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Fault Tolerant Controller Design for T–S Fuzzy
Systems With Time-Varying Delay and Actuator

Faults: A K-Step Fault-Estimation Approach
Sheng-Juan Huang and Guang-Hong Yang, Senior Member, IEEE

Abstract—This paper is concerned with the problem of ro-
bust fault estimation and fault-tolerant control for a class of
Takagi–Sugeno (T–S) fuzzy systems with time-varying state de-
lay and actuator faults. Based on the (k − 1)th fault estimation
information, a novel k-step fault-estimation observer is proposed
to construct the kth fault error dynamics. The obtained fault es-
timates via k-step fault-estimation can practically better depict
the size and shape of the faults. Then, based on the information
of online k-step fault-estimation, a dynamic output feedback fault
tolerant controller is designed to compensate the fault effects on
the closed-loop fuzzy system. Furthermore, some less conservative
delay dependent sufficient conditions for the existence of fault esti-
mation observers and fault tolerant controllers are given in terms
of solution to a set of linear matrix inequalities. Finally, simula-
tion results of two numerical examples are presented to show the
effectiveness and merits of the proposed methods.

Index Terms—Dynamic output feedback control, fault tolerant
control (FTC), k-step-fault-estimation, linear matrix inequalities
(LMIs), Takagi–Sugeno (T–S) fuzzy systems, time-varying delay.

I. INTRODUCTION

S INCE the Takagi–Sugeno (T–S) [41] fuzzy model can pro-
vide an effective representation of complex nonlinear sys-

tems in terms of fuzzy sets and fuzzy reasoning applied to a set
of linear input–output submodels, it has become a popular and
effective approach to control complex and ill-defined systems.
This method is feasible since in many situations, human experts
can provide linguistic descriptions of subsystems in terms of
IF–THEN rules. So far, the problem of robust control, robust H∞
control, fault tolerant control (FTC), and other stability analysis
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and stabilization of nonlinear systems through T–S fuzzy mod-
els has been extensively studied and a number of significant
results on these issues, especially via the linear matrix inequal-
ity (LMI) approach, [3], [22] have been reported; see e.g., [2],
[5]–[10], [14], [18]–[24], [28], [39], [42], [49], and [50].

On the other hand, due to the finite speed of information
processing, time varying delays (state or/and input delays) are
frequently the sources of instability and commonly exist in var-
ious engineering, biological, and economical systems for which
the application of conventional controllers is infeasible. So far,
during the last decade, the problem of robust control, robust
H∞ control, FTC, and other stability analysis and stabilization
of nonlinear systems with time varying delays (state or/and input
delays) has been extensively studied. Many criteria for check-
ing the stability of systems with time delays have been derived
from [2], [5], [6], [11], [13], [14], [19], [20], [23], [24], [26],
[30], [34], [39], [42], and [48] and references therein. However,
in [11], [14], [20], [23], [24], and [34], some useful integral
terms in the derivatives of Lyapunov functionals were ignored,
which leads to conservativeness of the existing delay dependent
stability conditions. Furthermore, to our knowledge, the fault
estimation for T–S fuzzy systems with time-varying state de-
lay and actuator faults has not been fully investigated, which
motivates the current work of this paper.

In the previously stated issues, especially in control systems,
fault detection and isolation (FDI) and FTC have been the sub-
jects of intensive investigations over the past two decades [1],
[4], [12], [15], [17], [18], [21], [25]–[27], [29], [32], [36], [37],
[40], [43], [45]–[48], [51]. However, in practical engineering, as
a result of unexpected model uncertainties, time delays, distur-
bances, perturbations and noises may occur in the fault systems,
it is quite difficult to obtain the accurate size of the fault from
an FDI scheme only [21]. Fortunately, fault estimation can de-
pict the size and shape of the fault and can thus automatically
perform the required fault detection. The problem of fault es-
timation has stirred renewed research interest, and a variety of
fault estimation approaches have been developed in the litera-
tures; see, for instance, [12], [15], [21], [30], [31], [33], [38],
[44], [50], and references therein. In [40] and [43], a reliable
fault-tolerant controller for T–S fuzzy models against actuator
faults via passive FTC idea was designed, while issues of fault
detection and estimation were not involved. Robust fault de-
tection for T–S fuzzy systems was investigated in [18], [29],
and [32], but the issue of fault estimation was not involved. Un-
der a restrictive assumption on the faults, i.e., f(t) ∈ L2 [0,∞),
Nguang et al. [30] studied the problem of robust fault estimation
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for T–S fuzzy models with time-varying delay. A sliding-mode
observer and an adaptive observer were proposed to achieve fault
estimation in [3], [15], and [21], but their design needed very
restrictive conditions to be satisfied. Recently, Zhang et al. [50]
relaxed some restrictive conditions in these issues and dealt
with robust fault estimation for T–S fuzzy models, but time-
varying state delay was not included. In the existing one-step
fault-estimation approach [50], the effect of input disturbances
from the derivatives of actuator faults was ignored, which may
result in that the faults cannot be well estimated by using the
one-step fault-estimation approach. Therefore, a new method
should be considered to deal with input disturbances from the
derivatives of actuator faults so that the faults can be better esti-
mated, which leads to challenge and interest and also motivates
the current research.

This paper mainly studies the problem of robust fault estima-
tion and FTC for a class of T–S fuzzy systems with time-varying
state delay and actuator faults. A k-step fault-estimation method
is proposed, which in practice relaxes the existing one in [50]
through applying the initial derivatives of fault estimates to
weaken the effect of input disturbance from the derivatives of
actuator faults in the error dynamics. In this way, the obtained
fault estimates can be practically close to the faults. Then, based
on the information of online k-step fault estimation, a dynamic
output feedback fault tolerant controller is designed to com-
pensate the fault effects on the closed-loop fuzzy system. The
obtained delay dependent sufficient conditions for the existence
of k-step fault-estimation observers and fault tolerant controllers
for T–S fuzzy systems with time-varying state delay and actua-
tor faults are given in terms of solution to a set of linear matrix
inequalities (LMIs). Finally, simulation results of two numeri-
cal examples are presented to demonstrate the effectiveness and
advantages of the proposed methods.

Throughout the paper, Rn denotes the n-dimensional real
Euclidean space; I denotes the identity matrix; the superscripts
“T ” and “−1” stand for the matrix transpose and inverse, re-
spectively; notation X > 0 (X ≥ 0) means that the matrix X
is real symmetric positive definite (positive semidefinite); and
‖ · ‖ is the spectral norm. If not explicitly stated, all matrices
are assumed to have compatible dimensions for algebraic op-
erations. The symbol “∗” in a matrix stands for the transposed
elements in the symmetric positions.

II. PROBLEM FORMULATION

Consider a continuous-time fuzzy system with time-varying
state delay and actuator faults, which is represented by a
T–S fuzzy model composed of a set of fuzzy implications. Each
implication is expressed by a linear time-delay system and the
ith rule of the T–S fuzzy model is written as follows:
Plant rule i:
IF ξ1(t) is Mi1 and . . . and ξp(t) is Mip THEN

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ(t) = Aix(t) + Aτ ix(t − τ(t))

+Bui [u(t) + f(t)] + Bwiw(t), t ≥ 0

y(t) = Cix(t) + Cτ ix(t − τ(t)) + Dwiw(t)

x(t) = φi(t), t ∈ [−τ, 0], i = 1, 2, . . . , r

(1)

where Mij , (i = 1, 2, . . . , r, j = 1, 2, . . . , p) are fuzzy sets,
x(t) ∈ Rn is the state vector, u(t) ∈ Rq is the input vector,
w(t) ∈ Rm is the exogenous disturbance input that belongs to
L2 [0,∞), y(t) ∈ Rl is the output, and f(t) ∈ Rq represents the
additive actuator fault. Ai,Aτ i , Bui, Bwi, Ci, Cτ i , and Dwi are
constant real matrices of appropriate dimensions. It is supposed
that matrices Bui are of full column rank, the pairs (Ai,Bui)
are controllable, and the pairs (Ai, Ci) are observable, where
i = 1, 2, . . . , r, and r is the number of IF–THEN rules. In ad-
dition, ξ1(t), . . . , ξp(t) are the premise variables. It is assumed
in this paper that the premise variables do not depend on the
input variables; τ(t) is the time-varying state delay satisfying
τ(t) ≤ τ (τ̇(t) ≤ τD or unknown). φi(t) is a vector-valued ini-
tial continuous function defined on the interval [−τ, 0].

