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The aim of this study is to design a classifier based expert system for early diagnosis of the organ in con-
straint phase to reach informed decision making without biopsy by using some selected features. The
other purpose is to investigate a relationship between BMI (body mass index), smoking factor, and pros-
tate cancer. The data used in this study were collected from 300 men (100: prostate adenocarcinoma,
200: chronic prostatism or benign prostatic hyperplasia). Weight, height, BMI, PSA (prostate specific
antigen), Free PSA, age, prostate volume, density, smoking, systolic, diastolic, pulse, and Gleason score
features were used and independent sample t-test was applied for feature selection. In order to classify
related data, we have used following classifiers; scaled conjugate gradient (SCG), Broyden–Fletcher–
Goldfarb–Shanno (BFGS), and Levenberg–Marquardt (LM) training algorithms of artificial neural net-
works (ANN) and linear, polynomial, and radial based kernel functions of support vector machine
(SVM). It was determined that smoking is a factor increases the prostate cancer risk whereas BMI is
not affected the prostate cancer. Since PSA, volume, density, and smoking features were to be statistically
significant, they were chosen for classification. The proposed system was designed with polynomial
based kernel function, which had the best performance (accuracy: 79%). In Turkish Family Health System,
family physician to whom patients are applied firstly, would contribute to extract the risk map of illness
and direct patients to correct treatments by using expert system such proposed.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Prostate cancer is a disease in which cancer develops in the
prostate, a gland in the male reproductive system. Cancer occurs
when cells of the prostate mutate and begin to multiply out of con-
trol. These cells may spread (metastasize) from the prostate to
other parts of the body, especially the bones and lymph nodes.
Prostate cancer progresses most frequently in men over fifty. This
cancer can occur only in men, as the prostate is exclusively of the
male reproductive tract. Prostate cancer is presently the most com-
mon type of cancer in men, where it is responsible for more male
deaths than any other cancer, except lung cancer.

Prostate cancer diagnosis is complicated by the biological heter-
ogeneity of the disease. There are a lot of treatment options, which
has different short and long term risks and complications. These
make difficult to choice the treatment for the individual. The pa-
tient dilemma has gained increased awareness among urologist.
There is an obvious need for decision-making tools that individual
patients and physicians can apply to the specific parameters of dis-
ease to reach an informed decision (Anagnostou et al., 2003). Pros-
ll rights reserved.

4.
in).
tate cancer is a potentially curable via early diagnosis for many
patients. There are usually no clinical findings in early stage. How-
ever, it is diagnosed by routine control. The features such as PSA
(prostate specific antigen), volume, density and etc., are used to de-
crease necessity of biopsy. Obesity is significantly associated with a
high preoperative PSA velocity, previously shown to be associated
with PSA and overall survival after treatment with surgery and
radiation therapy (Loeb et al., 2006).

The low positive predictive value of PSA is a major drawback of
the marker (Stephan et al., 2006). The pro-forms of PSA (-2, -5, -7
proPSA) and also %free-PSA based ANNs have been suggested to
enhance the discrimination between prostate cancer (PCa) and
no evidence of malignancy (NEM) by Stephan et al. (2006). They
constructed leave-one-out ANN models with the variables PSA,
%free-PSA, proPSA volume, and status of digital rectal examination
(DRE) and compared them by receiver operating characteristic
(ROC) curve analysis. They concluded that proPSA as single param-
eter did not improve specificity over %freePSA whereas proPSA and
%freePSA within an ANN in the PSA range 4–10 mg/l substituted
prostate volume and DRE.

Adenocarcinoma of the prostate was probably the first malig-
nancy in which biological serum markers were used diagnosis,
determining the response to therapy (Merseburger et al., 2001).
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Merseburger et al., (2001) assessed serum creatinine as a putative
marker for staging/prognosis in localized prostate cancer. Their re-
sults showed that the relationship of the creatinine level of PSA
recurrence was not significant in the univariate or multivariable
analysis. Finally, they concluded that creatinine did not provide
independent information for predicting pathologic stage or disease
recurrence in patients with early prostate cancer.

