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Abstract—In this paper we present a Helper
Threading scheme used to parallelize efficiently
Kruskal’s Minimum Spanning Forest algorithm. This
algorithm is known for exhibiting inherently sequen-
tial characteristics. More specifically, the strict or-
der by which the algorithm checks the edges of a
given graph is the main reason behind the lack of
explicit parallelism. Our proposed scheme attempts
to overcome the imposed restrictions and improve the
performance of the algorithm. The results show that
for a wide range of graphs of varying structure, size
and density the parallelization of Kruskal’s algorithm
is feasible. Observed speedups reach up to 5.5 for
8 running threads, revealing the potentials of our
approach.

Keywords-Kruskal’s Algorithm; Minimum Span-
ning Forest; Parallel algorithms; Helper Threads;

I. Introduction
The widespread adaption of multicore platforms has

offered the opportunity to explore new implementa-
tion techniques for many algorithms that were initially
designed for uniprocessors. By devising new parallel
schemes, the programmers will be able to exploit in
a more efficient way the multiple hardware contexts
offered in today’s platforms. A category of problems
among the most difficult to parallelize are the ones
that exhibit inherently sequential characteristics. The
discovery of the Single Source Shortest Path (SSSP) or
the composition of the Minimum Spanning Forest (MSF)
of a given graph fall into this category.

Kruskal’s algorithm [12] is one of the most known
algorithms that address the MSF problem. The strictly
ordered examination of the graph’s edges in order to
decide whether they are part of the MSF or not, pro-
hibits the usage of well known parallel strategies, like
data partitioning. Our approach attempts to overcome
the restrictions imposed by the the inherently sequential
nature of the algorithm, by using a Helper Threading
(HT) scheme. The evaluation reveals that using HT as
an offloading technique can provide speedups up to 5.5
for a graph of 1M vertices and 20M edges for 8 threads.

The rest of the paper is organized as follows. Section II
presents the basics of Kruskal’s algorithm, while Section

III discusses the key concept behind our parallelization
scheme as well as important implementation details.
Section IV describes the experimental evaluation and
presents our findings. Finally, related work is discussed
in Section V, while Section VI summarizes the paper and
describes directions for future work.

II. The basics of Kruskal’s Algorithm
Kruskal’s algorithm is one of the most known algo-

rithms for discovering the MSF of an undirected graph
with real-valued weighted edges. Specifically, let G =
(V,E) be an undirected graph with n = |V | vertices
and m = |E| edges, and w : E → R a weight function
assigning real-valued weights to the edges of G. The
MSF of a given graph is an acyclic subset T of the
edges that connects all the vertices that have at least
one path between them and at the same time is of
minimum weight. The algorithm examines each edge at
an ascending order (beginning with the one with the
minimum weight) and checks whether it would create
a cycle if it was added to the MSF. If this is the case
then the edge is discarded, otherwise it is included into
the MSF.

For our study we select the asymptotically fastest
implementation of Kruskal, which uses disjoint-set data
structures and employs union-by-rank and path com-
pression heuristics [7]. Each disjoint-set is used to store
the vertices that belong to a single tree of the MSF at
any given time of the execution. A formal representation
of the algorithm is given in Algorithm 1.

At the initialization phase (lines 1–5), the algorithm
creates one disjoint set for each vertex of the graph
and sorts the edges into a nondecreasing order by their
weight. Next, the algorithm examines whether each edge
can be added to the MSF or not (line 7). Using the
find-set operation, the algorithm locates the disjoint-set
to which each vertex of the edge in question belongs.
If the two sets coincide, a path that connects the two
vertices exists in the MSF already and the edge must be
discarded, since its inclusion would form a cycle. In the
opposite case, the edge is added to the MSF and the sets
are merged using the union operation (lines 8–9).
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Algorithm 1: Kruskal’s algorithm.
Input : Undirected graph G = (V,E), weight function

w : E → R
Output : Minimum Spanning Forest A
/* Initialization phase */
A = ∅;1
foreach v ∈ V do2

Make-Set(v);3
end4
sort edges of G into nondecreasing order by weight w;5

/* Main body of the algorithm */
foreach e = (u, v) ∈ E, taken in nondecreasing order by6
weight do

if Find-Set(u) 6= Find-Set(v) then7
A = A ∪ e;8
Union(u, v);9

end10
return A;11
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Figure 1: Example of Kruskal’s algorithm execution

An example of Kruskal’s execution is shown in Figure
1. Figure 1a illustrates a graph, where the first seven
edges have already been examined and inserted into the
MSF, which at this point consists of two separate trees.
The vertices of edges (a, b), (f, d), (a, c), (b, f) and (c, e)
belong to the disjoint-set {a, b, f, d, c, e} and the vertices
of the edges (j, g) and (j, i) are part of the disjoint-set
{g, j, i}. To decide if the next edge, namely (f, g), is
part of the MSF, we must determine if vertices f and
g belong to different sets. In this case this is true, so
(f, g) is inserted into the MSF and the two disjoint-sets
are concatenated, as illustrated in Figure 1b.