Then, the overall opened-loop T–S fuzzy system with time-
varying state delay and actuator faults is inferred as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ(t) = A (ξ)x(t) + Aτ (ξ)x(t − τ(t))

+Bu (ξ)[u(t) + f(t)] + Bw (ξ)w(t), t ≥ 0

y(t) = C (ξ)x(t) + Cτ (ξ)x(t − τ(t)) + Dw (ξ)w(t)

x(t) = φ(t),∀t ∈ [−τ, 0].

(2)

where

A (ξ) =
r∑

i=1

μi(ξ(t))Ai,Aτ (ξ) =
r∑

i=1

μi(ξ(t))Aτ i

Bu (ξ) =
r∑

i=1

μi(ξ(t))Bui,Bw (ξ) =
r∑

i=1

μi(ξ(t))Bwi

C (ξ) =
r∑

i=1

μi(ξ(t))Ci,Cτ (ξ) =
r∑

i=1

μi(ξ(t))Cτ i

Dw (ξ) =
r∑

i=1

μi(ξ(t))Dwi, φ(t) =
r∑

i=1

μi(ξ(t))φi(t)

and ξ(t) = (ξ1(t), ξ2(t), . . . , ξp(t)), μi(ξ(t)) = βi(ξ(t))/∑r
j=1 βj (ξ(t)), βi(ξ(t)) =

∏p
i=1 Mij (ξ(t)), and ξi(t) are the

premise variables. Mij (ξj (t)) is the grade of membership of
ξj (t) in Mij . It is easy to find that ∀t: βi(ξ(t)) ≥ 0, (i =
1, 2, . . . , r),

∑r
j=1 βj (ξ(t)) > 0. Therefore, μi(ξ(t)) ≥ 0, for

i = 1, 2, . . . , r and
∑r

j=1 μj (ξ(t)) = 1,∀t.

III. MAIN RESULTS

In the following, the main results are to be expressed for the
T–S fuzzy system with time-varying state delay and additive
actuator faults. First, a novel k-step fault-estimation approach
is proposed to detect and estimate the actuator faults.

A. Actuator Fault Estimation: A K-Step
Fault-Estimation Approach

1) One-Step Fault Estimation: An one-step fault-estimation
observer similar to the existing one in [50] (with no state delay)
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is constructed as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̂x1(t) = A (ξ)x̂1(t) + Aτ (ξ)x̂1(t − τ(t))

+Bu (ξ)[u(t) + f̂1(t)] − L (ξ)(ŷ1(t) − y(t))

ŷ1(t) = C (ξ)x̂1(t) + Cτ (ξ)x̂1(t − τ(t))
˙̂
f 1(t) = −G (ξ)(ŷ1(t) − y(t))

(3)

where x̂1(t) ∈ Rn is the observer state, ŷ1(t) ∈ Rl is the ob-
server output, and f̂1(t) ∈ Rq is an initial estimate of f(t).
L (ξ) and G (ξ) are the gain matrices of appropriate di-
mensions to be designed: L (ξ) =

∑r
i=1 μi(ξ(t))Li,G (ξ) =∑r

i=1 μi(ξ(t))Gi . If we denote ex1(t) = x̂1(t) − x(t), ey1(t)
= ŷ1(t) − y(t), ef 1(t) = f̂1(t) − f(t), and eT

1 (t) = [eT
x1

(t), eT
f 1(t)], ω

T
1 (t) = [wT (t), ḟ T (t)], then, combining (2), the

first error dynamics is obtained by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ė1(t) = [A(ξ) − LG (ξ)C(ξ)]e1(t)

+ [Aτ (ξ) − LG (ξ)Cτ (ξ)]e1(t − τ(t))

+ [LG (ξ)Dw (ξ) − Bw (ξ)]ω1(t)

ey1(t) = C(ξ)e1(t) + Cτ (ξ)e1(t − τ(t)) −Dw (ξ)ω1(t)
(4)

where

A(ξ) =
[

A (ξ) Bu (ξ)

0 0

]

, Aτ (ξ) =
[

Aτ (ξ) 0

0 0

]

LG (ξ) =
[

L (ξ)

G (ξ)

]

, Bw (ξ) =
[

Bw (ξ) 0

0 Iq

]

C(ξ) = [C (ξ) 0 ] , Cτ (ξ) = [Cτ (ξ) 0 ]

Dw (ξ) = [Dw (ξ) 0 ] .

Assumption 1: ḟ(t) belongs to L2 [0,∞).
Remark 1: In [29] and [31], the fault estimation filter is

designed under the assumption f(t) ∈ L2 [0,∞). In general,
sliding-mode observer-based fault estimation requires the pre-
liminary knowledge of the upper bound of f(t) [3], [21], [35].
However, as described in [50], in many practical systems, there
is a transient period during which the fault establishes itself, after
which, it remains more or less constant, meaning that the deriva-
tives of the faults are energy-bounded, i.e., ḟ(t) ∈ L2 [0,∞).
This is stated by Assumption 1, which is more general than
those used in the aforementioned design methods.

Remark 2: If there is no state delay, then (3) reduces to the ex-
isting one in [50], which implies that one-step fault-estimation
observer with state delay is more challenging than the existing
one in [50] since time varying delays are frequently the sources
of instability and commonly exist in various control systems.
However, one-step fault-estimation method is generally conser-
vative for estimating actuator faults. One can see from the first
error dynamics that ḟ(t) is straightforward considered as an
input disturbance while the effect of it on the system ignored.
Therefore, for the error dynamics (4), a new method should be
proposed to constrain the effect of input disturbance from ḟ(t),
which leads to challenge and interest and also motivates us to
propose the following k-step fault-estimation approach.

2) Two-Step Fault-Estimation: To constrain the effect of input
disturbance from ḟ(t), the information of f̂1(t) obtained from
the first step fault-estimation will be applied to reconstruct a
two-step fault-estimation observer as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̂x2(t) = A (ξ)x̂2(t) + Aτ (ξ)x̂2(t − τ(t))

+Bu (ξ)[u(t) + f̂2(t)] − L (ξ)(ŷ2(t) − y(t))

ŷ2(t) = C (ξ)x̂2(t) + Cτ (ξ)x̂2(t − τ(t))
˙̂
f 2(t) = −G (ξ)(ŷ2(t) − y(t)) + ˙̂

f 1(t)
(3′)

where x̂2(t) ∈ Rn is the observer state, ŷ2(t) ∈ Rl is the
observer output, and f̂2(t) ∈ Rq is the second estimate of
f(t). L (ξ) and G (ξ) are defined as in the first-step esti-
mation. Denote ex2(t) = x̂2(t) − x(t), ey2(t) = ŷ2(t) − y(t),
ef 2(t) = f̂2(t) − f(t), and eT

2 (t) = [eT
x2(t), e

T
f 2(t)], ω

T
2 (t) =

[wT (t), ḟ T (t) − ˙̂
fT

1 (t)]; then, combining (2), the second-error
dynamics is obtained by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ė2(t) = [A(ξ) − LG (ξ)C(ξ)]e2(t)

+ [Aτ (ξ) − LG (ξ)Cτ (ξ)]e2(t − τ(t))

+ [LG (ξ)Dw (ξ) − Bw (ξ)]ω2(t)

ey2(t) = C(ξ)e2(t) + Cτ (ξ)e2(t − τ(t)) −Dw (ξ)ω2(t)
(4′)

where A(ξ),Aτ (ξ),LG (ξ),Bw (ξ), C(ξ), Cτ (ξ), and Dw (ξ) are
defined as in the first-step estimation.