Several preoperative nomograms have been developed to pre-
dict the risk of prostate cancer (PCa) progression after radical pro-
statectomy (RP). However, only a few studies showed an accuracy
of %70 to predict PSA recurrence within five years of RP, leaving
room for improvement (Poulakis et al., 2004). Poulakis et al.
(2004) developed and tested an artificial neural network (ANN)
for predicting biochemical recurrence based on the combined use
of pelvic coil magnetic resonance imaging (pMRI), prostate-specific
antigen (PSA) measurement, and biopsy Gleason score in men clin-
ically localized prostate cancer. The predictive ability of ANN was
compared with that of logistic regression analysis (LRA), Han ta-
bles, and the Katton nomogram using area under ROC analysis.
They concluded that ANN was superior to LRA, predictive tables,
and nomograms to predict biochemical recurrence accurately by
using the pMRI findings.

The philosophy behind many treatment-planning approaches is
to design individual patients’ plans from scratch for every new pa-
tient. The process of adjusting treatment variables and displaying
the corresponding dose distribution is repeated until such criteria
as dose uniformity within the target region and dose minimization
to surrounding critical organs is considered optimized (Wells &
Niederer, 1998). Wells and Niederer (1998) developed a medical
expert system approach to standardized treatment planning that
should lead to improved planning efficiency and consistency. They
used a set of artificial neural networks to optimize the treatment
variables to the individual patient. They conclude that an expert
system approach has the potential of improving the overall effi-
ciency of the planning process by reducing the number of itera-
tions required to generate an optimized dose distribution and to
function most effectively should be closely integrated with a dosi-
metric based treatment planning system.

In this study, we designed a system in order to avoid unneces-
sary biopsy. Three ANN and SVM algorithms have been used to
early diagnose prostate cancer by using prostate volume, density
and etc. features. We also investigated that BMI is a risk factor or
not for aggressive pathologic findings.
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Fig. 1. Basic artificial neural cell structure.
2. Materials and methods

The data from 300 men (mean age: 63 years and range: 43–93
years) were collected at the Urology Department of Bornova Sifa
Hospital, Izmir, Turkey since August 2006 to May 2007. The distri-
bution of the patients into pathology classes was prostate adeno-
carcinoma (100), chronic prostatism or benign prostatic
hyperplasia (200). The diagnosis was performed by routine exam-
ination methods.

Following features were used in this study; weight, height, BMI,
PSA, Free PSA, age, prostate volume, density, smoking, systolic, dia-
stolic, pulse, and Gleason score. BMI is computed as follows:

BMI ¼ ½WeightðkgÞ�=½HeightðmÞ�2 ð1Þ

Patients were divided into three groups based upon BMI. BMI
was calculated for each patient and the cohort degree was divided
into ‘normal’ (BMI: 18–24.9 kg/m2), ‘overweight’ (BMI: 25–29.9 kg/
m2) or ‘obese’ (BMI P 30 kg/m2).

Prostate cancer is most often diagnosed by physical examina-
tion or screening blood tests such as PSA test. PSA is presently
the most widely used tumour marker and for early detection of
prostate cancer (Wingo, Landus, & Ries, 1997). Prostate volume
had got with transrectal ultrasonography. We did not add digital
rectal examination as input feature, because this feature is relative
from doctor to doctor.

Suspected prostate cancer is typically confirmed by removing a
piece of the prostate (biopsy) and examining it under a microscope
by pathologist at pathology laboratory. Thus, Gleason score grade
is derived.

Among the strategies in risk stratification for prognostic groups,
two methods can be used; nomograms and ANNs. Nomograms
make predictions based on the characteristics of the individual pa-
tient. It is a graphical representation of a statistical model, with
scale for calculating the prognostic weight of value for each indi-
vidual variable, with the goal of predicting a particular end point.
End points predicted in current prognostic models include patho-
logic stage (Partin, Yoo, Carter, et al., 1993), disease/progression –
free probability (Katton & Scardino, 2002), disease – specific sur-
vival (Smaletz, Scher, Small, et al., 2002). However, nomograms
do not make treatment recommendations and should not act as a
surrogate for physician–patient interactions.

