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There is a need for soil C assessment in the soils of tropical and subtropical areas. We have aimed to quantify the
spatial extent of SOC concentration and stocks under different land use and soil types in an 8118 ha area in
southern Brazil. Common soils are Inceptisols, Ultisols and Mollisols, and the dominant land use is forest and
vineyard. SOC data were modeled by 5 depths deriving values from spline functions. Regression kriging was
used to model SOC concentration for each depth to 100 cm, and for producing a soil depth map. Uncertainty
was estimated by empirical approach, using sequential Gaussian geostatistical simulation of the residuals. The
Projected Natural Vegetation Soil Carbon (PNVSC) approach was used to evaluate changes in soil carbon due
to land use change. Bulk density was estimated by pedotransfer functions. SOC stocks were calculated using
the SOC prediction, bulk density and the soil depth map, and the stocks were corrected by cumulative mass co-
ordinates. The models for SOC concentration prediction explained about 44% of the variance at 30–60 cm depth
and with slightly lower values for other depths. Important covariates for prediction were Soil Order (Entisols),
coordinate X, Aspect and the DEM. The model for the prediction of soil depth explained 43% of variance and im-
portant covariates were Soil Order (Entisol, Mollisol, Ultisol), Valley Depth and TWI. Soils under forest accumu-
lated more carbon in the top 30 cm whereas soils under pasture had higher SOC levels with depth. Soils under
arable crops and vineyard had the lowest SOC concentration. SOC concentration decreases by depth, as well as
prediction intervals of uncertainty, until 60 cm depth. The SOC stocks (0–100 cm) varied between 104 t C/ha
in vineyards on Alfisols, and 280 t C/ha in pasture areas on Oxisols. The PNVSC analysis showed that most soils
had lost SOC compared to when they were projected to be under forest.

Published by Elsevier B.V.
1. Introduction

Assessing the amount and distribution of soil organic carbon (SOC)
levels is important as it provides information about soil fertility, rates
of sequestration of carbon, recovery of degraded soil, or the impact of
land use changes. Mapping the SOC concentration and stocks is chal-
lenging because of the considerable variation and dynamics. Spatial
and temporal SOC changes are affected by natural and anthropic factors
including management practices and land use changes.

Several recent studies have predicted and mapped SOC (Adhikari
et al., 2014; Padarian et al., 2012; Kirsten et al., 2015; Malone et al.,
2009; Mendonça-Santos et al., 2010; Ross et al., 2013; Zhang and
Shao, 2014) and the estimation is based on relation between covariates
(land use, soil type, slope, aspect, etc.) and SOC levels. Different covari-
ates were found in models to explain SOC distribution. Thompson and
Kolka (2005) found that more than 71% of SOC variation could be
).
explained by slope, aspect, curvature, topographic wetness index and
overland flow distance. Wiesmeier et al. (2014) found that the most
important factors to predict SOC stocks were land use, soil type, soil
moisture and climate. Adhikari et al. (2014) predicting SOC concentra-
tion, at different soil depths, reported that the importance of variables
differed by depth. Minasny et al. (2013) synthesized a large number of
digital SOC mapping studies and concluded that different covariates
could explain the variation of SOC depending on the complexity of the
landscape.

The majority of SOC inventory assessments to date focused the
0–20 cm or 0–30 cm surface layers, whereas considerable amounts of
SOC may be present deeper in the soil profile (Lal, 2005; Rumpel and
Kögel-Knabner, 2011; Minasny et al., 2013; Boddey et al., 2010). Sisti
et al. (2004) studied SOC stocks down to 100 cmdepth with zero tillage
and conventional tillage and found, in rotations with vetch planted as a
winter green-manure crop, significantly higher soil carbon and nitrogen
concentrations under zero tillage,withmost of the differences occurring
at 30–85 cmdepth. Angers and Eriksen-Hamel (2008) showed different
interpretation of SOC stockswhen considering different depths, in no till
and full-inversion tillage. Full-inversion tillage could accumulate more
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carbon at the bottom of the plow layer, but the SOC does not completely
offset the gain under no till in the surface horizon. The authors highlight
the importance of taking into account the whole profile to understand
the distribution of SOC stocks.

Land use has major impacts on SOC concentration and stocks. How-
ever, these effects are also affected by soil class and depth (Hartemink
and McSweeney, 2014; Nieder and Benbi, 2008). Changes in land use
impacts the SOC levels and modifies soil characteristics. Several studies
explained the changes of SOC with land use change. Conant et al.
(2001), reviewing 115 studies, found that conversion from native land
(mostly rain forest) to pasture increased soil C content for nearly 70%
of the studies. Guo and Gifford (2002), compiling 74 publications,
found that SOC stocks declined after land use changed from pasture to
plantation (−10%), native forest to plantation (−13%), native forest
to crop (−42%), and pasture to crop (−59%). However, the SOC stocks
increased when the native forest was converted to pasture (+8%), crop
to pasture (+19%), crop to plantation (+18%), and crop to secondary
forest (+53%). Cerri and Andreux (1990) showed that C levels after
50 years of sugarcane cultivation, in São Paulo, Brazil, were 46% of the
levels under primary forest.

Although there is a considerable body of research on the digitalmap-
ping of SOC in temperate regions, few studies have been conducted in
the tropical and subtropical areas. Examples include Berhongaray et al.
(2013) estimating SOC stocks in Argentine Pampas, Cheng et al.
(2004) predicting SOC concentration in a subtropical area in China,
Vasques et al. (2010) estimating SOC stocks in a subtropical watershed
in Florida. Digital soil mapping has been used in Brazil (Giasson et al.,
2006;Mendonça-Santos and Santos, 2007) and examples of SOCpredic-
tions include the studies by Mendonça-Santos et al. (2010) whom used
regression-kriging for evaluate the SOC stocks in Rio de Janeiro State,
and de Souza et al. (2014) using regression-kriging to predict SOC and
clay content in Rio Doce Basin (Minas Gerais State). There have been
other studies (e.g., Cerri et al., 2007; Tornquist et al., 2009b) where eco-
system models such as Century or Rothamsed C Model were applied to
estimate SOC dynamics in the upper soil layers from different areas in
Brazil.

The present study aimed to analyze the distribution of soil C in the
grape growing region of Vale dos Vinhedos, in Rio Grande do Sul State,
Brazil. The objectives were as follows: (i) to quantify and understand
the spatial variation of SOC concentration by depth through digital
soil mapping, and to assess the uncertainty, (ii) to quantify and
map SOC stocks, and (iii) to estimate SOC changes due to land use
change.
Fig. 1. Study area (Vale dos Vinhedos) in Rio Grande do Sul, Brazil (8118 ha) an
2. Materials and methods

2.1. Study area

The studywas conducted in theVale dos Vinhedos (Vineyard Valley)
which is a wine production region in northeastern Rio Grande do Sul
State (Fig. 1). The study area covered 8118 ha. The climate is classified
as Cfb, subtropical with a mild summer, mean annual temperatures of
17.2 °C and 1736 mm annual rainfall (EMBRAPA, 2008). The dominant
lithology is effusive rocks mostly from the Mesozoic Era (IBGE, 1986).
Lower sequence comprises mostly basalts and diabase dikes, whereas
the upper sequence has predominantly acid effusive rocks such as rhy-
olite and dacites.

Average soil depth is 150 cm (range from 25 to N250 cm) and many
soils are stony and rocky (average 4.5% of fragments N 20 mm in diam-
eter). In the study area, Inceptisols cover about 44%, Ultisols 29% and
Mollisols almost 15% (Fig. 2). Mollisols are mostly present at lower ele-
vations close to valley bottoms in the northern part of the study area.
Soils in thewestern part of the study area aremainly Argissolos (Ultisols
and Alfisols), Chernossolos (Mollisols), and Neossolos (Entisols and
Mollisols). The eastern part has more rugged terrain and the dominant
soils are Neossolos (Entisols) and Cambissolos (Inceptisols), with asso-
ciation of Argissolos (Ultisols and Alfisols), Latossolos (Oxisols) and
Nitossolos (Oxisols and Ultisols) (Flores et al., 2012).

Forest (44%) and vineyard (31%) are the dominant land use in the
study area. Deciduous forest is the main vegetation in plateau rugged
areas, and Araucaria forest in flatter areas (IBGE, 1986).