3) K-Step Fault Estimation: Similar to the two-step fault-
estimation approach, using the information of f̂k−1(t) obtained
from the (k − 1)-step fault-estimation (k ∈ {2, 3, . . .}), a k-step
fault-estimation observer is constructed as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̂xk (t) = A (ξ)x̂k (t) + Aτ (ξ)x̂k (t − τ(t))

+Bu (ξ)[u(t) + f̂k (t)] − L (ξ)(ŷk (t) − y(t))

ŷk (t) = C (ξ)x̂k (t) + Cτ (ξ)x̂k (t − τ(t))
˙̂
fk (t) = −G (ξ)(ŷk (t) − y(t)) + ˙̂

fk−1(t)
(3′′)

where x̂k (t) ∈ Rn is the observer state, ŷk (t) ∈ Rl is the ob-
server output, and f̂k (t) ∈ Rq is the kth estimate of f(t). L (ξ)
and G (ξ) are defined as in the first-step estimation. Denote
exk (t) = x̂k (t) − x(t), eyk (t) = ŷk (t) − y(t), ef k (t) = f̂k (t)
− f(t), and eT

k (t) = [eT
xk (t), eT

f k (t)], ωT
k (t) = [wT (t), ḟ T (t)

− ˙̂
fT

k−1(t)]; then, combining (2), the kth error dynamics is ob-
tained by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ėk (t) = [A(ξ) − LG (ξ)C(ξ)]ek (t)

+ [Aτ (ξ) − LG (ξ)Cτ (ξ)]ek (t − τ(t))

+ [LG (ξ)Dw (ξ) − Bw (ξ)]ωk (t)

eyk (t) = C(ξ)ek (t) + Cτ (ξ)ek (t − τ(t)) −Dw (ξ)ωk (t)
(4′′)

where A(ξ),Aτ (ξ),LG (ξ),Bw (ξ), C(ξ), Cτ (ξ), and Dw (ξ) are
defined as in the first-step estimation.

Remark 3: In the k-step fault-estimation procedure (k ≥
2), one can see that the input disturbance ḟ(t) is converted

to ḟ(t) − ˙̂
fi(t), i = 1, 2, . . . k − 1. Therefore, by using k-step
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Fig. 1. Flowchart of k-step fault-estimation.

fault-estimation approach, a group of fault estimates f̂i(t), i =
1, 2, . . . , k − 1 are obtained. Since f̂i(t) is the estimate of f(t),

then − ˙̂
fi(t) can more or less increasingly weaken the effect

intensive of input disturbance from ḟ(t) in the error dynamics.
Therefore, after k-step fault estimating, f̂k (t) can be practically
close well to the fault f(t). The simulation examples illustrate
the effectiveness and merits. Furthermore, the flowchart of our
k-step fault-estimation approach is shown in Fig. 1 .

So far, the aim of k-step fault-estimation includes one to
convert disturbances from the derivatives of f(t) to that from
the derivatives of f(t) − f̂(t), the other is to design the gain
matrices such that

1) the kth (k ∈ {1, 2, . . .}) error dynamics (4′′) with time-
varying state delay is asymptotically stable (with ωk (t) =
0);

2) the following H∞ performance is satisfied:
∫ L

0
‖ef k (t)‖2dt ≤ γ2

k

∫ L

0
‖ωk (t)‖2dt, k ∈ {1, 2, . . .}

(5)
for all L > 0 and ωk (t) ∈ L2 [0,∞) under zero initial
conditions.

Remark 4: In [50], the gain matrices was designed to made the
eigenvalues of state matrices in the error dynamics belong to a
circular region D(a, r) with center a + j0 and radius r, and the
error dynamics satisfying a given H∞ performance. However,
in this paper, the design objective is converted to design the gain
matrices such that the error dynamics satisfies 1) and 2).

Lemma 1: For the given positive scalars: τ, τD , δ, and γk , the
kth error dynamics (4′′) with time-varying state delay is asymp-
totically stable (with ωk (t) = 0) while satisfying a prescribed
H∞ performance (5) (k ∈ {1, 2, . . .}) if there exist matri-
ces P > 0, Q1 > 0, Q2 > 0, R > 0, Li, Gi, i = 1, 2, . . . , r and

free weighting matrices Mi,Ni of appropriate dimensions,
i = 1, 2, . . . , r such that the following inequalities hold:

[
Ω̃(ξ) τM(ξ)

∗ −τR

]

< 0 (6)

and,
[

Ω̃(ξ) τN(ξ)

∗ −τR

]

< 0 (7)

where

Ω̃(ξ) =

⎡

⎢
⎢
⎢
⎣

Ψ1(ξ) Ψ2(ξ) 0 Ψ3(ξ)

∗ −ε(1 − τD )Q1 0 0

∗ ∗ −Q2 0

∗ ∗ ∗ −γ2
k I

⎤

⎥
⎥
⎥
⎦

+ τΓT (ξ)P [2δP − δ2R]−1PΓ(ξ)

− M(ξ)(E1 − E2) − (E1 − E2)T MT (ξ)

− N(ξ)(E2 − E3) − (E2 − E3)T NT (ξ) (8)

where

Ψ1(ξ) = P (A(ξ) − LG (ξ)C(ξ)) + (A(ξ) − LG (ξ)C(ξ))T P

+ εQ1 + Q2 + Ĩq Ĩ
T
q , ĨT

q = [0 Iq ]

Ψ2(ξ) = P (Aτ (ξ) − LG (ξ)Cτ (ξ))

Ψ3(ξ) = P (LG (ξ)Dw (ξ) − Bw (ξ))

Γ(ξ) = [A(ξ) − LG (ξ)C(ξ), Aτ (ξ) − LG (ξ)Cτ (ξ), 0

LG (ξ)Dw (ξ) − Bw (ξ)]

M(ξ) =
r∑

i=1

μi(ξ(t))Mi,N(ξ) =
r∑

i=1

μi(ξ(t))Ni

E1 = [I, 0, 0, 0],E2 = [0, I, 0, 0], . . . ,E4 = [0, 0, 0, I].

Proof: In this paper, the Lyapunov function candidate is con-
structed as follows: for k ∈ {1, 2, . . .}

Vk (t) = eT
k (t)Pek (t) + V1 + V2 (9)

where

V1 = ε ·
∫ t

t−τ (t)
eT
k (s)Q1ek (s)ds +

∫ t

t−τ

eT
k (s)Q2ek (s)ds, (10)

V2 =
∫ 0

−τ

∫ t

t+θ

ėT
k (s)Rėk (s)dsdθ (11)

where P > 0, ε ≥ 0, Q1 > 0, Q2 > 0, R > 0. Then, the time
derivatives of Vk (t), along the trajectories of the error dynamics
(4) satisfy

V̇k (t) = eT
k (t)P (A(ξ) − LG (ξ)C(ξ))ek (t)

+ eT
k (t)(A(ξ) − LG (ξ)C(ξ))T Pek (t)

+ eT
k (t)(εQ1 + Q2)ek (t)

+ 2eT
k (t)P (Aτ (ξ) − LG (ξ)Cτ (ξ))ek (t − τ(t))

+ 2eT
k (t)P (LG (ξ)Dw (ξ) − Bw (ξ))ωk (t)
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− ε(1 − τ̇(t))eT
k (t − τ(t))Q1ek (t − τ(t))

− eT
k (t − τ)Q2ek (t − τ)

+ τ ėT
k (t)Rėk (t) −

∫ t

t−τ

ėT
k (s)Rėk (s)ds.

Furthermore, from the Newton–Leibniz formula, a straightfor-
ward computation gives

V̇k (t) + eT
f k (t)ef k (t) − γ2

kωT
k (t)ωk (t)

= V̇k (t) + eT
k (t)Ĩq Ĩ

T
q ek (t) − γ2

kωT
k (t)ωk (t)

− 2ζT (t)M(ξ)
[

ek (t) − ek (t − τ(t)) −
∫ t

t−τ (t)
ėk (s)ds

]

− 2ζT (t)N(ξ)

[

ek (t−τ(t))−ek (t−τ)−
∫ t−τ (t)

t−τ

ėk (s)ds

]

≤ 1
τ

∫ t

t−τ (t)

[
ζ(t)

ėk (s)

]T [
Ω̃(ξ) τM(ξ)

∗ −τR

] [
ζ(t)

ėk (s)

]

× 1
τ

∫ t−τ (t)

t−τ

[
ζ(t)

ėk (s)

]T [
Ω̃(ξ) τN(ξ)

∗ −τR

] [
ζ(t)

ėk (s)

]

.

where ζT (t) = [eT
k (t), eT

k (t − τ(t)), eT
k (t − τ), ωT

k (t)]. On the
other hand, if (6) and (7) hold, one has

V̇k (t) + eT
f k (t)ef k (t) − γ2

kωT
k (t)ωk (t) < 0.

It follows from (1) that x(t) = 0,∀t ∈ [−τ, 0] when φi(t) =
0, i = 1, 2, . . . , r. It further follows that ek (t) = 0 and ėk (t) =
0,∀t ∈ [−τ, 0]. Therefore, for ek (0) = 0, one has

Vk (t)|t=0 = eT
k (0)Pek (0) + ε ·

∫ 0

−τ (t)
eT
k (s)Q1ek (s)ds

+
∫ 0

−τ

eT
k (s)Q2ek (s)ds

+
∫ 0

−τ

∫ 0

θ

ėT
k (s)Rėk (s)dsdθ = 0.