2.1. Artificial neural network (ANN)

ANNs comprise an exploratory approach that may improve pre-
dictive modeling and are inspired by the principle of neural net-
works and contain layers of nodes (Fig. 1). ANN is formed from
an input, middle (hidden), and output layer. The layers are richly
interconnected by weighed connection lines. Each information is
weighted and can increase or decrease the activation of the node.
At a given bias the node starts to fire (Gamito, Crawford, & Errejon,
2003). An ANN model must first be ‘‘trained’’ by using cases with
known outcomes. It will then adjust its weighting of various input
variables over time to refine output data. The performance of the
ANN is then evaluated using a validation data set respect to sensi-
tivity and specificity value of the model. ANN can resolve nonlinear
complex relations among input variables, without the need for any
prior assumptions about these relations.

In this study, back-propagation based multi-layer perceptron
(MLP) network was used. Scale-conjugate (SCG), Brodyen–Fletch-
er–Goldfarb–Shanno (BFGS), and Levenberg–Marquardt (LM)
learning algorithms were tested. The most important factor in
the MLP structure is the choice of the number of the hidden neu-
rons. The weights are adapted in the learning phase of the network
using gradient method. The weights are adapted from cycle to cy-
cle according to the information of gradient of the error function in
the gradient method of learning

wðkþ 1Þ ¼ wðkÞ þ gpðkÞ ð2Þ

where g is learning coefficient calculated each cycle and p(k) is
search direction vector of minimization in the kth cycle. The follow-
ing algorithms were used to optimize the learning coefficients.



Fig. 2. Classification of data using non-linear curves.

M. Çınar et al. / Expert Systems with Applications 36 (2009) 6357–6361 6359
2.1.1. Scaled-conjugate gradient (SCG) algorithm
The basic back-propagation algorithm adjusts the weights in

the direction of the negative of the gradient. Although the function
decreases most rapidly along the negative of the gradient, this does
not necessarily produce the fastest convergence. A search is per-
formed along conjugate directions, which produces generally faster
convergence in the conjugate gradient (CG) algorithms. SCG is fully
automated including no user dependent parameters and avoids a
time consuming line search (by using a Levenberg–Marquardt ap-
proach) (Moller, 1993).

2.1.2. Brodyen–Fletcher–Goldfarb–Shanno (BFGS) algorithm
In Newton’s method, the Hessian matrix (second derivatives) of

the performance index at the current values of the weights and
biases is calculated. Newton’s method often converges faster than
CG methods. However, it is complex and expensive to compute the
Hessian matrix for feed-forward neural networks. There are algo-
rithms that are based on Newton’s method, but which do not re-
quire calculation of second derivatives. These are called quasi-
Newton methods. They update an approximate Hessian matrix at
each iteration of the algorithm. The most successful quasi-Newton
method is BFGS update. This algorithm requires more computation
in each iteration and more storage than the CG methods, although
it generally converges in fewer iterations.

2.1.3. Levenberg–Marquardt (LM) algorithm
LM algorithm was designed to approach second-order training

speed without having to compute the Hessian matrix. When the
performance function has the form of a sum of squares (as is typ-
ical in training feed-forward networks), then the Hessian matrix
can be approximated as and the gradient can be computed as
where is the Jacobian matrix that contains first derivatives of the
network errors with respect to the weights and biases, and e is a
vector of network errors. The Jacobian matrix can be computed
through a standard back-propagation technique that is much less
complex than computing the Hessian matrix. This algorithm ap-
pears to be the fastest method for training moderate-sized feed-
forward neural networks (up to several hundred weights).

2.2. Support vector machine (SVM)

SVMs are an attractive approach to data modeling. They com-
bine generalization control with a technique to address the curse
of dimensionality. SVM finds a separating hyperplane that sepa-
rates two classes with a maximal margin. The hyperplane is placed
halfway between the two classes in order to maximize the margin
(Begg, Palaniswami, & Owen, 2005). A side-effect of the SVM algo-
rithm is that it also identifies support vectors. Support vectors are
the data points that are solely responsible for the solution and lie
either on or within the margin. If the SVM algorithm was only gi-
ven the support vectors as data points, the same separating hyper-
plane would be derived.