The correct execution of the algorithm relies on check-
ing the edges in a strictly ordered way. In the previous
example, if we had examined the edge (a, d) exactly

after (a, b), then we would have found that it doesn’t
form a cycle and would have added it to the MSF,
thus creating a wrong MSF. This strict ordering makes
Kruskal an inherently serial algorithm and thus difficult
to parallelize.

III. Parallelizing Kruskal’s algorithm
A. Discovering parallelism in Kruskal

As presented in Section II, Kruskal’s algorithm is
inherently serial. However it exhibits a property that can
be used to extract parallelism. More specifically, if an
edge that is going to be examined in a future iteration
is found to already form a cycle within the MSF created
up to the current iteration, then this edge can be safely
discarded immediately. This property essentially allows
the out of order rejection of edges.

B. Employing a Helper Threading scheme
Our proposed scheme attempts to exploit the afore-

mentioned property. First of all, it employs a main
thread that executes the regular, sequential Kruskal’s
algorithm and at each iteration examines the edge with
the next minimum weight. At the same time, a number
of helper threads run concurrently with the main one
and examine edges of bigger weight, checking whether
they create a cycle if added to current MSF. Whenever
a cycle is discovered, the corresponding edge is marked
as discarded. As these edges have been safely excluded
from the MSF, the main thread needs to check only
the edges that weren’t rejected by the helper threads,
thus performing less work compared to the sequential
implementation. The more cycles found by the helper
threads, the more offloading will be accomplished for the
main thread.

Figure 2 illustrates the operation of the HT scheme. In
this example, helper threads 1 and 2 have been assigned
different sets of edges to operate on. At the end of the
7th iteration, the main thread has added to the MSF
edges (a, b), (f, d), (j, g), (j, i), (a, c), (b, f) and (c, e). At
this point, helper thread 1 has already discarded edges
(b, d), (a, d) and (c, d) while helper thread 2 has excluded
edges (d, e) and (g, i). Edges (e, g), (h, j) and (h, g) have
been examined by the helper threads and since they
have not been found to form cycles, their status remains
undecided.

By the 10th iteration, the main thread has added
(f, g) and (f, h) to the MSF, which causes the helper
threads to reject edges (e, g), (h, j) and (g, i). At the
end of the 10th iteration, the main thread has checked
and discarded edge (e, i) and is ready to move on to the
edges assigned to helper thread 1. However, by this point
all the edges assigned to the helper threads have been
discarded and the MSF has essentially been finalized.
Therefore, the main thread had to perform less work
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Figure 2: Example of HT scheme’s execution

compared to the serial execution of the algorithm, as it
examined only 10 of the 18 graph edges.

C. Implementation Details

The basic data structure of the algorithm is the
edge_array, an array that stores the graph’s edges
in nondecreasing order by their weight. Moreover, our
schemes requires to know at each time whether an
edge has been discarded or not from the MSF. This
information is stored in two separate arrays, namely
edge_color_main and edge_color_helper. The main
thread uses the first one to mark which edges are part
of the MSF and which ones it found to form cycles.
The second array is used by the helper threads to mark
the edges they discover to form a cycle. Essentially,
for each selected edge, the main thread consults the
edge_color_helper array first, to decide whether it
should proceed with examining the edge or ignore it if
it has already been safely discarded.

To distribute work among the threads, edge_array
is evenly divided among them. The main thread begins
at the start of edge_array and executes Kruskal’s al-
gorithm. As the execution progresses and the MSF is
expanded, the main thread enters partitions assigned to
helper threads and examines the edges that have not
yet been rejected. The execution finishes when the main
thread reaches the end of edge_array.

On the other hand, the helper threads loop continu-
ously inside their partition until they discover that the
main thread entered their area. A schematic representa-
tion of this work distribution scheme is given in Figure
3. Algorithms 2 and 3 present in a formal way the code
executed by the main and helper threads respectively.
Note that the helper threads execute a slightly modified,
read-only version of find-set operation (find-set', line
7, Alg. 3), where all the original functionality has been
maintained except for the path-compression part, which
is performed only by the main thread.