Consequently, it follows from Vk (t)|t=L ≥ 0 that
∫ L

0
(‖ef k (t)‖2 − γ2

k‖ωk (t)‖2)dt+Vk (t)|t=L − Vk (t)|t=0 ≤ 0

which implies that (5) holds. Therefore, the H∞ performance is
verified.

In addition, if (6) and (7) hold, then the time derivatives
of Vk (t) along the solution of (4′′) when ωk (t) = 0 satisfies
V̇k (t) < 0. As a result, the asymptotic stability of error dynamics
(4′′) follows immediately when ωk (t) = 0 for k ∈ {1, 2, . . .}.
The proof is thus completed. �

Remark 5: In the estimation of upper bounds of time de-
lay terms, for the Lyapunov functional candidate always in-
volves the integral term

∫ 0
−τ

∫ t

t+θ η̇T (s)Rη̇(s)dsdθ, the deriva-
tives of the term was always estimated as τ η̇T (t)Rη̇(t) −
∫ t

t−τ (t) η̇T (s)Rη̇(s)ds, and the term −
∫ t−τ (t)

t−τ η̇T (s)Rη̇(s)ds
was ignored [14], [19], [20], or some useful negative integral
terms lost; see, e.g., [11], [14], [19], [20], [23], [24], and [34].

However, in Lemma 1, an improved integral inequality method
without ignoring any integral term is applied to convert the inte-
gral inequalities to matrix inequalities, which theoretically leads
to less conservativeness than the existing ones in [11], [14], [19],
[20], [23], [24], and [34], and the relevant results and proofs can
be seen in Appendix. Furthermore, the introduction of ε (ε ≥ 0)
indicates that Lemma 1 can be suitable for the time-varying
delay τ(t) being or not differentiable, that is, in the case of
time-varying delay τ(t) being not differentiable, then one can
set ε = 0 in the result.

Theorem 1: For the given positive scalars τ, τD , δ, and γk ,
the kth error dynamics (4′′) with time-varying state delay
is asymptotically stable (with ωk (t) = 0) while satisfying a
prescribed H∞ performance (5) (k ∈ {1, 2, . . .}) if there ex-
ist matrices P > 0, Q1 > 0, Q2 > 0, R > 0,Yi , i = 1, 2, . . . , r
and free weighting matrices Mi,Ni of appropriate dimensions,
i = 1, 2, . . . , r, such that the following LMIs hold:

Ξii < 0, i = 1, 2, . . . , r (12)

Ξij + Ξj i ≤ 0, 1 ≤ i < j ≤ r (13)

Πii < 0, i = 1, 2, . . . , r (14)

Πij + Πj i ≤ 0, 1 ≤ i < j ≤ r (15)

where

Ξij =

⎡

⎢
⎣

Ωij τMi
√

τΓT
ij

∗ −τR 0

∗ ∗ −2δP + δ2R

⎤

⎥
⎦ (16)

and

Πij =

⎡

⎢
⎣

Ωij τNi
√

τΓT
ij

∗ −τR 0

∗ ∗ −2δP + δ2R

⎤

⎥
⎦ (17)

where MT
i = [MT

1i , MT
2i , MT

3i , UT
1i ], NT

i = [NT
1i , NT

2i , NT
3i ,

UT
2i ], Γij = [PAi − YiCj , PAτ i − YiCτ j , 0,YiDwj − PBwi ],

and

Ωij =

⎡

⎢
⎢
⎢
⎣

Ψ1ij Ψ2ij 0 Ψ3ij

∗ −ε(1 − τD )Q1 0 0

∗ ∗ −Q2 0

∗ ∗ ∗ −γ2
k I

⎤

⎥
⎥
⎥
⎦

− Mi(E1 − E2) − (E1 − E2)T MT
i

− Ni(E2 − E3) − (E2 − E3)T NT
i . (18)

where
Ψ1ij = PAi −YiCj +(PAi −YiCj )T +εQ1 +Q2 + Ĩq Ĩ

T
q

Ψ2ij = PAτ i − YiCτ j

Ψ3ij = YiDwj − PBwi

E1 = [I, 0, 0, 0],E2 = [0, I, 0, 0], . . . ,E4 = [0, 0, 0, I].
Then, the gain matrices can be obtained as follows:

LG i =
[

Li

Gi

]

= P−1Yi , i = 1, 2, . . . , r. (19)
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Proof: If (12)–(15) hold, then by the Schur complement, one
has

Ξ̃ii < 0, i = 1, 2, . . . , r (20)

Ξ̃ij + Ξ̃j i ≤ 0, 1 ≤ i < j ≤ r (21)

Π̃ii < 0, i = 1, 2, . . . , r (22)

Π̃ij + Π̃j i ≤ 0, 1 ≤ i < j ≤ r (23)

where

Ξ̃ij =
[

Ω̃ij τMi

∗ −τR

]

(24)

and

Π̃ij =
[

Ω̃ij τNi

∗ −τR

]

(25)

where

Ω̃ij =

⎡

⎢
⎢
⎢
⎣

Ψ1ij Ψ2ij 0 Ψ3ij

∗ −ε(1 − τD )Q1 0 0

∗ ∗ −Q2 0

∗ ∗ ∗ −γ2
k I

⎤

⎥
⎥
⎥
⎦

+ τΓT
ijP [2δP − δ2R]−1PΓij

− Mi(E1 − E2) − (E1 − E2)T MT
i

− Ni(E2 − E3) − (E2 − E3)T NT
i (26)

with the variable changing Yi = PLG i . Denote μi = μi(ξ(t)).
Therefore, if (20)–(23) hold, then

r∑

i=1

μ2
i Ξ̃ii +

r∑

i=1

r∑

i<j

μiμj (Ξ̃ij + Ξ̃j i) < 0 (27)

and
r∑

i=1

μ2
i Π̃ii +

r∑

i=1

r∑

i<j

μiμj (Π̃ij + Π̃j i) < 0 (28)

which imply that (6) and (7) hold. Then, by Lemma 2, the kth
error dynamics (4′′) with time-varying state delay is asymptoti-
cally stable (with ωk (t) = 0) while satisfying a prescribed H∞
performance (5). Thus, the proof is completed. �

Remark 6: It is noted that the conditions in Lemma 1 are
nonconvex by adding slack variables, Theorem 1 presents the
convex conditions. In fact, from our k-step fault-estimation ap-
proach, one can see that each error dynamics possesses identical
system matrices, which implies that the obtained sufficient con-
ditions in Theorem 1 are suitable for each step fault estimation
but independent on the scalar k. However, the kth error dy-
namics is dependent on the kth input disturbance ωk (t) which

involves the term ḟ(t) − ˙̂
fk−1(t).

B. Dynamic Output Feedback Controllers Design

Based on the obtained online kth fault-estimation information
of f̂k (t), a fault-tolerant controller via dynamic output feedback
to guarantee the stability in the presence of faults is to be de-
signed in the following. Similar to [8] and [22], the dynamic

output feedback fault tolerant controller for T–S fuzzy models
is constructed as
⎧
⎪⎨

⎪⎩

η̇(t) = Af (ξ, ξ)η(t) + Aτ f (ξ, ξ)η(t − τ(t)) + Bf (ξ)y(t)

u(t) = Cf (ξ)η(t) + Cτ f (ξ)η(t − τ(t)) + Df y(t) − f̂k (t)

η(t) = φ(t),∀t ∈ [−τ, 0]
(29)

where η(t) ∈ Rn is the state, and Af (ξ, ξ),Aτ f (ξ, ξ),Bf (ξ),
Cf (ξ),Cτ f (ξ), and Df (ξ) are of appropriate dimensions to be
designed with similar forms as those in (2), e.g., Af (ξ, ξ) =∑r

i,j=1 μi(ξ(t))μj (ξ)Af ij . φ(t) is defined as in (2).
Denote x̃T (t) = [xT (t), ηT (t)] and ω̃T (t) = [wT (t), eT

f (t)],
where eT

f (t) = f(t) − f̂k (t). Then, combining (2), one can
obtain
{ ˙̃x(t) = A(ξ, ξ)x̃(t) + Aτ (ξ, ξ)x̃(t − τ(t)) + Bw (ξ, ξ)ω̃(t)

y(t) = C(ξ)x̃(t) + Cτ (ξ)x̃(t − τ(t)) + Dω (ξ)ω̃(t)
(30)

where

A(ξ, ξ) =
[

A (ξ) + Bu (ξ)Df C (ξ) Bu (ξ)Cf (ξ)

Bf (ξ)C (ξ) Af (ξ, ξ)

]

Aτ (ξ, ξ) =
[

Aτ (ξ) + Bu (ξ)Df Cτ (ξ) Bu (ξ)Cτ f (ξ)

Bf (ξ)Cτ (ξ) Aτ f (ξ, ξ)

]

Bw (ξ, ξ) =
[

Bu (ξ)Df Dw (ξ) + Bw (ξ) −Bu (ξ)

Bf (ξ)Dw (ξ) 0

]

C(ξ) = [C (ξ) 0 ] , Cτ (ξ) = [Cτ (ξ) 0 ]

Dw (ξ) = [Dw (ξ) 0 ] .