The data is not necessarily linearly separable in all cases. This
can be due to non-linearities in the underlying process generating
the data points or due to noise in the measurements. The SVM
algorithm can still find a maximal margin separating hyperplane
and accepts the fact that a ‘‘few” data points may not be classified
correctly and lie within the margin. The SVM is also capable of sep-
arating classes of data using non-linear curves. This is done by
mapping the input data through a nonlinear mapping to a new
space where a linear hyperplane can still separate the data. When
the separating hyperplane is mapped back to the original space, it
appears as a curve (Fig. 2).

SVMs map the training data non-linearly into a higher-dimen-
sional feature space. This yields a non-linear decision boundary
in input space. By the use of a kernel function, it is possible to com-
pute the separating hyperplane without explicitly carrying out the
map into the feature space (Joachims, 1998). The kernel mapping
provides a unifying framework for most of the commonly
employed model architectures, enabling comparisons to be
performed.

2.3. Statistical test

Independent sample t-test was used for feature selection. Sta-
tistical analyses were performed by using the Statistical Package
for Social Sciences (SPSS). A statistically significant level of
p = 0.05 was used.

3. Results

The descriptive statistics of preoperative parameters were given
in Table 1. Smoking rate for prostate cancer and normal patients
was given in Table 2. According to Table 2, smoking rate of patients
with prostate cancer is more than smoking rate of normal patients.
According to these figures, smoking could be a risk factor for pros-
tate cancer.

From Table 3, we observed that BMI is not affected to discrim-
inate healthy and pathological subjects. However, there is a direct
relationship between BMI and aggressive pathologic findings
according to Table 4.

The outcome of independent t-test was given in Table 5. Since
PSA, volume, density, and smoking features were to be statistically
significant, they were chosen for classification.

In order to predict success of the classifier, sensitivity (true po-
sitive ratio: TPR), specificity (true negative ratio: TNR), and accu-
racy (true ratio: TR) were calculated by analyzing the figures
coming from the applications. The sensitivity was calculated by



Table 1
The descriptive statistics of preoperative parameters: (a) prostate cancer patients, (b)
BPH (benign prostatic hyperplasia) patients

Features N Min. Max. Mean SD

(a)
Weight 100 53 120 75.4 13.22
Height 100 1.55 1.86 1.69 0.06
BMI 100 0.18 0.42 0.26 0.04
PSA 100 1.03 187 22.40 29.27
Volume 100 14 121 50.75 23.60
Age 100 49 93 68.27 9.15
Density 100 0.03 4.17 0.52 0.69
Smoking 100 0 1 0.69 0.47
Systolic 100 90 170 128.9 17.4
Diastolic 100 50 120 80 9.95
Pulse 100 64 96 79.74 6.02
(b)
Weight 200 40 135 77.24 13.04
Height 200 1.50 1.90 1.71 0.07
BMI 200 0.14 0.42 0.26 0.41
PSA 200 0 39 5.51 6.57
Volume 200 10 244 62.49 35.91
Age 200 43 92 67.61 8.35
Density 200 0.01 1.11 0.09 0.14
Smoking 200 0 1 0.29 0.46
Systolic 200 90 210 132.83 19.04
Diastolic 200 40 130 81.85 11.49
Pulse 200 52 120 79.02 7.79

N: Number of subjects.