2.2. Soil and environmental data

The soil data were obtained from the soil survey project “Os Solos do
Vale dos Vinhedos” (Flores et al., 2012). Sample points were selected
along predefined paths representing different landscape units (Flores
et al., 2012). Sampling was done with 163 total pedons, comprising
580 soil horizons. The soils were analyzed following Brazilian standard
methods (Santos et al., 2006): SOC analysis by Walkley–Black wet
oxidation.

Additionally, in 2014, samples were obtained from 10 pedons (34
horizons) for an estimate of soil bulk density of the Flores et al. (2012)
soil survey, allocated by contrasting land uses (vineyard, forest/planted
forest, pasture, arable crops, and fallow) and soil classes. The 10 mea-
sured bulk density were used to evaluate three pedotransfer functions,
which were chosen based on studies that include data from subtropical
d location of the 163 pedons and 10 bulk density pedon sampling points.



Fig. 2. Land use and soil taxonomy map of Vale dos Vinhedos in Rio Grande do Sul, Brazil. Percentages of different land use and soil order classes in parentheses.
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soils. Table 1 lists measured bulk density, pedotransfer functions, and
validation using root mean square error (RMSE).

Based on the lower value of RMSE (0.11), the simplified equation of
Benites et al. (2007)— Eq. (2) in Table 1—was chosen to extrapolate the
bulk density for the whole dataset, producing 163 bulk density esti-
mates. This function was developed from a large compilation of pedons
from the Brazilian soil survey database maintained by EMBRAPA
(Empresa Brasileira de Pesquisa Agropecuária) that include pedons in
Rio Grande do Sul State (Tornquist et al., 2009a; Benites et al., 2007).
Once the bulk density was calculated, the values were splined to derive
bulk density for the 5 GlobalSoilMap standard depths. These values
were then attributed to each map unit of Flores et al. (2012) soil map
(scale 1:10.000) considering the reference soil profiles, extrapolating
then to the whole study area.

On SOC concentration and soil depth predictions the following data
layers from Flores et al. (2012) were used: 5 × 5m grid resolution DEM,
a soil map (scale 1:10,000) and orthorectified aerial imagery. The DEM
was upscaled to 15 m grid cell size. The original soil legend of the
Flores et al. (2012) survey, published according to the Brazilian soil clas-
sification (SiBCS), was converted to Soil Taxonomy (12th ed, 2014)
using pedon data (clay content, pH, thickness, carbon content, texture,
color, clay skins and drainage) and additional guidance from the corre-
lation table proposed by Anjos et al. (2012).
Table 1
Bulk density (t/m3) for different land use and soil depths (cm), obtained from field measurem

Measured values Depth 1 Depth 2

Vineyard 1.17 (11 cm) 1.20 (20 cm)
Vineyard 1.14 (7 cm) 1.17 (16 cm)
Vineyard 1.13 (9 cm) 1.21 (34 cm)
Vineyard 1.16 (13 cm) 1.35 (35 cm)
Forest 0.97 (25 cm) 1.07 (44 cm)
Forest 1.02 (20 cm) 1.08 (45 cm)
Planted Forest 1.09 (15 cm) 1.27 (50 cm)
Pasture 1.15 (10 cm) 1.16 (33 cm)
Arable Crops 1.10 (7 cm) 1.55 (30 cm)
Fallow 1.29 (40 cm) 1.33 (59 cm)

Pedotransfer functionsa

(1) pm ¼ 1:35þ 0:0045 � sandþ 6 � 10−5 � ð44:7−sandÞ2 þ 0:060 � log depth
pb ¼ 100

ðOMð%Þ
pOM

Þþð100−OMð%Þ
pm

Þ
(2) pb = 1.5688 − 0.0005 ∗ clay − 0.009 ∗ OC

(3) 30–30 cm : pb ¼ 1:5544−0:0004 � clay−0:01 � OC þ 0:0067 � SB
30–100 cm : pb ¼ 1:5674−0:0005 � clay−0:006 � OC þ 0:0076 � SB

OC (g/kg): organic carbon; SB (cmolc/kg)— sum of basic cations (Ca2+, Mg2+ and K+); clay (g
a pb = bulk density (g/cm3); pm: mineral bulk density (g/cm3); pOM = organic matter bulk
A land use map was made using the orthorectified mosaic of aerial
images from November 2005 (Flores et al., 2012). Initially, a supervised
classification was performed after the images were filtered 3 times
(3 × 3, 5 × 5, 7 × 7) using the mean. The supervised classification iden-
tified land uses for approximately 50% of the area particularly in the for-
ested areas. Land use in the other half area was delimitedmanually. The
final land use map contains 8 classes namely vineyard, forest, planted
forest, pasture, arable crops, fallow, building and water bodies. Building
and water bodies were masked.

A set of terrain attributeswas derived from the DEM including Slope,
Aspect, Valley Depth, TopographicWetness Index, Overland Distance to
Channel Network andothers. Amapwith 13 landformclasseswasmade
in LandMapR software using the DEM (MacMillan, 2003). The covari-
ates used for predicting the SOC levels and soil depth are presented in
Table 2.

2.3. Prediction models

Following GlobalSoilMap specification (Arrouays et al., 2014) until
1 m depth, equal area splines were used to harmonize the SOC concen-
tration and bulk density data for 5 depth intervals: 0–5, 5–15, 15–30,
30–60, and 60–100 cm. The smoothing parameter lambda chosen was
0.1 (Malone et al., 2009).
ents (10 soil pits) and pedotransfer functions.

Depth 3 Depth 4 Depth 5

1.22 (35 cm) – –
– – –
1.22 (60 cm) 1.25 (81 cm) –
1.17 (60 cm) – –
1.13 (63 cm) 1.23 (85 cm) –
1.28 (75 cm) – –
1.40 (82 cm) 1.33 (124 cm) –
1.25 (51 cm) – –
1.44 (45 cm) 1.28 (73 cm) –
1.21 (94 cm) 1.16 (118 cm) –

Reference RMSE

Tranter et al. (2007) 0.16

Benites et al. (2007) 0.11
Benites et al. (2007) 0.13

/kg).
density = 0.224 g/cm3; sand (dag/kg); depth (cm).



Table 2
Variables used in the prediction of SOC content (g/kg) and soil depth of the study area in Vale dos Vinhedos in Rio Grande do Sul, Brazil.

Variables Data descriptions Type Mean (min–max) Soil carbon Soil depth

Digital elevation model — 15 m Elevation above mean sea level Numeric 541.49 (206.15–723.05) X
Coordinate X UTM latitude Numeric 445052 (438242–451863) X
Coordinate Y UTM longitude Numeric 6770978 (6765083–6776873) X
Slope Local hill slope gradient Numeric 13.85 (0–81.01) X X
Aspect Slope aspect Numeric 180 (0–360) X X
Analytical hillshading Angle between the surface and the incoming light beams Numeric 0.93 (0–2.74) X X
TWI Topographic wetness index Numeric 3.12 (0.27–8.76) X X
LS factor Slope length factor Numeric 3.71 (0–95.9) X X
Vertical distance to channel network Altitude above channel network Numeric 26.86 (0–259.84) X X
Valley depth Relative position of the valley Numeric 24.48 (0.36–275.18) X X
Slope height Vertical distance from the base of the slope to the crest Numeric 24.91 (0.03–309.36) X X
Normalized height Height position within a reference area Numeric 0.49 (0–1) X X
Mid slope position Cover the warmer zones of slopes Numeric 0.52 (0–1) X
Flow direction Direction of the flow Numeric 35.06 (1–255) X X
MRVBF Identifies the depositional areas Numeric 0.21 (0–4.92) X X
Overland flow distance to channel network Distance from non-channel cells to channel cells Numeric 204.24 (0–1385) X X
Direct insolation Potential incoming solar radiation Numeric 3.29 (0–5.71) X
Soil order Soil order map Categorical 6 classes X X
Land use Land use map Categorical 6 classes X
Convexity Terrain surface convexity Numeric 0.51 (0.26–0.78) X
Topographic position index (TPI) Compare elevation of each cell to the neighborhood Numeric −0.05 (−11.14 to 21.97) X
Mass balance index (MBI) Balance between soil mass deposited and eroded Numeric 0.16 (−0.81 to 1.61) X
Plan curvature Curvature in a horizontal plane Numeric 0 (−0.16 to 0.31) X
Vector ruggedness measure (VRM) Measures terrain ruggedness Numeric 0.01 (0–0.12) X
LandMapR Landform classification Categorical 12 classes X
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The splined data were randomly split into 75% (122 pedons) for
training the model, and 25% (41 pedons) for validation. The training
data were used to predict SOC concentrations and all the pedons were
used to predict soil depth. Four different regressionmodelswere tested:
Multiple Linear Regression (MLR), Stepwise Multiple Linear Regression
(SMLR), Cubist, and Random Forest.