So far, the problem of dynamic output feedback control for
the closed-loop fuzzy system is to design the gain matrices such
that

1) the closed-loop fuzzy system (30) with time-varying state
delay is asymptotically stable (when ω̃(t) = 0);

2) the following H∞ performance is satisfied for x̃(0) = 0,
and φ(t) = 0,∀t ∈ [−τ, 0]:

∫ L

0
‖y(t)‖2dt ≤ γ2

∫ L

0
‖ω̃(t)‖2dt (31)

for all L > 0 and ω̃(t) ∈ L2 [0,∞).
Lemma 2: For the given positive scalars τ, τD , δ, and γ, the

closed-loop fuzzy system (30) with time-varying state delay
is asymptotically stable (with ω̃(t) = 0) while satisfying a
prescribed H∞ performance (31) if there exist matrices X > 0,
Y > 0, Q1 > 0, Q2 > 0, R > 0, Af ij , Aτ f ij , Bf i, Cf i, Cτ f i ,
Df , and i = 1, 2, . . . , r and free weighting matrices Mi,Ni of
appropriate dimensions, i = 1, 2, . . . , r such that the following
inequalities hold:

[
Ω̃(ξ, ξ) τM(ξ)

∗ −τR

]

< 0 (32)

and
[

Ω̃(ξ, ξ) τN(ξ)

∗ −τR

]

< 0 (33)



1532 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 22, NO. 6, DECEMBER 2014

where

Ω̃(ξ, ξ) =

⎡

⎢
⎢
⎢
⎣

Ψ1(ξ, ξ) Ψ2(ξ, ξ) 0 Ψ3(ξ, ξ)

∗ −ε(1 − τD )Q1 0 0

∗ ∗ −Q2 0

∗ ∗ ∗ −γ2I

⎤

⎥
⎥
⎥
⎦

+ τΓT(ξ, ξ)P [2δP−δ2R]−1PΓ(ξ, ξ)+ΥT(ξ)Υ(ξ)

− M(ξ)(E1 − E2) − (E1 − E2)T MT (ξ)

− N(ξ)(E2 − E3) − (E2 − E3)T NT (ξ) (34)

where

Ψ1(ξ, ξ) = PA(ξ, ξ) + AT (ξ, ξ)P + εQ1 + Q2

Ψ2(ξ, ξ) = PAτ (ξ, ξ),Ψ3(ξ) = PBω (ξ, ξ)

Γ(ξ, ξ) = [A(ξ, ξ), Aτ (ξ, ξ), 0, Bω (ξ, ξ)]

Υ(ξ) = [C(ξ), Cτ (ξ), 0, Dω (ξ)]

M(ξ) =
r∑

i=1

μi(ξ(t))Mi,N(ξ) =
r∑

i=1

μi(ξ(t))Ni

E1 = [I, 0, 0, 0],E2 = [0, I, 0, 0], . . . ,E4 = [0, 0, 0, I].

Proof: In this paper, the Lyapunov function candidate is con-
structed as follows:

V (t) = x̃T (t)P x̃(t) + V1 + V2 (35)

where

V1 = ε ·
∫ t

t−τ (t)
x̃T (s)Q1 x̃(s)ds +

∫ t

t−τ

x̃T (s)Q2 x̃(s)ds (36)

V2 =
∫ 0

−τ

∫ t

t+θ

˙̃x
T
(s)R ˙̃x(s)dsdθ. (37)

where P > 0, ε ≥ 0, Q1 > 0, Q2 > 0, and R > 0. Then, the
time derivatives of V (t), along the trajectories of the closed-
loop fuzzy system (30), satisfy

V̇ (t) = x̃T (t)[PA(ξ, ξ) + AT (ξ, ξ)P + εQ1 + Q2 ]x̃(t)

+ 2x̃T (t)PAτ (ξ, ξ)x̃(t − τ(t))

+ 2x̃T (t)PBω (ξ, ξ)ω̃(t)

− ε(1 − τ̇(t))x̃T (t − τ(t))Q1 x̃(t − τ(t))

− x̃T (t − τ)Q2 x̃(t − τ) + τ ˙̃x
T
(t)R ˙̃x(t)

−
∫ t

t−τ

˙̃x
T
(s)R ˙̃x(s)ds.

Furthermore, from the Newton–Leibniz formula, a straightfor-
ward computation gives

V̇ (t) + yT (t)y(t) − γ2 ω̃T (t)ω̃(t)

= V̇ (t) + yT (t)y(t) − γ2 ω̃T (t)ω̃(t)

− 2ζT (t)M(ξ)
[

x̃(t) − x̃(t − τ(t)) −
∫ t

t−τ (t)

˙̃x(s)ds

]

− 2ζT (t)N(ξ)

[

x̃(t − τ(t)) − x̃(t − τ) −
∫ t−τ (t)

t−τ

˙̃x(s)ds

]

≤ 1
τ

∫ t

t−τ (t)

[
ζ(t)
˙̃x(s)

]T [
Ω̃(ξ, ξ) τM(ξ)

∗ −τR

] [
ζ(t)
˙̃x(s)

]

1
τ

∫ t−τ (t)

t−τ

[
ζ(t)
˙̃x(s)

]T [
Ω̃(ξ, ξ) τN(ξ)

∗ −τR

] [
ζ(t)
˙̃x(s)

]

where ζT (t) = [x̃T (t), x̃T (t − τ(t)), x̃T (t − τ), ω̃T (t)].
Therefore, if (32) and (33) hold, then one has

V̇ (t) + yT (t)y(t) − γ2 ω̃T (t)ω̃(t) < 0.

It follows from (1) and (29) that x(t) = 0 and η(t) =
0,∀t ∈ [−τ, 0] when φ(t) = 0. It further follows that x̃(t) =
0 and ˙̃x(t) = 0,∀t ∈ [−τ, 0]. Consequently, it follows from
V (t)|t=0 = 0 for x̃(0) = 0 and V (t)|t=L ≥ 0 that

∫ L

0
(‖y(t)‖2 − γ2‖ω̃(t)‖2)dt + V (t)|t=L − V (t)|t=0 ≤ 0

which implies that (31) holds. Therefore, the H∞ performance
is verified.

In addition, if (32) and (33) hold, then the time derivatives of
V (t) along the solution of (30) when ω̃(t) = 0 satisfies V̇ (t) <
0. As a result, the asymptotic stability of a closed-loop fuzzy
system (30) follows immediately when ω̃(t) = 0. The proof is
thus completed. �

Remark 7: In Lemma 2, the integral inequality method same
as in Lemma 1 is applied to obtain the relevant results. The
obtained delay dependent results as discussed in Remark 5 is
also less conservative than the existing ones in [11], [14], [19],
[20], [23], [24], and [34].

