the file. A handle can be opened to each data

stream. A data stream, then, is a unique set of file attributes. Streams
have separate opportunistic locks, file locks, and sizes, but common

permissions.

This feature enables you to manage data as a single unit. The following
is an example of an alternate stream:

 myfile.dat:stream2

A library of files might exist where the files are defined as alternate
streams, as in the following example:

 library:file1
 :file2
 :file3

A file can be associated with more than one application at a time, such
as Microsoft® Word and Microsoft® WordPad. For instance, a file
structure like the following illustrates file association, but not multiple

files:

 program:source_file
 :doc_file
 :object_file
 :executable_file

To create an alternate data stream, at the command prompt, you can
type commands such as:

 echo text>program:source_file
 more<program:source_file

Important
When you copy an NTFS file to a FAT volume, such as a floppy disk,

data streams and other attributes not supported by FAT are lost.

NTFS Compressed Files

Windows NT/2000 supports compression on individual files, folders, and
entire NTFS volumes. Files compressed on an NTFS volume can be read

and written by any Windows-based application without first being
decompressed by another program.

Decompression occurs automatically when the file is read. The file is

compressed again when it is closed or saved. Compressed files and
folders have an attribute of C when viewed in Windows Explorer.

Only NTFS can read the compressed form of the data. When an
application such as Microsoft® Word or an operating system command
such as copy requests access to the file, the compression filter driver

decompresses the file before making it available. For example, if you
copy a compressed file from another Windows NT/2000–based computer

to a compressed folder on your hard disk, the file is decompressed when
read, copied, and then recompressed when saved.

This compression algorithm is similar to that used by the Windows 98

application DriveSpace 3, with one important difference — the limited
functionality compresses the entire primary volume or logical volume.

NTFS allows for the compression of an entire volume, of one or more
folders within a volume, or even one or more files within a folder of an

NTFS volume.

The compression algorithms in NTFS are designed to support cluster
sizes of up to 4 KB. When the cluster size is greater than 4 KB on an

NTFS volume, none of the NTFS compression functions are available.

Each NTFS data stream contains information that indicates whether any
part of the stream is compressed. Individual compressed buffers are

identified by "holes" following them in the information stored for that
stream. If there is a hole, NTFS automatically decompresses the

preceding buffer to fill the hole.

NTFS provides real-time access to a compressed file, decompressing the
file when it is opened and compressing it when it is closed. When writing

a compressed file, the system reserves disk space for the uncompressed
size. The system gets back unused space as each individual compression
buffer is compressed.

EFS - Encrypting File System. Encrypted Files and
Folders (NTFS5 only)

The Encrypting File System (EFS) provides the core file encryption

technology used to store encrypted files on NTFS volumes. EFS keeps
files safe from intruders who might gain unauthorized physical access to

sensitive, stored data (for example, by stealing a portable computer or
external disk drive).

Users work with encrypted files and folders just as they do with any

other files and folders. Encryption is transparent to the user who
encrypted the file; the system automatically decrypts the file or folder

when the user accesses. When the file is saved, encryption is reapplied.
Users who are not authorized to access the encrypted files or folders

transparently receive an “Access denied” message if they try to open,
copy, move, or rename the encrypted file or folder. The exact message
text may vary depending on application which tries to access the file,
because it is related not to user rights for file but to ability of EFS to

decrypt file using user's private key.

EFS has the following benefits over 3rd party encrypting applications:

1. It is transparent for user and any applications. There's no risk for
user to forget to encrypt file and leave data unprotected. Once file

or folder is marked as encrypted, it will be encrypted in
background without interaction with user. User does not need to
remember password to decrypt files.

2. Strong key security. In contrast to other solutions when keys are

based on user entered pass-phrase, EFS generates keys which are
tolerant to dictionary based attacks.

3. All encrypting/decrypting processes are performed in kernel mode,
excluding the risk of leaving key in paging file, from where it

could be possibly extracted.
4. EFS provides data recovery mechanism which is valuable in

business environment, giving an organization an opportunity to
restore data even if the employee who encrypted it left the

company.

Using EFS

EFS Internals

$EFS Attribute

 EFS Data Recovery Tools

Windows Password Recovery Tools

Issues with EFS

EFS - Encrypting File System. Encrypted Files and
Folders (NTFS5 only)

Using EFS

User can invoke EFS features through Windows Explorer or by using a

command-line utility called cipher.exe. To use Windows Explorer to
encrypt file, open File property window by right clicking on file name.

Click Advanced... button - Advanced Attributes dialog will be opened
allowing you to mark file as encrypted.

Before saving new settings Windows will prompt user to encrypt file only
or the whole folder. It address very important issue - while the file itself

could be perfectly protected, the application which opens the file may
create a temporary copies of the file while working with the document.