In MLR, each independent variable is weighted by the regression to
ensure maximal prediction from the set of independent variables
(Hair et al., 2009). Theweights denote relative contribution of the inde-
pendent variables and facilitate to know the influence of each variable.
However, correlation among independent variables needs to be consid-
ered. In SMLR, each variable is considered to be included prior to devel-
oping the equation. The independent variable with the greatest
contribution is added first, followed by the variables selected based on
their incremental contribution over the variables already in the equa-
tion (Hair et al., 2009). The Cubist model is based on the M5 algorithm
of Quinlan (1992). The M5 algorithm builds tree-based models, which
may have multivariate linear models at their leaves (Quinlan, 1992). It
first partitions the data into subsets within which their characteristics
are similar with respect to the target variable and the covariates.
There are several rules arranged in hierarchy. The Random Forest is an
ensemble learningmethod for classification (and regression) that oper-
ate by constructing a multitude of decision trees at training time which
are later aggregated to give one single prediction for each observation in
a dataset. For regression, the prediction is the average of the individual
tree outputs (Breiman, 2001; Malone, 2013).

Based on similarity of results with the original values (Fig. 3), MLR
proved to be the most robust model to predict SOC concentration and
it was chosen to model SOC concentration and soil depth. Then, two
sets of MLR models were implemented, one set for the SOC concentra-
tion (5 models, one for each depth) and one for the soil depth. Residual
values (the difference between predicted and observed) were calculat-
ed for each model, and spatial relation was modeled with variograms.
Kriging of the residuals was performed for the entire area, and the
results were added to MLR estimation. The relative importance of
the variables for each model was estimated based on absolute value of
t-statistics. The final results for SOC concentration maps were refined
replacing negative values by zero.

The soil depth map had values ranges between 0 and 250 cm. The
map was sliced into 5 layers: 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm,
60–100 cm, creating 5 sets of thickness data. The thickness data were
used to calculate SOC stocks, by each depth intervals.

The gravel and stone contents were obtained from the 163 pedons
(Flores et al., 2012) and the distribution by depth was estimated by
equal area splines. The values were extrapolated to the entire area
through reference profiles of soil map units (Flores et al., 2012).

To calculate SOC stocks in t/ha, SOC concentrations in mass fraction
were multiplied by bulk density previously calculated and mapped
(Section 2.2) and thickness for each depth, and corrected for gravel
and stone contents, according to the following equation:

SOC
ton
ha

� �
¼ SOC

g
kg

� �
� BD

g
cm3

h i
� thickness cm½ �

� �
=10

� �

� 1−
gravels %½ �

100

� �
: ð1Þ

To compare SOC stocks in soils under different land use and soil
types, the results needed to be corrected by mass, avoiding carbon
stock variation due to bulk density changes. The cumulative mass ap-
proach should be preferred as the basis for carbon stock accounting on
a fixed mass per unit area (Minasny et al., 2013). The approach from
Gifford and Roderick (2003) was used to calculate the cumulative
mass and SOC stocks down to 1 m profile. This approach corrects SOC
stocks using a reference cumulative mass. Soil mass of the forest areas
were chosen as reference, as represent mass of soils under natural veg-
etation, and were calculated by the measured bulk density splined and
the respective thickness. The reference mass by interval depth were
4.95 g/cm2 for 0–5 cm, 9.9 g/cm2 for 5–15 cm, 15.15 g/cm2 for 15–
30 cm, 33.6 g/cm2 for 30–60 cm and 47.6 g/cm2 for 60–100 cm. For
the whole area, the soil mass for each depth was calculated by the
bulk density maps and the thickness layers derived from the soil
depth map. Then, the reference soil mass, the soil mass for each depth
of the entire study area, and the previously calculated SOC stocks were
each one cumulatively summed.

The cumulative corrected SOC stocks to the entire area, for each
depth, were calculated through the equation applied to each pixel as
follows:

cs tð Þ ¼ cs zað Þ þ cs zbð Þ−cs zað Þ
ms zbð Þ−ms zað Þ ms tð Þ−ms zað Þð Þ ð2Þ



Fig. 3. a) Example of distribution of predicted × observed values, depth 30 to 60 cm, and b) validation of SOC concentration prediction for all depth intervals, by 4 different
methods.
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Fig. 4. Histograms and variograms of residuals (observed–predicted), from SOC concentration and depth predictions.
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where cs(t) is the value of cumulative SOC stocks corrected by mass;
cs(za) and ms(za) are the value of cumulative SOC stocks and mass, re-
spectively, from the lower boundary of the layer above it; cs(zb) and
ms(zb) are the cumulative SOC stocks and mass of the lower boundary
of the current layer; ms(t) is the cumulative soil mass from the lower
depth of the reference layer.

The SOC stocks for each interval depthwas calculated by subtracting
the cumulative SOC stocks of the lower and upper limit from respective
layer.

2.4. Prediction evaluation

The SOC concentration models were validated with 25% of the data,
and the soil depth model with the whole dataset, using 4 statistical pa-
rameters: RMSE, ME, R2 and CCC. The R2 is the coefficient of determina-
tion of linear regression, between the observed values and predicted
values. RMSE correspond to root mean square error, ME to the mean
error, and CCC to the Lin's Concordance Correlation Coefficient. The R2

was obtained directly from the model in R, whereas other parameters
were calculated as follows:

ME ¼ 1
n

Xn

1¼1
ẑ xið Þ−z xið Þ ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
z xið Þ−ẑ xið Þ½ �2

r
ð4Þ

CCC ¼ 2 � ρ � σ ẑ xið Þ � σ z xið Þ

σ2
ẑ xið Þ þ σ2

z xið Þ þ ẑ xið Þ−z xið Þð Þ2
ð5Þ

where n is the number of the validation sample points, z(xi) is the ob-

served value, ẑ(xi) is the predicted value, σ2
zðxiÞ and σ2

ẑðxiÞ are the



Table 3
Descriptive statistics of training, validation, and estimated SOC content and soil depth.

SOC content Training data
n = 122 points

Validation data
n = 44 points

Estimates
n = 312,790 pixels

0–5 cm Mean 27.5 24.7 31.5
Median 23.8 22.7 31.1
Min 4.6 7.0 0
Max 93.5 61.0 103.8

5–15 cm Mean 27.5 24.8 31.6
Median 23.5 23.0 31.2
Min 4.7 7.0 0
Max 95.3 61.6 108.6

15–30 cm Mean 23.3 21.9 26.5
Median 19.9 20.7 25.9
Min 4.6 7.0 0
Max 90.3 59.6 176

30–60 cm Mean 12.2 10.7 13.1
Median 10.1 9.4 12.5
Min 0 0 0
Max 59.5 40.9 60.1

60–100 cm Mean 7.7 6.4 9.1
Median 6.1 5.9 8.6
Min 0 0 0
Max 59.5 26.2 59.5

Soil depth n = 163 points n = 163 points n = 312,790 pixels
Mean 149.4 149.4 148.7
Median 150 150 150
Min 25 25 0
Max 250 250 250
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variances, and ρ is the correlation coefficient between the predictions
and observations. The impact of each variable was measured by the ab-
solute value of t-statistics for each model parameter obtained through
MLR.

2.5. Uncertainty and probability maps

Estimating uncertainty is complex considering all the sources of un-
certainty. There are a number of approaches to estimate the uncertainty
and Malone et al. (2011) and Shrestha and Solomatine (2006) suggest
the empirical approach. In this approach, the residuals between
modeled outputs and corresponding observed data are used to formu-
late prediction intervals (PIs). The uncertainty is expressed in the form
of two quantiles of the underlying distribution of model error (resid-
uals). The PI takes into account all sources of uncertainty and circum-
vents attempts to separate out the contribution of each source of
uncertainty (Malone et al., 2011; Shrestha and Solomatine, 2006;
Solomatine and Shrestha, 2009). The methodology is independent of
the prediction model structure, as it requires only the model outputs.
Table 4
Validation of theMultiple Linear Regression and regression kriging for predicting SOC con-
tent (g/kg) and soil depth (cm).