Theorem 2: For the given positive scalars τ, τD , δ, and γ,
the closed-loop fuzzy system (30) with time-varying state
delay is asymptotically stable (with ω̃(t) = 0) while satisfying
a prescribed H∞ performance (31) if there exist matrices
X > 0, Y > 0, Q̂1 > 0, Q̂2 > 0, R̂ > 0,X1 , Y1 , Âf ij , Âτ f ij ,

B̂f i , Ĉf i , Ĉτ f i , D̂f , i = 1, 2, . . . , r and free weighting matrices
M̂i, N̂i of appropriate dimensions, i = 1, 2, . . . , r such that the
following inequalities hold:

Ξii < 0, i = 1, 2, . . . , r (38)

Ξij + Ξj i ≤ 0, 1 ≤ i < j ≤ r (39)

Πii < 0, i = 1, 2, . . . , r (40)

Πij + Πj i ≤ 0, 1 ≤ i < j ≤ r (41)

where

Ξij =

⎡

⎢
⎢
⎢
⎢
⎣

Ωij τM̂i
√

τΓT
ij ΥT

i

∗ −τR̂ 0 0

∗ ∗ −2δφ + δ2R̂ 0

∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎦

(42)
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and

Πij =

⎡

⎢
⎢
⎢
⎢
⎣

Ωij τ N̂i
√

τΓT
ij ΥT

i

∗ −τR̂ 0 0

∗ ∗ −2δφ + δ2R̂ 0

∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎦

(43)

where

Ωij =

⎡

⎢
⎢
⎢
⎢
⎣

Ψij ψ2ij 0 ψ3ij

∗ −ε(1 − τD )Q̂1 0 0

∗ ∗ −Q̂2 0

∗ ∗ ∗ −γ2I

⎤

⎥
⎥
⎥
⎥
⎦

− M̂i(E1 − E2) − (E1 − E2)T M̂T
i

− N̂i(E2 − E3) − (E2 − E3)T N̂T
i (44)

where

Ψij = ψ1ij + ψT
1ij + εQ̂1 + Q̂2

ψ1ij =

[
AiX + BuiĈf j Ai + BuiD̂f Cj

Âf ij Y Ai + B̂f jCi

]

ψ2ij =

[
Aτ iX + BuiĈτ f j Aτ i + BuiD̂f Cτ j

Âτ f ij Y Aτ i + B̂f jCτ i

]

ψ3ij =

[
Bwi + BuiD̂f Dwj −Bui

Y Bwi + B̂f jDwi −Y Bui

]

φ =
[

X I

I Y

]

> 0,Γij = [ψ1ij , ψ2ij , 0, ψ3ij ]

Υi = [ψ4i , ψ5i , 0, ψ6i ], ψ4i = [XCi Ci ]

ψ5i = [XCτ i Cτ i ] , ψ6i = [Dwi 0 ]

M̂T
i = [M̂T

1i , M̂
T
2i , M̂

T
3i , Û

T
1i ], N̂

T
i = [N̂T

1i , N̂
T
2i , N̂

T
3i , Û

T
2i ]

E1 = [I, 0, 0, 0],E2 = [0, I, 0, 0], . . . ,E4 = [0, 0, 0, I].

Then, the gain matrices of the dynamic output feedback fault
tolerant controller are given by

Df = D̂f

Cf i = (Ĉf i − Df CiX)X−T
1

Cτ f i = (Ĉτ f i − Df Cτ iX)X−T
1

Bf i = Y −1
1 (B̂f i − Y BuiDf )

Af ij = Y −1
1 (Âf ij − Y (Ai + BuiDf Cj )X)X−T

1

− Bf jCiXX−T
1 − Y −1

1 Y BuiCf j

Aτ f ij = Y −1
1 (Âτ f ij − Y (Aτ i + BuiDf Cτ j )X)X−T

1

− Bf jCτ iXX−T
1 − Y −1

1 Y BuiCτ f j

where X1 , Y1 satisfy X1Y
T
1 = I − XY .

Proof: By the Schur complement, (38)–(41) are equivalent to
the following inequalities, respectively:

Ξ̃ii < 0, i = 1, 2, . . . , r

Ξ̃ij + Ξ̃j i ≤ 0, 1 ≤ i < j ≤ r

Π̃ii < 0, i = 1, 2, . . . , r

Π̃ij + Π̃j i ≤ 0, 1 ≤ i < j ≤ r

where

Ξ̃ij =

[
Ω̃ij τM̂i

∗ −τR̂

]

, Π̃ij =

[
Ω̃ij τ N̂i

∗ −τR̂

]

where

Ω̃ij =

⎡

⎢
⎢
⎢
⎢
⎣

Ψij ψ2ij 0 ψ3ij

∗ −ε(1 − τD )Q̂1 0 0

∗ ∗ −Q̂2 0

∗ ∗ ∗ −γ2I

⎤

⎥
⎥
⎥
⎥
⎦

+ τΓT
ij (−2δφ + δ2R̂)−1Γij + ΥT

i Υi

− M̂i(E1 − E2) − (E1 − E2)T M̂T
i

− N̂i(E2 − E3) − (E2 − E3)T N̂T
i .

Denote μi = μi(ξ(t)). It further follows that
r∑

i=1

μ2
i Ξ̃ii +

r∑

i=1

r∑

i<j

μiμj (Ξ̃ij + Ξ̃j i) < 0 (45)

and
r∑

i=1

μ2
i Π̃ii +

r∑

i=1

r∑

i<j

μiμj (Π̃ij + Π̃j i) < 0. (46)

Similar to [50], we express the symmetric positive definite ma-
trix P and its inverse matrix P−1 as

P =
[

Y Y1

∗ W

]

, P−1 =
[

X X1

∗ Z

]

.

Due to PP−1 = I , one has

P

[
X

XT
1

]

=
[

I

0

]

, P

[
X I

XT
1 0

]

=
[

I Y

0 Y T
1

]

respectively. If we denote

F1 =
[

X I

XT
1 0

]

, F2 =
[

I Y

0 Y T
1

]

then it follows that PF1 = F2 . Pre and post multiplying (45)
and (46) by diag{F−T

1 , F−T
1 , F−T

1 , I, F−T
1 } and its transpose

produces (32) and (33), respectively. Then, by Lemma 2, the
closed-loop fuzzy system (30) with time-varying state delay is
asymptotically stable (with ω̃(t) = 0) while satisfying a pre-
scribed H∞ performance (31). Thus, the proof is completed. �

Remark 8: It is noted that the conditions in Lemma 2 are also
nonconvex by adding slack variables, Theorem 2 presents the
convex conditions. As in [50], from X > 0, Y > 0, and φ > 0
in (42) and (43), one can obtained that I − XY is nonsingular.
Therefore, we can always find nonsingular matrices X1 and Y1
satisfying X1Y

T
1 = I − XY , which can be computed by using

the qr function of the MATLAB toolbox.
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IV. SIMULATION RESULTS

In this section, two numerical examples are presented to il-
lustrate the effectiveness of the proposed results in this paper
and to compare with the existing results in [50] to show the
advantages of our design method.

Example 1: This example shows the problem of balancing
and the swing-up of an inverted pendulum on a cart.

Consider the problem of balancing and swing-up of an in-
verted pendulum on a cart [10]. The considered model can be
represented by using a two-rule T–S fuzzy model; see [50].
Then, the overall fuzzy system can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =
2∑

i=1

μi [Aix(t) + Bui(u(t) + f(t)) + Bwiw(t)]

y(t) = Cx(t) + Dw w(t)

x(t) =
2∑

i=1

μiφi(t)

where

A1 =

⎡

⎣
0 1
g

4l/3 − aml
0

⎤

⎦ , A2 =

⎡

⎣

0 1

2g

π(4l/3 − amlβ2)
0

⎤

⎦

Bu1 =

⎡

⎣
0

− a

4l/3 − aml

⎤

⎦ , Bu2 =

⎡

⎣

0

− aβ

4l/3 − amlβ2

⎤

⎦

Bw1 = Bw2 =
[

0.01

0.01

]

, C = [ 1 0 ] ,Dw = 0.001

where g = 9.8,m = M = 2.0, a = 1/(m + M), and l =
0.5, β = cos(88◦).

We first estimate the actuator fault. Setting τ = 0.01, δ =
10, ε = 0 (τD unknown), and computing matrix inequalities in
(12)–(15) in Theorem 1 gives the minimum attenuation value
γ = 0.9985 and a feasible solution as

L1 =
[

7.6246

54.3220

]

, L2 =
[

4.4041

31.1735

]

G1 = −128.1721, G2 = −67.9022.

Next, we design the dynamic output feedback fault tolerant
controller. Setting τ = 0.01, δ = 10, and ε = 0 (τD unknown),
computing matrix inequalities in (38)–(41) in Theorem 2 gives
the minimum attenuation value γ = 0.185 and a feasible solu-
tion as Df = −16.4734

Af 11 =
[−10.5683 −1.5074

172.8762 −2.3885

]

Af 12 =
[−10.6536 −1.5022

171.4555 −2.3018

]

Af 21 =
[−10.2176 −1.4197

178.4193 −0.9866

]

Fig. 2. Response curves of f (t) and its estimates for a = 0, b = 20.