The example is Microsoft Word. When user opens encrypted document,
EFS decrypts it transparently for Word. Then during the work, Word
creates temporary hidden file where it automatically saves the
document in the process of editing and deletes it on the exit. This
hidden file presents a real breach in security because it contains user

data in plain (not encrypted) form. Encrypting the whole folder instead
of file only solves this problem.

EFS - Encrypting File System. Encrypted Files and
Folders (NTFS5 only)

EFS Internals

EFS uses symmetric key encryption in combination with public

key technology to protect files. File data is being encrypted with
symmetric algorithm (DESX). The key, used in symmetric encryption is

called File Encryption Key (FEK). The FEK in its own turn is encrypted
with a public/private key algorithm (RSA) and stored along with the file.

The reason why two different algorithms are used is the speed of
encryption. The performance burden of asymmetric algorithms is too
much to use them for encrypting a large amount of data. Symmetric

algorithms are about 1000 times faster making their suitable for
encrypting of large amounts of data.

As a first setp to encrypt file, NTFS creates a log file called Efs0.log in
System Volume Information folder on the same drive, as encrypted file.
Then EFS aquires access CryptoAPI context. It uses Microsoft Base

Cryptographic Provider 1.0 as cryptographic provider. Having the crypto
context open, EFS generate File Encryption Key (FEK).

The next step is to get public/private key pair; if it does not exist at this
stage (the case when EFS invoked first time), EFS generate a new pair.

EFS uses 1024-bit RSA algorithm to encrypt FEK.

Then, EFS creates Data Decryption Field (DDF) for the current user,
where it places FEK and encrypts it with public key. If recovery agent is

defined by system policy, EFS creates also Data Recovery Field (DRF)
and places there FEK encrypted with public key of recover agent. A

separate DRA is created for every recovery agent defined. Please note,
that on Windows XP not included into domain, there's no recovery agent

is defined, so this step is omitted.

Now a temporary file Efs0.tmp is created in the same folder as the file
being encrypted. The contents of original file (plain text) is copied into
temporary file, after that the original is overwritten with encrypted data.
By default, EFS uses DESX algorithm with 128-bit key to encrypt file

data, but Windows could be also configured to use stronger 3DES
algorithm with 168-bit key. In that case FIPS compliant algorithms

usage must be turned on in LSA policy (it is disabled by default):

EFS uses the registry to determine if it will use DESX or 3DES. If
HKLM\SYSTEM\CurrentControlSet\Control\LSA\FipsAlgorithmPolicy = 1,
then 3DES will be used. If not, then EFS checks
HKLM\Software\Microsoft\Windows NT\CurrentVersion\EFS\AlgorithmID
(this value may not be present); if present, it will have ID CALG_3DES

or CALG_DESX, otherwise, DESX should be used.

After encryption is done, temporary and log files are deleted.

After file is encrypted, only users who has correspondent DDF or DRF
can access the file. This mechanism is separate from common security

meaning that beside rights to access file, the file must have its FEK
encrypted with user's public key. Only user who can decrypt FEK with

his own private key, can access the file. The consequence is, that user,
who has access to the file, can encrypt it thus preventing the owner to

access his own file. Initially only one DDF is created for user who
encrypts the file, but later he can add extra users to key ring. In this

case EFS simply decrypts FEK with private key of user who wants to
give access to the file to another user, and encrypts FEK with public key

of target user, thus creating a new DDF which is stored along with the
first one.

The decryption process is opposite to encryption:

First, system checks if user has a private key used by EFS. If yes, it
reads EFS attributes and walk through the DDF ring looking for DDF for

current user. If DDF is found, user's private key is used to decrypt FEK
extracted from DDF. Using decrypted FEK, EFS decrypts file data. It

should be noticed that file never decrypted in whole but rather by
sectors when upper level module requests particular sector.

Recovery process is similar to decryption, except that it uses the
recovery agent's private key to decrypt the FEK in the DRF, not in DDF:

DRA policy is implemented differently for Windows 2000 and Windows

XP. In Windows 2000 by default on computers, not included into
domain, local Administrator is added to Public Key Policy as Encrypted

Data Recovery Agent. So, when user encrypts file, both DDF and DRF
fields are created. If the last DRA is deleted, the whole EFS functionality

is turned off and it is not possible to encrypt file anymore.

In Windows XP the situation is different. Since majority of home users

working standalone do not need anybody else to be able to decrypt file
except themselves, there's no need in data recovery agents, so there's
no DRA included into Public Key Policy and EFS works without DRA. In

this case only DDF field is created for encrypted file.