Soil depth Multiple Linear Regression Regression kriging

R2a RMSEa MEa CCCa R2a RMSEa MEa CCCa

0–5 0.33 13.23 4.89 0.38 0.34 12.82 4.09 0.39
5–15 0.33 13.36 4.80 0.38 0.33 13.00 3.97 0.39
15–30 0.34 12.37 3.76 0.43 0.35 12.00 3.10 0.45
30–60 0.44 6.62 3.04 0.49 0.48 5.80 2.44 0.58
60–100 0.34 4.77 2.26 0.41 0.41 4.44 1.87 0.52
Depthb 0.43 34.78 0 0.59 – – – –

a R2= coefficient of determination, RMSE= rootmean square error,ME=mean error,
CCC = Lin's Concordance Correlation Coefficient.

b Depth model used the whole data samples, and the validation was made based on
training data.
We used the empirical approach estimating PIs through the resid-
uals of SOC predictions. Between several methods for modeling the dis-
tribution of residuals, we chose sequential Gaussian geostatistical
simulations because it is more related to the spatial method used for
SOC prediction.

Firstly, the residuals fromMLR prediction of SOC, at each 5 standard
depth, were simulated with 100 iterations and then the outputs were
added back to the predicted SOC concentration. For each predicting
pixel, we considered the two percentiles, lower 5% and upper 95%, cov-
ering the 90% PI, as suggested in GlobalSoilMap specifications (Arrouays
et al., 2014). Lower and upper limits were mapped (Fig. 5) and the un-
certainty models were evaluated on the 25% validation dataset (Fig. 9).

With the 100 values of SOC concentration, we applied Eq. (1) for
produced SOC stocks and Eq. (2) to correct by cumulative mass. The
results were used to produce maps of probability of total SOC stock
(0–100 cm) that exceed a threshold of 184 t C/ha. The value of
184 t C/ha is based on the averaged SOC stocks under forest for the en-
tire study area. Areas with high probability of exceeding this limit are
likely to have the same SOC stocks as under forest. The number of
times that pixels values exceeded the threshold, between 100, was
counting and recording for producing themaps. The following probabil-
ities were considered for mapping: 20%, 40%, 60% and 80%.

2.6. SOC changes

SOC changes due to land use changes were estimated using
Projected Natural Vegetation Soil Carbon (PNVSC) approach (Waring
et al., 2014). PNVSC is considered a projected SOC that could be present
today if the area was under natural vegetation.

The PNVSC maps were elaborated re-applying the equations pro-
duced byMLRmodels for SOC concentration (Section 2.3), nevertheless
with the coefficients for land use types other than forest set to zero. The
producedmaps are hypothetically representing soil carbonwhich could
be observed today if the whole study area remained under natural
vegetation. The predicted SOC concentration can now to be compared
with PNVSC by Eq. (6) to estimate SOC changes due to land use change
(e.g. Adhikari and Hartemink, 2015):

SOC changes ¼ SOCpredicted –PNVSC: ð6Þ

Negative SOC change indicates that the soil has less SOC compared to
the projected natural vegetation (forest) whereas positive SOC change
indicate that the soils have accumulated SOC.

3. Results

3.1. SOC prediction and model comparison

While comparing four prediction methods using the training data,
Cubist and Random Forest showed a high R2 (N0.92) and CCC (N0.8)
for SOC prediction at all depths, compared to MLR and SMLR with
lower values (R2 b 0.51 and CCC b 0.64). Similarly, both Cubist and
Random Forest had lower RMSE (b6.4 g/kg) than MLR and SMLR
(RMSE N 6.7), when comparing all the soil depths.

However, when using the validation samples (25% of pedons), MLR
had a higher R2 and CCC and a lower RMSE than the other models
(Fig. 3b). Comparing the distribution of observed and predicted values
(Fig. 3a), MLR had less spread of points. The MLR model suffered from
thehigher bias (ME) compared to all othermethods. RMSE did not differ
much between methods with Cubist showing the highest RMSE at all
depths.

Based on R2 and CCC values, and considering the RMSE not so differ-
ent between methods, MLR was the best model to estimate the SOC
concentration. The high bias indicates that MLR might overestimate
the predicted values and, therefore, it should be considered when
interpreting the results. Based on these findings, we assumed that
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MLR could be the appropriate method for SOC concentration and soil
depth prediction.

After the predictionsweremade by theMLRmodels, the distribution
of prediction residuals and their spatial dependence was analyzed and
plotted (Fig. 4). Spatially, the residuals were poorly auto-correlated for
the top three depths (0–5, 5–15, and 15–30 cm), whereas a better
spatial structure was observed below 30 cm soil depth. Residuals of
soil depth prediction were normally distributed with no spatial auto-
correlation as suggested by the pure nugget effect of the variogram.

3.2. Evaluation of MLR model for SOC and soil depth prediction

Descriptive statistics of training data, validation data, and the esti-
mates are shown in Table 3. Themean SOC concentration for the valida-
tion are slightly lower than for training data. The estimated data have
higher mean, median and maximum values than the training data
which suggests that the MLR model can overestimate SOC concentra-
tion. Thebias ofMLR is depicted in Fig. 3b and in Table 4, showinghigher
values at 0–5 cm soil depth and decreasing until depth 60–100 cm. For
the soil depth, the mean of estimated data were similar to training data.

Validation results of the MLR model is shown in Table 4. The R2 be-
tween predicted and measured values differed by depth and was
highest at 30–60 cm, with value of 0.44, and CCC of 0.49. For all other
depths, R2 was between 0.33 and 0.34, and values of CCC were between
0.38 and 0.43. The RMSE and ME decreased with increasing soil depth.
When the residuals were added to the MLR predictions, the R2 and
CCC increased and RMSE and ME decreased (Table 4).

For the soil depth predictionmodel, CCC of 0.59, R2 of 0.43, andRMSE
of about 34.8 cm were observed. The high values of R2 and CCC were
probably due to the use of same samples for model training and
validation.
Table 5
Predicted SOC content (g/kg) by soil order and land use types, from the study area in Vale dos

Soil order Land use 0–5 cm 5–15 cm

Alfisol Arable crops 26.1 (±1.4) 26.0 (±1
Fallow 27.2 (±5.1) 26.7 (±5
Forest 28.1 (±5.4) 27.9 (±5
Pasture 18.8 (±6.2) 19.0 (±6
Planted forest – –
Vineyard 20.5 (±5.3) 20.2 (±5

Entisol Arable crops 41.3 (±0.7) 41.7 (±0
Fallow 37.9 (±8.7) 38.0 (±8
Forest 43.1 (±8.7) 43.7 (±8
Pasture 39.5 (±8.2) 40.4 (±8
Planted forest 30.8 (±5.3) 31.2 (±5
Vineyard 31.5 (±6.9) 31.7 (±7

Inceptisol Arable crops 29.2 (±4.9) 29.3 (±5
Fallow 33.6 (±6.3) 33.2 (±6
Forest 37.0 (±7.0) 37.0 (±7
Pasture 33.2 (±6.4) 33.7 (±6
Planted forest 24.9 (±4.1) 25.0 (±4
Vineyard 27.4 (±7.0) 27.3 (±7

Mollisol Arable crops 27.5 (±9.3) 27.5 (±9
Fallow 33.7 (±7.4) 33.4 (±7
Forest 37.0 (±8.5) 37.3 (±8
Pasture 32.4 (±11.3) 32.6 (±1
Planted forest 19.7 (±3.2) 19.9 (±3
Vineyard 29.4 (±8.9) 29.3 (±9

Oxisol Arable crops 32.1 (±4.8) 32.2 (±5
Fallow 38.6 (±3.3) 38.3 (±3
Forest 40.2 (±6.9) 40.1 (±6
Pasture 34.2 (±4.6) 34.4 (±4
Planted forest – –
Vineyard 33.5 (±4.7) 33.5 (±4

Ultisol Arable crops 21.6 (±6.7) 21.8 (±6
Fallow 27.7 (±5.8) 27.5 (±5
Forest 30.8 (±7.1) 31.0 (±7
Pasture 25.5 (±6.9) 26.1 (±7
Planted forest 17.5 (±3.7) 17.7 (±3
Vineyard 21.6 (±6.9) 21.7 (±7
3.3. Spatial predictions and variable importance

In general, SOC levels differed by depth, soil order and by land use
type. SOC concentration decreased below 15 cm depth (Table 5 and
Fig. 5). The mean values (Table 5) vary between 5.8 g C/kg, from vine-
yard areas in Alfisols at 60–100 cm depth, and 43.9 g C/kg, from pasture
areas in Entisols at 15–30 cmdepth. Entisols have the highestmean SOC
concentration, 39.1 g C/kg at 5–15 cm depth and Alfisols the lowest,
7.1 g C/kg at depth 60–100 cm(Table 7). Similarly, forest has the highest
mean SOC concentration, 36.1 g C/kg at 5–15 cmdepth, and arable crops
the lowest, 6.7 g C/kg, at depth 60–100 cm.