Af 22 =
[−10.3029 −1.4145

176.9986 −0.9000

]

Bf 1 =
[−0.0522

6.7990

]

, Cf 1 = [−205.0965 384.9619 ]

Bf 2 =
[−0.0571

6.7186

]

, Cf 2 = [−205.0965 384.9619 ].

It is assumed that the actuator fault f(t) is created as

f(t) =

{
0, 0 ≤ t < 2

(a sin(t − 2) + b)(1 − e
−t + 2

4 ), 2 ≤ t < 30.

If we let a = 0, b �= 0, then f(t) is a constant actuator fault. It
is supposed that w(t) is band-limited white noise with power
0.001 and sampling time 0.01s. For simulation purposes, here
we choose μ1(ξ(t)) = 1/(1 + exp(x1 + 0.5)) and μ2(ξ(t)) =
1 − μ1(ξ(t)).

First, we consider the constant actuator fault; let a =
0, and let b = 20. The simulation results run for the closed-loop
fuzzy system (4) and (4′′) by one-step fault-estimation (which,
in fact, is the method proposed in [50]) and our k-step fault
estimation, respectively. Fig. 2 shows the actuator fault estima-
tion simulation results under one and two-step fault estimation,
respectively. Obviously, it can be seen from Fig. 2 that the value
of f̂(t) under two-step fault-estimation is closer to f(t) than
that under one-step fault estimation. Furthermore, Fig. 3 shows
the response curves of state errors under k = 1, 2, respectively.
It can be seen from Figs. 2 and 3 that two-step fault-estimation
really weaken the effects from the input disturbance of ḟ(t) but
is not clear for constant faults.

Next, we consider the time-varying actuator fault; let a =
5, and let b = 0. The simulation results run for the closed-loop
fuzzy system (4) and (4′′) by one-step-fault-estimation and our
k-step fault-estimation, respectively. Fig. 4 shows the actuator
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Fig. 3. Response curves of state errors for a = 0, b = 20.

Fig. 4. Response curves of f (t) and its estimates for a = 5, b = 0.

fault estimation simulation results under one and six-step fault
estimation, respectively. Obviously, it can be seen from Fig. 4
that the value of f̂(t) under six-step fault estimation is close to
f(t). Furthermore, Fig. 5 shows the response curves of state er-
rors under k = 1 and 6, respectively. It can be seen from Fig. 5
that when t > 10 s, the state errors go nearly to zero under
k = 6, while those in one-step fault estimation cannot. Further-

more, Fig. 6 shows the response curves of ḟ(t) and ḟ(t) − ˙̂
f 5(t)

under k = 1 and 6, respectively. Obviously, ḟ(t) − ˙̂
f 5(t) goes

nearly to zero under six-step fault estimation, which clearly

Fig. 5. Response curves of state errors for a = 5, b = 0.

Fig. 6. Response curves of input disturbances ḟ (t) and ḟ (t) − ˙̂
f 5 (t) by one

and six-step fault estimation for a = 5, b = 0, respectively.

demonstrates that our proposed k-step fault-estimation approach
really weakens the effects of input disturbance from ḟ(t) in
this example for time-varying faults. Under initial condition
φ(t) = [π/3 0]T , simulation results for response curves of
state (top) and output (bottom) for the closed-loop fuzzy system
(30) based on dynamic output feedback fault tolerant controllers
are illustrated in Fig. 7.

In Example 1, there is no time-varying state delay in the fuzzy

models. Therefore, to further illustrate how − ˙̂
fk (t) weakening

the input disturbances from ḟ(t) also increasingly weaken the
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Fig. 7. Response curves of state and output y(t) under initial condition φ(t) =
[π/3 0]T for a = 5, b = 0.

effect from time-varying delay, we consider the following sys-
tem with actuator fault and time-varying state delays under input
disturbance w(t) ≡ 0.

Example 2: This example considers the truck trailer system
with time delays.

Consider the truck trailer system with time-varying state delay
cited from [5]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =
2∑

i=1

μi(ξ(t))[Aix(t) + Aτ ix(t − τ(t))]

+
2∑

i=1

μi(ξ(t))[Bui(u(t) + f(t))], t ≥ 0

y(t) = Cx(t) + Cτ x(t − τ(t))

x(t) =
2∑

i=1

μi(ξ(t))φi(t)

where

A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−a
vt̄

Lt0
0 0

a
vt̄

Lt0
0 0

a
v2 t̄2

2Lt0

vt̄

t0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−a
vt̄

Lt0
0 0

a
vt̄

Lt0
0 0

a
dv2 t̄2

2Lt0

dvt̄

t0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Aτ 1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−(1 − a)
vt̄

Lt0
0 0

(1 − a)
vt̄

Lt0
0 0

(1 − a)
v2 t̄2

2Lt0
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Bu1 =

⎡

⎢
⎢
⎢
⎣

vt̄

lt0

0

0

⎤

⎥
⎥
⎥
⎦

Aτ 2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−(1 − a)
vt̄

Lt0
0 0

(1 − a)
vt̄

Lt0
0 0

(1 − a)
dv2 t̄2

2Lt0
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Bu2 =

⎡

⎢
⎢
⎢
⎣

vt̄

lt0

0

0

⎤

⎥
⎥
⎥
⎦

C = [−0.2 0.05 − 0.15], Cτ = (1 − a)C

with l = 2.8, L = 5.5, v = −1.0, t̄ = 2.0, t0 = 0.5, d = 10 ∗
t0/π, and f(t) = 5(sin 2t + cos t), t > 0. For simulation pur-
poses, here, we choose μ1(ξ(t)) = 1/(1 + exp(x1 + 0.5)) and
μ2(ξ(t)) = 1 − μ1(ξ(t)) with initial condition [0.5π 0.75π
− 5]T .

Setting τ = 0.5, δ = 10 and ε = 0 (τD unknown), computing
matrix inequalities in (12)–(15) in Theorem 1 gives the mini-
mum attenuation value γ = 0.3579 and a feasible solution as

L1 =

⎡

⎢
⎣

−62.3063

2.6251

−1.6312

⎤

⎥
⎦ , L2 =

⎡

⎢
⎣

−62.1415

2.6863

−2.0412

⎤

⎥
⎦

G1 = 393.2601 G2 = 394.2996.

Setting τ = 0.5, δ = 10, and ε = 0 (τD unknown), comput-
ing matrix inequalities in (38)–(41) in Theorem 2 gives the
minimum attenuation value γ = 0.1225 and a feasible solution
as Df = −43.5658

Af 11 = Af 12 =

⎡

⎢
⎣

−17.8437 −6.0271 −6.3009

9.3718 0.3873 −0.8603

−10.9258 −1.9598 −2.0074

⎤

⎥
⎦

Af 21 = Af 22 =

⎡

⎢
⎣

−18.4911 −6.9820 −5.4074

9.6042 0.7296 −1.1812

−11.1525 −2.2921 −1.6940

⎤

⎥
⎦

Aτ f 11 = Aτ f 12 =

⎡

⎢
⎣

−1.5754 −1.1623 −1.3045

0.8546 0.3000 0.1906

−0.9886 −0.6009 −0.6176

⎤

⎥
⎦

Aτ f 21 = Aτ f 22 =

⎡

⎢
⎣

−1.5949 −1.0534 −1.1280

0.8611 0.2614 0.1282

−0.9943 −0.5639 −0.5581

⎤

⎥
⎦

Cf 1 = Cf 2 = [ 234.0786 148.9879 −214.2511 ]

Bf 1 = Bf 2 =

⎡

⎢
⎣

1.7163

−0.8802

1.0570

⎤

⎥
⎦

Cτ f 1 = Cτ f 2 = [ 31.3575 −42.8518 −78.2211 ] .

The simulation results run for the closed-loop fuzzy sys-
tem (4) and (4′′) by our k-step fault-estimation. Fig. 8 shows
the actuator fault estimation simulation results under one and
four-step fault estimation, respectively. Obviously, it can be
seen that the value of f̂(t) under four-step fault estimation has
been close to f(t). Fig. 9 shows the response curves of input
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Fig. 8. Response curves of f (t) and its estimates.