Table 2
Smoking scores

Feature Prostate cancer Normal

N (%) N (%)

Smoking 69 69 58 29
Non-smoking 31 31 142 71

Table 3
(a) BMI frequency of prostate cancer patients, (b) BMI frequency of BPH (benign
prostatic hyperplasia) patients

BMI (kg/m2) N (%)

(a)
624.9 38 38
25–29.9 47 47
P30 15 15
(b)
624.9 73 36.5
25–29.9 92 46.0
P30 35 17.5

Table 4
Gleason score

Gleason score BMI 6 24.9 25 6 BMI 6 29.9 BMI P 30

N (%) N (%) N (%)

<5 0 0 0 0 0 0
5 5 16 3 5 0 0
6 7 22 13 25 4 25
7 9 28 15 29 5 31
8 3 9 6 12 2 13
9 8 25 15 29 5 31

Table 5
The outcomes of independent t-test

Feature Sig. (2-tailed) Mean difference Std. error difference

Weight 0.269 �1.7750 1.6041
Height 0.059 �0.1465 0.0077
BMI 0.738 �0.0017 0.0050
PSA <0.001 16.8621 2.1680
Volume 0.003 �11.741 3.9611
Age 0.532 0.660 1.0560
Density <0.001 0.417 0.0504
Smoking <0.001 0.400 0.0560
Systolic 0.084 �3.930 2.2670
Diastolic 0.171 �1.850 1.3470
Pulse 0.415 0.725 0.8880

Table 6
The averaged classification results of CV data sets at test phase by using ANN

Algorithm Sensitivity (%) Specificity (%) Accuracy (%)

SCG 81.0 77.9 79.1
BFGS 79.0 78.8 78.9
LM 76.2 80.8 79.3

Table 7
The averaged classification results of CV data sets at test phase by using SVM

Kernel function Sensitivity (%) Specificity (%) Accuracy (%)

Linear 76.1 79.4 77.2
Polynomial 84.2 74.8 81.1
Gaussian 82.0 72.8 78.9
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dividing the total of recognized numbers (true positive: TP) to the
sum of the true positive (TP) and false negative (FN)

Sensitivityð%Þ ¼ TPR ¼ TP
TPþ TN

� 100 ð3Þ
Sensitivity was also known as the true positive ratio. Specificity
was known as the true negative ratio and was calculated as
follows:

Sensitivityð%Þ ¼ TNR ¼ TN
TNþ TP

� 100 ð4Þ

where FP was false positive value. Accuracy was also known as the
true ratio and was calculated as follows:

Accuracyð%Þ ¼ TR ¼ TPþ TN
TPþ FNþ TNþ FP

� 100 ð5Þ

Cross-validation (CV) is a standard test commonly used to test
the ability of the classification system using various combinations
of the testing and training data sets (Begg et al., 2005). CV is often
used for comparing two or more learning ANN models to estimate
which model will perform the best on the problem at hand (Subas�i,
2005). CV process was repeated until every data set was included
in the testing data set with 10-fold. Each frame of CV data set
had 50 prostate cancers and 100 normal whereas their respective
training data set included the remaining 50 prostate cancer and
100 normal. The 10-test set scores for each learning model were
then averaged.

The obtained classification results of CV data sets by various
algorithms at test phase were given in Tables 6 and 7. These results
show that support vector machine algorithm gives better result
than artificial neural networks learning algorithms. Polynomial
based kernel function of SVM gave the best result (sensitivity:
%79, specificity: %78.8).

4. Discussion

In this study, we observed that the features vary upon the age
and degree of pathology of the patient. Thus, in order to increase
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the performance of classification, we have to use lots of data for all
ages and pathologies (different stages).

In this work, we have used support vector machine and back-
propagation (SCG, BFGS, LM) based MLP for classification. The per-
formance of these networks can be compared with statistical
methods and other ANNs models like SOM.

The prostate cancer detection rate showed a linear relationship
with age. We realize that SVM and ANNs are as successful as
nomograms to predict prostate cancer. In addition, there is no rela-
tionship between BMI and prostate cancer. However, BMI can be a
risk factor for aggressive pathologic findings.

According to Gleason score grade (Table 4), it founded that early
diagnosis of prostate cancer is low for Turkish people. Due to our
opinion, the main reason may be that the people do not care about
routine health control.

5. Conclusions

In Turkish Family Health System, family physician to whom pa-
tients are applied firstly, would contribute to extract the risk map
of illness and direct patients to correct treatments by using expert
system.

In the future study, we think that enlargement of database and
testing new classifiers with diverse features improve the
performance.
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