The importance of the variables for SOC concentration prediction
differed by depth. The relative importance of the 15 main variables in
SOC concentration and the soil depth model is presented in Fig. 6. Up
to 30 cm soil depth, the most important variable was Soil Order
(Entisols), coordinate X, Aspect and DEM. Below that soil depth the im-
portant variables were as follows: Overland Flow Distance to Channel
Network, Aspect, Soil Order (Entisols and Oxisols), coordinate Y, and
Normalized Height. Overall, the Entisols soil order was a good predictor.

Descriptive statistics of soil depth data and its prediction are shown
in Table 3, and the predicted map in Fig. 7. Soils shallower than 70 cm
occupied 1% of area (81 ha) and most of them were Entisols (65%)
and Mollisols (33%). Soils deeper than 200 cm occupied 5% of area
(439 ha) and most of them were Ultisols (54%) and Mollisols (20%).
Soils between 70 and 200 cm occupied the largest area (94%) and
most of them were Inceptisols (43%), Ultisols (28%), and Mollisols
(16%). The deepest soils were Ultisols (169 cm), followed by Oxisols
(158 cm), Inceptisols (150 cm), Alfisols (142 cm), Mollisols (134 cm)
and Entisols (110 cm). Soil depth increased in the northern part of the
study area and it varied mainly with slope as shallower soils were
found on steeper slopes.
Vinhedos in Rio Grande do Sul, Brazil.

15–30 cm 30–60 cm 60–100 cm

.4) 19.3 (±2.2) 10.2 (±2.4) 7.8 (±1.6)

.2) 17.5 (±5.8) 10.5 (±5.2) 7.9 (±4.2)

.5) 18.8 (±5.7) 8.7 (±4.8) 8.5 (±4.2)

.1) 18.3 (±5.7) 12.0 (±5.0) 9.2 (±4.6)
– – –

.4) 13.7 (±5.5) 7.9 (±4.5) 5.8 (±3.8)

.7) 36.1 (±0.7) 16.2 (±1.2) 13.0 (±1.0)

.9) 33.1 (±9.1) 17.3 (±5.0) 11.0 (±4.3)

.9) 40.9 (±10.4) 16.9 (±6.4) 11.9 (±5.4)

.3) 43.9 (±8.2) 24.7 (±4.5) 15.4 (±3.7)

.4) 31.1 (±5.6) 16.8 (±6.9) 9.2 (±5.5)

.1) 29.1 (±7.8) 13.8 (±5.3) 7.9 (±4.2)

.0) 24.8 (±5.5) 13.4 (±4.9) 7.8 (±3.8)

.3) 25.1 (±6.4) 13.8 (±5.7) 8.9 (±5.8)

.1) 29.7 (±7.0) 14.2 (±6.1) 11.8 (±6.0)

.4) 34.2 (±6.3) 21.8 (±5.3) 15.3 (±4.6)

.2) 23.4 (±4.2) 17.6 (±4.2) 12.0 (±4.3)

.1) 21.9 (±6.9) 12.2 (±5.6) 7.8 (±4.9)

.4) 22.0 (±8.4) 10.6 (±4.5) 5.7 (±3.5)

.7) 25.2 (±8.8) 12.9 (±5.0) 6.8 (±4.0)

.7) 31.4 (±9.0) 11.1 (±5.3) 7.5 (±3.7)
1.5) 31.4 (±10) 17.3 (±3.0) 9.8 (±2.4)
.2) 19.8 (±4.1) 12.6 (±3.3) 7.3 (±2.5)
.1) 23.5 (±9.3) 11.7 (±5.4) 6.4 (±3.8)
.0) 33.4 (±5.5) 28.8 (±3.6) 9.1 (±2.8)
.5) 34.9 (±4.7) 29.8 (±3.0) 13.5 (±2.2)
.9) 37.1 (±6.1) 28.5 (±4.7) 12.2 (±3.6)
.7) 39.9 (±4.9) 34.6 (±3.7) 13.4 (±3.3)

– – –
.7) 33.7 (±4.4) 29.9 (±3.3) 11.8 (±2.7)
.7) 19.6 (±6.1) 11.9 (±5.1) 5.6 (±3.4)
.9) 22.4 (±6.4) 13.5 (±4.4) 8.6 (±3.8)
.3) 26.3 (±7.8) 12.5 (±5.2) 9.8 (±4.6)
.0) 29.0 (±6.6) 19.5 (±3.7) 12.5 (±3.0)
.7) 19.5 (±3.6) 16.1 (±3.2) 9.9 (±2.6)
.1) 19.3 (±7.4) 11.3 (±4.7) 6.8 (±3.9)



Fig. 5. Prediction of SOC content (g/kg) and lower (5%) and upper limit (95%) for five soil depths of Vale dos Vinhedos in Rio Grande do Sul, Brazil.
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Pedotransfer function estimated bulk density for all the pedons, with
average of 1.17 g/cm3 (0–5 cm), 1.18 g/cm3 (5–15 cm), 1.19 g/cm3

(15–30 cm), 1.26 g/cm3 (30–60 cm) and 1.27 g/cm3 (60–100 cm). The
values ranged between 0.54–1.4 g/cm3 (0–5 cm), 0.56–1.4 g/cm3

(5–15 cm), 1.19–1.4 g/cm3 (15–30 cm), 1.26–1.47 g/cm3 (30–60 cm)
and 1.27–1.47 g/cm3 (60–100 cm).
Fig. 8 shows SOC stockmaps for each 5 depth, and the total stock for
0–100 cm. Overall, it appeared that the spatial distribution of SOC stocks
was similar to SOC concentration. Values were higher on the valley
banks and bottomvalley, whichwere under forest andwith reduced ag-
ricultural use. Total SOC stockswere highest in Oxisols (230–280 t C/ha)
and lower in Alfisols (104–143 t C/ha), as in Table 6. Soils under pasture



Fig. 6.Relative importance of the 15 variables used for predicting SOC content at each soil depth. The importance is calculated based on the absolute value of the t-statistics for eachmodel
parameter (see Table 1 for a description of the variables).
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areas had the highest SOC stocks (139–280 t C/ha) and soils under
planted forest areas the lowest SOC stocks (116–174 t C/ha). Oxisols
under pasture areas had the highest SOC stocks (280 t C/ha) and Alfisols
under vineyard the lowest (104 t C/ha).
Fig. 7. Soil depth of the study area in Vale do
3.4. Uncertainty and probability maps

For uncertainty of SOC concentrations prediction, calculated by em-
pirical approach andmapped (Fig. 5), the averages for the lower limit of
s Vinhedos in Rio Grande do Sul, Brazil.



Fig. 8. Estimation of SOC stocks (t C/ha) of the study area in Vale dos Vinhedos in Rio Grande do Sul, Brazil.
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prediction decreased from 10.5 g C/kg at 0–5 cm soil depth to 1.5 g C/kg
at 60–100 cm depth. The means for upper prediction limit decreased
from 53.8 g C/kg at 0–5 cm soil depth to 19.4 g C/kg at 60–100 cm soil
depth. A similar trend was found for the difference in the lower and
upper limits.
The uncertainty values of nine sample points, from the validation
dataset (25% of pedons), are shown in Fig. 9. The blue line represents es-
timated value, and red lines represent the low (left) and the upper limit
(right) for the 5 depths. Bars represent the splined SOC values, harmo-
nized by depth of GlobalSoilMap. The prediction intervals are higher



Table 6
Calculated SOC stocks (t C/ha) by soil order and land use types for the study area in Vale dos Vinhedos in Rio Grande do Sul, Brazil.