Fig. 9. Response curves of input disturbance from ḟ (t) and ḟ (t) − ˙̂
f 3 (t),

respectively.

disturbances from ḟ(t) and ḟ(t) − ˙̂
f 3(t), respectively. It can be

seen from Fig. 9 that ḟ(t) − ˙̂
f 3(t) has been close to zero, which

implies that − ˙̂
f 3(t) practically weakens ḟ(t). Fig. 10 shows the

response curves of state errors under one and four-step fault esti-
mation, respectively. In Fig. 10, the state errors under four-step
fault estimation have gone nearly to zero, which also implies

that − ˙̂
f 3(t) increasingly weakening the effect from ḟ(t) also

weakens the effect from time-varying delay. Finally, under ini-
tial condition φ(t) = [0.5π 0.75π − 5]T , simulation results
for the response curve of output for the closed-loop fuzzy sys-

Fig. 10. Response curves of state errors.

Fig. 11. Response curve of output y(t) under initial condition φ(t) =
[0.5π 0.75π − 5]T .

tem (30) with state delay based on dynamic output feedback
fault tolerant controllers are illustrated in Fig. 11.

V. CONCLUSION

This paper has studied the problem of the FTC design for
T–S fuzzy systems with time-varying state delay, actuator faults,
and external disturbances. A novel k-step fault-estimation de-
tailed design framework for observer-based robust fault esti-
mation and FTC is proposed for a class of nonlinear systems
with time-varying state delay described by T–S fuzzy models.
The main contribution of this paper is that 1) a novel k-step
fault-estimation approach is proposed for T–S fuzzy systems
with time-varying state delay and actuator faults. The fault esti-
mates via this method can practically better depict the size and
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shape of the faults than that via the existing one. 2) By using
an improved integral inequality method without ignoring any
useful integral terms in the derivatives of Lyapunov function-
als, some less conservative delay dependent stability conditions
for the existence of k-step fault-estimation observers and fault-
tolerant controllers for T–S fuzzy systems with time-varying
state delay and actuator faults are given in terms of solution
to a set of linear matrix inequalities (LMIs). Simulation results
of two numerical examples demonstrate the effectiveness and
merits of the proposed methods. The proposed k-step fault-
estimation approach being applied to the model with actuator
and sensor faults, as well as to the systems with state and input
delays against actuator or/and sensor faults, will be our next
challenge.

APPENDIX

In fact, to obtain the relevant delay dependent sufficient sta-
bility conditions, Lemmas 1 and 2 and the methods in [11], [14],
[19], [20], [23], [24], and [34], mainly focus on how to convert
the integral inequality (47) to matrix inequalities:

ζT (t)Qζ(t) −
∫ t

t−τ

ẋT (s)Rẋ(s)ds ≤ 0 (47)

where τ > 0, and we assume that ζT (t) = [xT (t), xT (t −
τ(t)), xT (t − τ), w(t)], 0 ≤ τ(t) ≤ τ,R > 0, and that Q is a
symmetric matrix of appropriate dimensions. Denote ξT (t) =
[ζT (t), ẋT (s)] and

Ψ =

⎡

⎢
⎢
⎢
⎣

M1 N1 − M1 −N1 0

M2 N2 − M2 −N2 0

M3 N3 − M3 −N3 0

M4 N4 − M4 −N4 0

⎤

⎥
⎥
⎥
⎦

where Mi and Ni are of appropriate dimensions i = 1, 2, 3, 4.
The following result summarizes the integral inequality

method in [14], [19], [20], [23], and [34].
Lemma 3: If we assume that τ > 0, R > 0, and that

Q is a symmetric matrix of appropriate dimensions, then
(47) holds if there exist free weighting matrices M =
[MT

1 ,MT
2 ,MT

3 ,MT
4 ]T and N = [NT

1 , NT
2 , NT

3 , NT
4 ]T of ap-

propriate dimensions such that

Q − Ψ − ΨT + τMR−1MT + τNR−1NT ≤ 0. (48)

Proof: For τ > 0 and 0 ≤ τ(t) ≤ τ , by the Leibniz–Newton
formula, one has

ζT (t)Qζ(t) −
∫ t

t−τ

ẋT (s)Rẋ(s)ds

= ζT (t)Qζ(t)

− 2ζT (t)M [x(t) − x(t − τ(t)) −
∫ t

t−τ (t)
ẋ(s)ds]

− 2ζT (t)N [x(t − τ(t)) − x(t − τ) −
∫ t−τ (t)

t−τ

ẋ(s)ds]

−
∫ t

t−τ (t)
ẋT (s)Rẋ(s)ds −

∫ t−τ (t)

t−τ

ẋT (s)Rẋ(s)ds

≤ ζT (t)[Q − Ψ − ΨT + τMR−1MT + τNR−1NT ]ζ(t)

−
∫ t

t−τ (t)
ξT (t)

[
MR−1MT −M

∗ R

]

ξ(t)ds

−
∫ t−τ (t)

t−τ

ξT (t)
[

NR−1NT −N
∗ R

]

ξ(t)ds

≤ ζT (t)[Q − Ψ − ΨT + τMR−1MT + τNR−1NT ]ζ(t).

Hence, if (48) holds, then (47) holds. The proof is completed.�
However, in the proof of Lemma 3, some useful integral

terms are ignored, and τ(t), τ − τ(t) are enlarged as τ . There-
fore, Lemma 3 may be conservative in this way. Recently, some
existing papers, e.g., [11] and [24], improved the method which
can be summarized as the following result.

Lemma 4: If we assume that τ > 0, R > 0, and that Q is a
symmetric matrix of appropriate dimensions, then (47) holds if
there exist free weighting matrices M,N defined as in (48) and
X > 0 satisfying X ≥ MR−1MT ,X ≥ NR−1NT such that

Q − Ψ − ΨT + τX ≤ 0. (49)

Proof: For τ > 0 and 0 ≤ τ(t) ≤ τ , similar to the proof
of Lemma 3, by the Leibniz–Newton formula, if X ≥
MR−1MT ,X ≥ NR−1NT , one has

ζT (t)Qζ(t) −
∫ t

t−τ

ẋT (s)Rẋ(s)ds

= ζT (t)[Q − Ψ − ΨT + τX]ζ(t)

−
∫ t

t−τ (t)
ξT (t)

[
X −M
∗ R

]

ξ(t)ds

−
∫ t−τ (t)

t−τ

ξT (t)
[

X −N
∗ R

]

ξT (t)ds

≤ ζT (t)[Q − Ψ − ΨT + τX]ζ(t).

Therefore, if (49) holds, then (47) holds. The proof is
completed. �

In fact, in the proof of Lemma 4, some useful integral terms
are still ignored. However, by using an improved integral in-
equality method without ignoring any useful integral term,
Lemmas 3 and 4 can be improved as following Lemma 5, which
has been applied to Lemmas 1 and 2 in this paper.

Lemma 5: If we assume that τ > 0, R > 0, and that Q is a
symmetric matrix of appropriate dimensions, then (47) holds if
there exist free weighting matrices M,N defined as in (48) such
that

{
Q − Ψ − ΨT + τMR−1MT ≤ 0

Q − Ψ − ΨT + τNR−1NT ≤ 0.
(50)
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Proof: For τ > 0 and 0 ≤ τ(t) ≤ τ , similar to the proof of
Lemma 3, by the Leibniz–Newton formula, one has

ζT (t)Qζ(t) −
∫ t

t−τ

ẋT (s)Rẋ(s)ds

=
1
τ

∫ t

t−τ (t)
ξT (t)

[
Q − Ψ − ΨT τM

∗ −τR

]

ξ(t)ds

+
1
τ

∫ t−τ (t)

t−τ

ξT (t)
[

Q − Ψ − ΨT τN
∗ −τR

]

ξ(t)ds.

On the other hand, by the Schur complement, (50) is equivalent
to

[
Q − Ψ − ΨT τM

∗ −τR

]

≤ 0

and
[

Q − Ψ − ΨT τN
∗ −τR

]

≤ 0.

Therefore, if (50) holds, then (47) holds. The proof is thus
completed. �

The following result theorematically demonstrates that
Lemma 5 is less conservative than Lemmas 3 and 4.

Theorem 3: Under the same conditions, (48)⇒(50), and
(49)⇒(50).

Proof: Under the same conditions, (48)⇒(50) is obvious.
From X ≥ MR−1MT and X ≥ NR−1NT , then one has

Q − Ψ − ΨT + τMR−1MT ≤ Q − Ψ − ΨT + τX

and

Q − Ψ − ΨT + τNR−1NT ≤ Q − Ψ − ΨT + τX.

It further follows that (49)⇒(50). The proof is completed. �
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