EFS - Encrypting File System. Encrypted Files and Folders

(NTFS5 only)

$EFS Attribute

When NTFS encrypts file, it sets flag Encrypted (0x4000) for the file and

creates $EFS attribute for the file where it stores DDFs and DDRs. This
attribute has Attribute ID = 0x100 in NTFS and can be pretty lengthy,

occupying from 0.5K to several kilobytes depending on number of DDFs
and DRFs.

Here's an example of $EFS attribute with more details.

$EFS attribute size

Computer SID and user number. It specifies folder where EFS
stores certificates. In order to get folder name EFS makes some
manipulations:

5A56B378 1C365429 A851FF09 D040000 - data stored in $EFS,

78B3565A 2954361C 09FF15A8 000004D0 - reversed

2025018970-693384732-167712168-1232 - converte to decimal

S-1-5-21-2025018970-693384732-167712168-1232 - SID prefix added

So, the folder will be %User Profile%\Application

Data\Microsoft\Crypto\RSA\S-1-5-21-2025018970-693384732-
167712168-1232\

Public key thumbprint

Private key GUID (also used as container name). This name EFS
uses when it aquires context from CryptoAPI provider. If there's only

one DDFin $EFS attribute, container name can be figured out from $EFS
(this field), but as more users added to the file (more DDFs or DRFs),
PK GUID is not stored for all of them and must be retrieved from

certificate storage based on public key thumbprint.

Cryptographic provider name = Microsoft Base Cryptographic
Provider v.1.0

User name, to whom current DDF or DRF belongs

Encrypted FEK. Usually FEK is 128-bit long (in case of DESX) but
since it's encrypted with 1024-bit RSA key, its encrypted length is 1024
bits.

EFS - Encrypting File System. Encrypted Files and
Folders (NTFS5 only)

Issues with EFS

Temporary file is not erased. When EFS encrypts file, it copies its
contents into temporary hidden file named Efs0.tmp in the same folder,

as encrypting file. Then, it encrypts plain text by blocks and writes
encrypted data into original file. After the process is done, temporary

file is deleted. The problem is that EFS simply marks it as deleted
without actually erasing its contents, which makes possible easy access

to unprotected data by low-level data recovery software like Active@
Undelete. Solution - to wipe free disk space. Usually, even if plain text

overwritten ones, small magnetic traces remain detectible, thus giving a
chance to read erased data with proper equipment. To minimize this

possibility, use commercially available software providing sophisticated
data erasing algorithms like Active@ Eraser or ZDelete.NET.

File names in encrypted folder are not protected. Actually, encrypting

folder contents means automatically applying encryption to all files in
the folder, not encrypting directory data itself. Since the file name itself

could contain sensitive information, it could be a breach in security. One
of the solutions would be using encrypted .zip archives instead of

folders, which are treated by Windows XP almost like folders. Thus, only
one file is needed to be encrypted and archived data themselves are

harder to crack.

EFS security relies on public/private key pair which is stored on local
computer. Windows protects all private keys by encrypting them

through Protected Storage service. Protected Storage encrypts all
private keys with Session Key, derived from 512 bit Master Key, and

stores them in %User Profile%\Application
Data\Microsoft\Crypto\RSA\User SID. The Master Key is encrypted by

Master Key Encryption Key, which is derived from user password by
using a Password Based Key Derivation Function and stored in %User
Profile%\Application Data\Microsoft\Protect\User SID. Despite the
efforts Windows takes to protect keys, the fact, that all information is
stored on local computer, gives an attacker, who's got an access to hard

drive, a chance to figure out keys and use them to decrypt protected
data. The overall security could be significantly enhanced by encrypting

private keys with System Key. The syskey.exe utility can be used to
store System Key on a floppy disk and remove it from computer. In this

case user must insert a diskette with System Key when computer boots
up. Nevertheless, this method should be taken with precautions since if

key diskette is lost, there's no way to get access to computer.

Forgot Password? Windows XP/2003 password recovery ...

NTFS Sparse Files (NTFS5 only)

A sparse file has an attribute that causes the I/O subsystem to allocate
only meaningful (nonzero) data. Nonzero data is allocated on disk, and

non-meaningful data (large strings of data composed of zeros) is not.
When a sparse file is read, allocated data is returned as it was stored;

non-allocated data is returned, by default, as zeros.

NTFS deallocates sparse data streams and only maintains other data as

allocated. When a program accesses a sparse file, the file system yields
allocated data as actual data and deallocated data as zeros.

NTFS includes full sparse file support for both compressed and
uncompressed files. NTFS handles read operations on sparse files by
returning allocated data and sparse data. It is possible to read a sparse

file as allocated data and a range of data without retrieving the entire
data set, although NTFS returns the entire data set by default.