Soil order Land use 0–5 cm 5–15 cm 15–30 cm 30–60 cm 60–100 cm Total
0–100 cm

Alfisol Arable crops 13 (±1) 25 (±2) 30 (±3) 40 (±7) 34 (±9) 143 (±18)
Fallow 12 (±2) 23 (±4) 26 (±7) 39 (±17) 38 (±19) 137 (±46)
Forest 11 (±3) 23 (±5) 27 (±7) 36 (±14) 39 (±19) 135 (±43)
Pasture 8 (±3) 16 (±6) 25 (±9) 45 (±15) 45 (±19) 139 (±50)
Planted forest – – – – – –
Vineyard 9 (±2) 17 (±5) 20 (±7) 30 (±14) 29 (±18) 104 (±40)

Entisol Arable crops 17 (±1) 34 (±3) 45 (±4) 46 (±10) 54 (±10) 197 (±15)
Fallow 14 (±4) 28 (±8) 40 (±10) 51 (±16) 37 (±18) 170 (±39)
Forest 16 (±4) 33 (±8) 51 (±15) 58 (±28) 36 (±20) 194 (±57)
Pasture 14 (±4) 28 (±8) 49 (±12) 71 (±28) 50 (±23) 212 (±54)
Planted forest 12 (±3) 24 (±6) 37 (±9) 47 (±30) 28 (±22) 147 (±60)
Vineyard 12 (±3) 23 (±6) 35 (±9) 42 (±22) 28 (±18) 140 (±44)

Inceptisol Arable crops 13 (±3) 26 (±6) 35 (±9) 47 (±15) 40 (±18) 160 (±44)
Fallow 14 (±3) 29 (±7) 35 (±9) 48 (±18) 43 (±27) 170 (±55)
Forest 15 (±4) 31 (±8) 40 (±10) 51 (±19) 52 (±26) 189 (±56)
Pasture 14 (±4) 29 (±8) 46 (±10) 73 (±18) 72 (±22) 235 (±55)
Planted forest 11 (±3) 22 (±5) 32 (±8) 55 (±16) 54 (±18) 174 (±43)
Vineyard 11 (±3) 23 (±7) 30 (±9) 42 (±17) 38 (±21) 144 (±49)

Mollisol Arable crops 11 (±3) 22 (±6) 27 (±9) 29 (±12) 22 (±13) 111 (±38)
Fallow 12 (±3) 24 (±6) 29 (±9) 42 (±18) 30 (±19) 137 (±44)
Forest 11 (±4) 22 (±9) 30 (±11) 45 (±17) 36 (±17) 144 (±43)
Pasture 11 (±3) 23 (±6) 34 (±8) 51 (±12) 36 (±18) 155 (±36)
Planted forest 7 (±2) 14 (±5) 21 (±7) 42 (±10) 33 (±11) 116 (±27)
Vineyard 11 (±4) 21 (±8) 27 (±12) 38 (±18) 27 (±16) 124 (±49)

Oxisol Arable crops 16 (±2) 32 (±5) 50 (±8) 95 (±12) 37 (±14) 230 (±38)
Fallow 19 (±2) 38 (±3) 53 (±7) 100 (±10) 59 (±10) 268 (±30)
Forest 20 (±3) 40 (±7) 56 (±9) 95 (±15) 53 (±18) 263 (±49)
Pasture 17 (±3) 33 (±5) 59 (±9) 113 (±14) 58 (±15) 280 (±40)
Planted forest – – – – – –
Vineyard 17 (±2) 33 (±5) 51 (±7) 100 (±11) 51 (±13) 251 (±33)

Ultisol Arable crops 10 (±3) 21 (±6) 29 (±8) 43 (±16) 31 (±16) 135 (±44)
Fallow 13 (±3) 26 (±6) 34 (±9) 50 (±14) 44 (±18) 167 (±44)
Forest 14 (±3) 28 (±7) 38 (±10) 49 (±16) 47 (±21) 176 (±50)
Pasture 12 (±3) 24 (±6) 41 (±9) 70 (±13) 64 (±14) 212 (±39)
Planted forest 8 (±2) 17 (±4) 28 (±6) 56 (±10) 53 (±13) 162 (±29)
Vineyard 10 (±3) 20 (±6) 28 (±10) 42 (±16) 36 (±19) 136 (±47)
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in upper layers than in lower layers. Of the 41 validation samples the fol-
lowing number were within prediction intervals: 36 for 0–5 cm depth,
34 for 5–15 cm depth, 34 for 15–30 cm depth, 38 for 30–60 cm depth,
and 39 for 60–100 cm soil depth. More than 90% of the validation sam-
ples were within the prediction intervals derived from residuals with
higher spatial covariance (30–60 cm and 60–100 cm).

For SOC stocks, the probability maps (Fig. 10) show areas where the
SOC stock exceeds the threshold value at 20, 40, 60 and 80% probabili-
ties. The probability for SOC stocks exceeding the limit is highest in
the valley bottoms and in the eastern part of study area. There is an
80% probability of SOC stocks to exceed 184 t C/ha in about 13%
(1029 ha) of the area.

3.5. SOC changes

The mean values of SOC predictions and PNVSC values are given in
Table 7 where the data were aggregated by soil order and land use.
Areas where SOC has been lost as compared to the same soils under for-
est are given in bold. SOC has been lost at 0–5 and5–15 cmsoil depth for
all soil orders and land use types (except forest whichwas used as a ref-
erence). This loss is also observed at 15–30 cm and 60–100 cm depth,
except for Oxisols and pasture. At 30–60 cm soil depth SOC levels has
been increased in all soil orders and land use types. The maps of
PNVSC and SOC changes are given in Fig. 11.

4. Discussion

This study predicted SOC concentration and SOC stocks in a subtrop-
ical area under different land use and a range of soil orders. The impact
of land use on soil C was evaluated by comparing the SOC concentration
under current use with a projected SOC that could be present today if
the area was under natural vegetation. In this discussion, we shall
focus on the methods of prediction, the effect of the variables used for
prediction, and the distribution of SOC under different land uses and
soil types.

4.1. Prediction model

The different methods tested for regression showed that model
evaluation it's more reliable when using a separate validation dataset.
Predicted valuesmight be very similar to observed values, when consid-
ering the training model. This model may overfit the data and the per-
formance can be poor using validation data. Minasny and McBratney
(2013), observing the behavior of a random forest model, concluded
that it can easily overfit the data. In our study, the Cubist and Random
Forest models seem to overfit the data, whereas MLR produced estima-
tion closer to validation data.

SOC concentrations were predicted based on regression kriging
Model (MLR and kriging of residuals). The prediction showed the varia-
tion in SOC concentration spatially andby depth, land use and soil order.
Themodel explained only part of the variation andwhen comparing the
estimatedmean,median andmaximumvalues, our estimation from the
model produced slightly higher SOC concentration than training data.
This can be explained by the biased estimate when using a non-
probability sample to calibrate the model or also some regions of the
feature space to be over or under-represented in the training data.

The values of validation parameters such as R2 and CCC were higher
for 30–60 cm soil depth and were lower at other depth intervals. The



Fig. 9. Examples of uncertainty prediction intervals, for SOC levels, of 9 independent validation points. Predicted SOC values are shown in blue, and the lower (5%) and upper limit (95%) in
red. Bars represent the SOC values of validation points obtained from spline functions, and harmonized byGlobalSoilMap depths. (For interpretation of the references to color in thisfigure
legend, the reader is referred to the web version of this article.)

216 B.R. Bonfatti et al. / Geoderma 261 (2016) 204–221
validation results, in Table 4, are comparable to most recent studies
predicting SOC. For example, on temperate areas, Adhikari et al.
(2014) found the model could explain 43% of variation in validation
data, whereas Malone et al. (2009) found R2 values of validation points
ranging between 20% and 27%. Other studies present similar results
(Brogniez et al., 2014; Collard et al., 2014; Forges et al., 2014;
Wiesmeier et al., 2014).

The soil depth model could explain 43% of the variation, using all
data for estimation and validation. The soil depth map followed the to-
pographic variation, showing the deeper soils in valley bottom. The cal-
culated bulk density varied between 0.54 and 1.47 g/cm3 and were
similar to the values found by Tornquist et al. (2009a), between 0.4
and 1.4 g/cm3.

4.2. Importance of predictor variables

The relative importance of each variable was evaluated by absolute
t-values. The t-value is model dependent, which means that if two or
more variables are correlatedwith SOC concentration, and also correlat-
ed with each other, then only one variable may appear with the high t-
value.