edge1 edge2 edge4edge3 edge5 edge6 edge7 edge8 edge9 edge10 edge11 edge12

Main Thread

Helper Thread3 Helper Thread2 Helper Thread1

Helper Threads loop infinitely until the Main Thread enters their

Direction of the Main Thread

partition

Figure 3: HT’s work distribution scheme

A major advantage of our scheme is that there is no
thread synchronization. First of all, the main and the
helper threads perform writes on separate structures,
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Algorithm 2: Main thread’s code.
Input : Undirected graph G = (V,E), weight function

w : E → R
Output : Minimum Spanning Forest A
/* Initialization phase */
/* regular initializations (lines 1–5 of Algorithm 1) */
foreach e ∈ E do1

edge_color_main[e] = 0;2
end3

/* Main body */
foreach e = (u, v) ∈ E, taken in nondecreasing order by4
weight do

if edge_color_helper[e] 6= CycleEdge then5
if Find-Set(u) 6= Find-Set(v) then6

A = A ∪ (u, v);7
Union(u, v);8
edge_color_main[e] = MsfEdge;9

else10
edge_color_main[e] = CycleEdge;11

end12
return A;13

Algorithm 3: Helper thread’s H code.
Input : EH partition of E assigned to H
/* Initialization phase */
foreach e ∈ EH do1

edge_color_helper[e] = 0;2
end3

/* Main body */
while main thread has not reached EH do4

foreach e = (u, v) ∈ EH do5
if edge_color_helper[e] == 0 then6

if Find-Set'(u) == Find-Set'(v) then7
edge_color_helper[e] = CycleEdge;8

end9
end10

namely edge_color_main and edge_color_helper. At
the same time, the helper threads access different
parts of the shared structures edge_color_helper and
edge_array. The only point where synchronization
could be needed, is when the main thread consults
edge_color_helper to check whether a helper thread
has marked an edge as discarded.

Due to the semantics of the algorithm, the only
pathological case arises when a helper thread discovers a
cycle and marks an edge as discarded, while at the same
time the main thread checks the edge_color_helper
struct for this specific edge and misses the write. In
this case, the main thread will proceed with examining
itself the edge and discover the cycle, thus rejecting it
from the MSF. Essentially, the algorithm is executed
correctly but the scheme may not achieve maximum
offloading. However, it was decided that if a synchroniza-
tion mechanism was used, the overhead would outweigh
the potential gains and therefore it was rejected.

D. Parallelizing the sort and union operations
Our HT scheme does not affect the sort and union

operations. Parallel sorting is a well studied problem
with known characteristics and was excluded in order
to study the performance of our scheme in isolation.

On the contrary, union was initially a target for
parallelization. However, it was rejected as, by involving
more threads than the main one in the concatenation of
sets and the expansion of the MSF, a synchronization
mechanism, such as locks, would be necessary in order
to preserve the correctness of the algorithm. This would
have resulted in increased complexity with doubtful
impact on the overall performance. Our decision was
further justified by discovering that, based on conducted
experiments with several input graphs, the union opera-
tion accounts only for about 10% of the execution time.

IV. Experimental evaluation
A. Experimental Setup

To evaluate the performance of the proposed HT
scheme, we used three different multicore CPUs. The In-
tel Xeon X5560 (“Nehalem”), Intel Xeon X5650 (“West-
mere”) and Intel Xeon X7460 (“Dunnington”). Table I
describes the characteristics of each platform. Figures 4,
5 and 6 present a graphical model for each one of the
aforementioned platforms.

For the implementation of the HT scheme we used
POSIX threads. The OS used was Linux version 2.6.30.
All programs were compiled using gcc version 4.5.2 with
the O3 optimization flag. Finally, in our experiments
we applied a thread affinity scheme, where all the cores
of a package are assigned to threads before using cores
from the next package. In all the experiments Hyper-
Threading was disabled.

Table I: Platforms’ Characteristics
Platforms

Nehalem Westmere Dunnington
# of packages 2 2 4
Cores/Socket 4 6 6
Threads/Core 2 2 1

CPU frequency 2.80 GHz 2.66 GHz 2.66 GHz
Chipset
interface

2 × QPI
6.4GT/s

2 × QPI
6.4GT/s

FSB
1066MT/s

L1 Cache L1D,L1I:
32KB

L1D,L1I:
32KB

L1D,L1I:
32KB

L2 Cache 256 KB,
private

256 KB,
private

3 MB,
shared per 2

cores
L3 Cache 8 MB,

shared
12 MB,
shared

16 MB,
shared

RAM 12 GB 48 GB 28 GB

B. Reference graphs
The graphs used as reference inputs vary in structure,

density and size. We used the GTgraph graph genera-
tor [3] to construct graphs with 100K and 1M vertices
from the following families:
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Random: Their m edges are constructed choosing a
random pair among n vertices.

R-MAT: Constructed using the Recursive Matrix (R-
MAT) graph model [4].

SSCA#2: Used in the DARPA HPCS SSCA#2
graph analysis benchmark [2].

We use the notation N×M for graphs with N vertices
and M edges. For example, 1Mx5M denotes a graph with
1 million vertices and 5 million edges.