With the sparse file attribute set, the file system can deallocate data

from anywhere in the file and, when an application calls, yield the zero
data by range instead of storing and returning the actual data. File

system application programming interfaces (APIs) allow for the file to be
copied or backed as actual bits and sparse stream ranges. The net result
is efficient file system storage and access. Next figure shows how data is
stored with and without the sparse file attribute set.

Figure 5-4 Windows 2000 Data Storage

Important

If you copy or move a sparse file to a FAT or a non-Windows 2000 NTFS
volume, the file is built to its originally specified size. If the required

space is not available, the operation does not complete.

Data Integrity and Recoverability with NTFS

NTFS is a recoverable file system that guarantees the consistency of the
volume by using standard transaction logging and recovery techniques.

In the event of a disk failure, NTFS restores consistency by running a
recovery procedure that accesses information stored in a log file. The

NTFS recovery procedure is exact, guaranteeing that the volume is
restored to a consistent state. Transaction logging requires a very small

amount of overhead.

NTFS ensures the integrity of all NTFS volumes by automatically
performing HDD recovery operations the first time a program accesses
an NTFS volume after the computer is restarted following a failure.

NTFS also uses a technique called cluster remapping to minimize the
effects of a bad sector on an NTFS volume.

Important

If either the master boot record (MBR) or boot sector is corrupted, you
might not be able to access data on the volume.

 Recovering Data with NTFS

NTFS views each I/O operation that modifies a system file on the NTFS
volume as a transaction, and manages each one as an integral unit.

Once started, the transaction is either completed or, in the event of a
disk failure, rolled back (such as when the NTFS volume is returned to

the state it was in before the transaction was initiated).

To ensure that a transaction can be completed or rolled back, NTFS
records the suboperations of a transaction in a log file before they are

written to the disk. When a complete transaction is recorded in the log
file, NTFS performs the suboperations of the transaction on the volume

cache. After NTFS updates the cache, it commits the transaction by
recording in the log file that the entire transaction is complete.

Once a transaction is committed, NTFS ensures that the entire

transaction appears on the volume, even if the disk fails. During
recovery operations, NTFS redoes each committed transaction found in

the log file. Then NTFS locates the transactions in the log file that were
not committed at the time of the system failure and undoes each

transaction suboperation recorded in the log file. Incomplete
modifications to the volume are prohibited.

NTFS uses the Log File service to log all redo and undo information for a
transaction. NTFS uses the redo information to repeat the transaction.

The undo information enables NTFS to undo transactions that are not
complete or that have an error.

Important
NTFS uses transaction logging and recovery to guarantee that the
volume structure is not corrupted. For this reason, all system files

remain accessible after a system failure. However, user data can be lost
because of a system failure or a bad sector.

 Cluster Remapping

In the event of a bad-sector error, NTFS implements a recovery
technique called cluster remapping. When Windows 2000 detects a bad-

sector, NTFS dynamically remaps the cluster containing the bad sector
and allocates a new cluster for the data. If the error occurred during a
read, NTFS returns a read error to the calling program, and the data is
lost. If the error occurs during a write, NTFS writes the data to the new

cluster, and no data is lost.

NTFS puts the address of the cluster containing the bad sector in its bad
cluster file so the bad sector is not reused.

Important
Cluster remapping is not a backup alternative. Once errors are detected,
the disk should be monitored closely and replaced if the defect list
grows. This type of error is displayed in the Event Log.

� مقا�، از �ی �ه مقا�ت ا �� ن سايت شده �� ��ه فاراي �� در PDFكه #� فرمت ميباشد ��

ان قرار � ايل ميتوانيد #� 6يک �� روی د3ه های ز�� گرفته است. اختيار -, عز�� از در صورت :�

اييد:سا�� مقا�ت � استفاده :� ن<�

ه شده از �� � مقا�ت �� � ه فا ؛ مرجع جديد�� �� ت معت<� خار�B سايت �� �# ,Dن

http://tarjomefa.com/
http://tarjomefa.com/%D8%AF%D8%A7%D9%86%D9%84%D9%88%D8%AF+%D9%85%D9%82%D8%A7%D9%84%D9%87+isi+%D8%A8%D8%A7+%D8%AA%D8%B1%D8%AC%D9%85%D9%87+%D8%B1%D8%A7%DB%8C%DA%AF%D8%A7%D9%86
http://tarjomefa.com/%D8%AC%D8%B3%D8%AA%D8%AC%D9%88-%D8%A8%D9%87-%D8%B1%D9%88%D8%B4-%D8%AA%D8%B1%D8%AC%D9%85%D9%87-%D9%81%D8%A7
http://isidl.com/