We noted that variable importance differed by soil depth. Up to
30 cm soil depth, the covariates Soil Order, coordinate X, Aspect and
DEM were good predictors. Soil Order (Entisols) contributed mainly
due its consistent higher SOC values (Table 5). There was a decrease
in SOC concentration towards the west (Fig. 5) and hence coordinate
X was important to identify this variation in east–west direction.
Therewas a higher SOC concentration in the soils of the north in the val-
ley bottom, and coordinate Y identifies this variation. In correlation
analysis, it was noted that Y has a correlation of −0.47 with X, which
is fairly high compared to other covariates. Both coordinates could ex-
plain the spatial variation of SOC concentration, although onlyX showed
high t-value, and to separate individual effect in prediction is not
straightforward (Hair et al., 2009). The north-facing slopes receive
more solar radiation, and as a result possibly enhanced SOC decomposi-
tion and lower SOC levels. This effect can be seen at slightly higher SOC
values in the northeast (slope south-facing) compared to the southwest
(slope north-facing). This variation could be identified by the Aspect
covariate.

At lower elevation, temperatures increases and likely the soils con-
tain less carbon due to higher rates of decomposition. However, the el-
evation was a proxy for deposited material and areas at lower elevation
had deeper soils with more SOC. There was a relatively high and nega-
tive correlation (−0.55) between DEM and Valley Depth. Only DEM is
showed with high t-value, but both explain the SOC variation related
with elevation.

For the layers below 30 cm soil depth the covariates Overland Flow
Distance, Aspect, Soil Order, coordinate Y, and Normalized Height
were important predictors for SOC concentration. Overland flow dis-
tance to channel network indicate that the SOC concentration is higher
closer to channel network, possibly because of organicmaterial deposits
under dense vegetation. Libohova et al. (2014) found that areas with
water accumulation for longer time periods stored 50–68% more total
SOC compared to drier areas. Noticeable influence of soil orders covari-
ates (Entisol, Oxisol or Inceptisol) in SOC prediction was found up to
60 cm depth but not below this depth. The coordinate Y is consistent
with the valley bottom in north direction. The Normalized Height indi-
cates the height relatively to the highest and lowest position within an
area (Dietrich and Böhner, 2008) and this covariate correlates with
Overland Flow Distance to Channel Network (0.63).



Fig. 10.Maps of different probabilities that the soil contain at least 184 ton SOC/ha in Vale dos Vinhedos in Rio Grande do Sul, Brazil.

217B.R. Bonfatti et al. / Geoderma 261 (2016) 204–221
For prediction of soil depth, Soil Order (Entisol, Mollisol and Ultisol)
and Valley Depth proved good predictors. The Entisols are shallower
soils (mean depth 110 cm) and Mollisols and Ultisols are the deeper
soils. Although Oxisols are also deep soils, it had no significant impact
on the soil depth model possibly because of the limited number of
samples.
Table 7
Predicted SOC content and Projected Natural Vegetation Soil Carbon (PNVSC), by soil order an
content predicted— PNVSC).

SOC and PNVSC (g/kg) — mean values (±standard deviation)

Soil order 0–5 cm PNVSC 5–15 cm PNVSC 15–30

Alfisol 24.2 (±6.5) 27.0 (±5.0) 23.9 (±6.6) 26.8 (±5.0) 16.2 (±
Entisol 38.7 (±9.7) 42.1 (±6.6) 39.1 (±10.0) 42.6 (±6.7) 36.4 (±
Inceptisol 32.3 (±8.3) 35.9 (±6.4) 32.2 (±8.4) 35.9 (±6.5) 26.0 (±
Mollisol 35.0 (±9.2) 36.6 (±6.0) 35.2 (±9.4) 36.8 (±6.1) 29.3 (±
Oxisol 35.1 (±6.1) 38.2 (±3.1) 35.1 (±6.1) 38.1 (±3.1) 35.7 (±
Ultisol 26.4 (±8.1) 29.7 (±5.8) 26.5 (±8.2) 29.9 (±5.8) 23.0 (±

Land use
Arable Crops 25.4 (±7.8) 29.5 (±4.3) 25.5 (±7.9) 29.5 (±4.3) 23.3 (±
Fallow 30.9 (±7.2) 32.2 (±3.9) 30.7 (±7.3) 32.3 (±3.9) 24.2 (±
Forest 35.9 (±6.5) 35.9 (±6.5) 36.1 (±7.0) 36.1 (±7.0) 30.2 (±
Pasture 30.1 (±8.5) 32.8 (±4.2) 30.5 (±8.6) 32.8 (±4.2) 32.3 (±
Planted Forest 23.8 (±6.0) 36.6 (±2.5) 23.9 (±6.1) 36.6 (±2.5) 23.5 (±
Vineyard 26.0 (±7.9) 33.9 (±4.8) 26.0 (±8.0) 33.9 (±4.9) 21.8 (±
4.3. SOC concentration and stocks

The SOC concentration predicted for soils under forest and pas-
ture differed by depth. In the upper layers, soils under forest had
higher values whereas soils under pasture had more SOC with
depth (Tables 5 and 7). Forest has larger amounts of litter and
d land use. Figures in bold indicate that SOC was lost based on the PNVSC approach (SOC

cm PNVSC 30–60 cm PNVSC 60–100 cm PNVSC

6.1) 17.6 (±3.8) 8.4 (±4.7) 7.2 (±2.8) 7.1 (±4.2) 7.3 (±2.7)
11) 38.5 (±5.9) 15.9 (±6.2) 15.5 (±4.8) 10.5 (±5.3) 10.8 (±4.0)
7.9) 28.0 (±5.2) 13.5 (±6.0) 12.6 (±4.7) 9.9 (±5.8) 10.3 (±4.6)
9.7) 29.9 (±5.3) 11.4 (±5.3) 11.0 (±3.5) 7.3 (±3.8) 7.8 (±2.6)
5.7) 35.5 (±4.0) 30.3 (±4.4) 26.9 (±3.0) 11.8 (±3.3) 11.7 (±1.8)
8.1) 24.8 (±4.9) 12.4 (±5.1) 11.3 (±3.5) 8.5 (±4.4) 8.9 (±3.0)

8.1) 24.4 (±3.7) 15.2 (±8.1) 13.9 (±3.1) 6.7 (±3.7) 9.1 (±2.0)
7.4) 25.9 (±3.5) 13.7 (±5.1) 11.8 (±3.1) 8.6 (±4.7) 9.3 (±3.0)
7.2) 30.2 (±7.2) 13.1 (±5.2) 13.1 (±5.2) 10.1 (±4.7) 10.1 (±4.7)
8.1) 26.3 (±3.8) 21.1 (±5.8) 12.7 (±2.8) 13.3 (±4.1) 9.5 (±2.1)
5.6) 29.5 (±2.4) 16.9 (±4.6) 14.2 (±2.6) 10.8 (±4.3) 11.7 (±2.6)
8.0) 26.6 (±4.5) 12.0 (±5.5) 11.4 (±3.9) 7.4 (±4.4) 8.9 (±3.3)



Fig. 11.Maps of Projected Natural Vegetation Soil Carbon (PNVSC) and changes in SOC in Vale dos Vinhedos in Rio Grande do Sul, Brazil.
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organic material, which is incorporated into the soil. Aboveground
input and relatively low rates of decomposition generally increases
topsoil SOC levels compared to grasslands (Don et al., 2011; Guo
and Gifford, 2002; Jobbágy and Jackson, 2000). For pasture, deep
roots contribute to the accumulation of SOC with depth (Guo and
Gifford, 2002).



Table 8
SOC stocks (t/ha) under different land use and in different soils in various parts of the world.

Location Land use, soil type Depth SOC stocks
(t C/ha)

Reference

Brazil — Distrito Federal Tillage — 6 treatments 100 cm 171 Jantalia et al. (2007)
Brazil — Rio Grande do Sul 3 different crop rotations in: Sisti et al. (2004)

Zero till 100 cm 175.2
Conventional tillage 163.8

Brazil — Rio Grande do Sul Rotations with intercropped or cover–crop legumes in: Boddey et al. (2010)
Zero till 100 cm 154–172
Conventional tillage 132–163

Brazil — Rio Grande do Sul Alfisols 30 cm 77 Tornquist et al. (2009a)
Entisols 66
Inceptisols 83
Mollisols 76
Oxisols 77
Ultisols 48

Brazil Mixed Ombrophyllous forest 30 cm 61–128 Bernoux et al. (2002)
Brazil — Amazon Forest on Arenosol 100 cm 40 Batjes and Dijkshoorn (1999)

Forest on Histosol 724
Spain — Canalda river basin Cropland (mainly cereals and potatoes) 100 cm 63 Simó et al. (2014)

Forest 116
Grazing 89

USA – 100 cm 345 Wills et al. (2014)
USA Forest 100 cm 76.8 Bliss et al. (2014)

Pasture 74.9
Crops (82 row crops) 107

China Forestland 100 cm 143.3 Yu et al. (2007)
Grassland 82.4
Farmland 92.2

Rwanda — Rukarara river catchment Forest 50 cm 295–487 Wasige et al. (2014)
Agriculture (tea, coffee, maize and banana) 114–169
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Soils under arable crops and vineyard had the lowest SOC concentra-
tion and stocks as a result of reduced organic matter input and en-
hanced decomposition (Elliott, 1986; Sanford, 2014; Schrumpf et al.,
2013), but SOC levels could improve with careful soil management
(Lal, 2006). Soil erosionmaydecrease SOC stocks in agricultural systems
(Don et al., 2011) whereas leaving the land fallow may increase SOC
levels depending on the length of the fallow. Hartemink (1998) found,
in Papua New Guinea, that SOC concentration changed from 51 g C/kg
to 36 g C/kg after 17 years of sugarcane cultivation.

Planted forests in Vale dos Vinhedos are mostly pinus or eucalyptus,
and the soils generally had a low SOC concentration and SOC stocks. It is
known that coniferous and broadleaf trees can have different carbon ac-
cumulation (Guo and Gifford, 2002) but wewere not able to distinguish
these forest types. Planted broadleaf trees accumulate SOC levels com-
parable to natural forests. Soil C stocks under plantation forest could
be restored to the original level under native forest, but it may requires
several decades (Guo and Gifford, 2002; O'Brien and Jastrow, 2013). As
planted forests are harvested theremay be considerable soil erosion and
loss of topsoil carbon (Hartemink, 2003).

The SOC concentration and stocks differed by soil order. Until 30 cm
soil depth, Entisols have a higher SOC concentration but with depth
Oxisols have the highest SOC concentration. Most Entisols (58%) are
under forest which explains some of the higher SOC concentrations.
Oxisols are deeper soils and have possibility of long-term accumulation
of SOCwith depth.Many of theOxisols are under pasture (16%),whereas
other soil orders have less than 3% of their area under pasture. Pasture
has generally higher SOC accumulation with depth. Alfisols are mostly
under vineyard which can explain their lower SOC levels. About two-
third of the Mollisols are under forest, accumulating more SOC in upper
layers.Most of the Inceptisols are under forest (39%) and vineyard (35%).

SOC stocks were calculated and corrected based on equivalent soil
mass (Gifford and Roderick, 2003; Lee et al., 2009; Ellert and Bettany,
1995). We found corrected SOC stocks varying from 104 t C/ha in
vineyards in Alfisols to 280 t C/ha in pasture areas in Oxisols, with an av-
erage of 161 t C/ha. Results of SOC stocks for 100 cm depth (Table 6,
Fig. 7) are comparable to other studies (Table 8). This can be attributed
to the relatively high SOC concentrations. About 16% of the SOC
concentration values between 60 and 100 cm depth exceeded 10 g C/
kg, and considering 40 cm thickness it explains the relative high SOC
stocks with depths. Environmental conditions in the study area favor
SOC accumulation, due the high precipitation and relatively low tem-
perature. SOC stocks average for soils under arable crops is 163 t C/ha,
for fallow is 175 t C/ha, for pasture is 205 t C/ha, vineyard is 150 t C/
ha, for planted forest is 149 t C/ha and 184 t C/ha for soils under forest.
Other studies in Brazil found similar values such the studies by Boddey
et al. (2010), Sisti et al. (2004) and Jantalia et al. (2007) (Table 8).

Tornquist et al. (2009a) found in Rio Grande do Sul State, for SOC
stocks to 30 cm soil depth of non-sandy and non-wet soils, mean values
of 77 t C/ha for Alfisols, 66 t C/ha for Entisols, 83 t C/ha for Inceptisols,
76 t C/ha for Mollisols, 77 t C/ha for Oxisols and 48 t C/ha for Ultisols.
These stocks are comparable to the current study in Vale dos Vinhedos,
based on equivalent soil mass, of 57 t C/ha for Alfisols, 85 t C/ha for
Entisols, 76 t C/ha for Inceptisols, 60 t C/ha for Mollisols, 106 t C/ha for
Oxisols and 67 t C/ha for Ultisols. Bernoux et al. (2002) found for non-
sandy or non-wet soils, in areas with mixed forest, SOC stocks
(0–30 cm) between 61 and 128 t C/ha. These values are comparable to
84 t C/ha found in forest areas in Vale dos Vinhedos at the same depth
based on the equivalent soil mass. Wasige et al. (2014), studying SOC
in Rwanda until 50 cm depth, found under forest, stocks ranged
295 t C/ha in Cambisols to 487 t C/ha in Histosols. These values were
not corrected by mass and are higher than the 115 t C/ha found in
Vale dos Vinhedos (Table 6), for forest until 60 cm depth, corrected by
mass. For agriculture areas (main crops are tea, coffee, maize and
banana), the values were between 114 t C/ha in Acrisols (Ultisols) and
169 t C/ha in Ferralsols (Oxisols). These SOC stocks are similar to
found in arable crops (126.3 t C/ha) and vineyard (115 t C/ha) areas in
our study up to 60 cm soil depth.

4.4. Uncertainty and probability maps

It was found that 88% of validation values are within the prediction
intervals. Malone et al. (2011) found similar result using an empirical
uncertaintymethod based in distribution of prediction errors. However,
for depth with higher spatial covariance of residuals (30–60 cm and
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60–100 cm) more than 90% of the values were within the prediction
intervals. Our results suggest that the methodology adopted to cal-
culate uncertainty depends of the spatial covariance of the residuals.
The limited accuracy may be related to variation in environmental
conditions between the training and validation data, lower spatial
relation found in the most of interval depths, and errors in measures
of the training or validation samples.

The SOC stocks probability maps (Fig. 10) reflect SOC stocks ex-
ceeding 184 t C/ha. Such areas are found in valley bottoms due the
sediment accumulation and reduced drainage, and in Entisols,
Mollisols under forest because of higher production of organic mate-
rial and lower rates of decomposition. The low probability values are
mostly in soils under vineyard or arable crops (mainly Inceptisols
and Ultisols). The maps shows that only about 13% of the area has
80% of probability for exceeding the 184 t C/ha. These areas may
have the same or more SOC than the soils under original land use.
The 20% probability map shows that non-colored areas have 80% of
probability to be able to stock more SOC. About 42% of soils of
study area (3374 ha) could sequester more carbon if occupied by
natural forest.

4.5. Soil C changes

The PNVSC analysis showed that the topsoils could accumulate
more SOC if they were under forest (Table 7) because of increased
organic material addition and reduced decomposition. Below
15 cm depth, soils under pasture have a higher capacity to accumu-
late SOC which is commonly found (Guo and Gifford, 2002; Lacoste
et al., 2014; Nieder and Benbi, 2008). At interval depth 30–60 cm,
regardless of soil type or land use, the soil accumulates more carbon
than if the soil was under forest. A possible explanation is that there
is storage in carbon in that depth after carbon being translocated
from upper layers.

5. Conclusions

From this research the following can be concluded:

- Up to 30 cm soil depth the primary covariates for prediction SOC
concentration were Entisols, X coordinate, DEM and Aspect.

- With depth, the primary covariates for prediction SOC concentration
were Overland Flow Distance, Aspect, Soil Order, Y coordinate.

- For the prediction of the soil depth, the primary covariates were Soil
Order and Valley Depth.

- Forest accumulates more carbon in upper layers and pasture
accumulates more carbon with depth.

- Oxisols and Entisols accumulate larger contents of SOC. Lower
values for SOC were found in Alfisols, Ultisols, arable crops,
vineyard and planted forest.

- The SOC stocks (down to 100 cm) were on average 166 t C/ha
but varied between 107 t C/ha in vineyards on Alfisols, and
324 t C/ha in fallow areas on Oxisols.

- The PNVSC analysis showed that carbon was lost when land use
changes from natural environment, reducing the potential of
carbon sequestration.
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