C. Evaluation of the results
In Figures 8, 9, 10 we present the achieved speedups

of our HT scheme when run on the aforementioned
platforms. The speedup is calculated as the ratio of the
execution time of the serial to the parallel scheme. These
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Figure 7: Main thread offloading (R-MAT graphs, West-
mere platform).

results do not include the time that was spent at the
sorting phase of the algorithm.

The first observation is that performance is strongly
related to the density of the graphs. The maximum at-
tainable speedup increases as density increases, reaching
up to a factor of 5.5 for the R-MAT 1Mx20M graph
across all architectures. This trend is expected, as a
more dense graph implies more edges are creating cycles,
therefore increasing the opportunity for helper threads
to perform useful work.

In most cases the addition of helper threads is ben-
eficial, leading to larger or smaller performance gains,
depending on the graph density. An exception to that
is the case of 100K graphs, where performance drops
significantly when more than one packages are used to
accommodate helper threads. At first sight, this could be
attributed to insufficient work performed by the helper
threads in these cases. To verify this, we measured the
factor by which the main thread gets offloaded by helper
threads. Figure 7 shows the percentage of cycles found
by the main thread for a small and a large graph of the
same density. It can be clearly seen that, as more helper
threads are added, the main one consistently discovers
less cycles and essentially performs less work.

More important however, is that the offloading factor
is almost identical for both graphs, which contradicts our
initial explanation regarding the performance drop in the
case of small graphs. We believe that the fact that this
offloading does not ultimately translate to performance
gains can be attributed to cache behavior.

More specifically, the execution seems to be much
more sensitive to cache locality for small graphs than
for larger ones. In fact, the 100K graph used in Figure 7
has an overall working set of 9.4MB that fits into the last
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level cache, while the 1M graph has a much larger one
(94 MB). When helper threads are executed in a different
package from that of the main thread, coherence misses
are introduced due to read-write sharing. For small
graphs this hurts the performance of the HT scheme,
as the advantages of cache locality disappear. On the
contrary, in the case of large graphs, the execution
suffers already from poor cache locality, and therefore
the addition of coherence misses has a small effect on
the overall performance.

V. Related Work
Other algorithms that solve the MSF problem in

parallel have been proposed in the literature. Bader and
Cong [1] examined three different implementations of
Borůvka’s algorithm and introduced a new one that
combined Borůvka’s with Prim’s algorithm. Kang and
Bader [10] proposed another combination of the afore-
mentioned algorithms, which they implemented using a
Software Transactional Memory model. Our approach
is based on Kruskal’s algorithm and, according to our
knowledge, this is the first attempt at efficiently par-
allelizing this specific algorithm. Moreover, in contrast
to [1] and [10], our scheme requires few modifications
on the original serial code of the selected algorithm and
avoids the need for any kind of blocking or non-blocking
synchronization.

Alternative usages of helper threads have been pro-
posed in literature, mostly targeting at performance
optimizations at the micro-architecture level. The most
prominent example is that of prefetching helper threads
[5], [6], [13]. Other scenarios include helper threads that
optimize branch prediction [17], perform dynamic code
optimizations [16] or even help reduce energy consump-
tion [8]. On the contrary, in this work helper threads
perform application-level optimizations. They execute in
parallel with the main thread in a non-intrusive fashion,
both in terms of algorithm semantics, as no significant
changes are required, and main thread’s progress, as
no obstruction is introduced. A similar approach was
followed in a prior work where we used helper threads
to parallelize Dijkstra’s algorithm [14]. In that case, we
additionally used Transactional Memory to guarantee
that helper threads would not change the algorithm’s
semantics.

For inherently serial, hard to parallelize applications,
the Thread Level Speculation model has been proposed
in the literature as an alternate parallelization approach
[9], [11], [15]. The drawback of most of these research
efforts is that they require support from specialized
hardware, which is not available even in today’s pro-
cessors. Our scheme, on the other hand, relies solely
on specific properties of the algorithm and thus can be
applied directly on commodity multicore platforms.

VI. Conclusions - Future Work
In this paper we presented a Helper Threading scheme

for parallelizing Kruskal’s algorithm. The implementa-
tion is a synchronization-free one, that employs one main
thread, which essentially executes the serial algorithm,
and several helper threads, which run in parallel and
offload the work of the main thread. The proposed
scheme achieves notable speedups for a wide range of
graphs when executed on various multicore platforms.

As future work, we will investigate in detail how
exactly the underlying architecture affects our scheme
and confirm whether cache coherence impacts its perfor-
mance. In that case, we will study alternative implemen-
tations based on decentralized structures in an attempt
to exploit cache locality efficiently. Additionally, we aim
to explore alternative work distribution schemes in order
to increase the efficiency of the helper threads and the
amount of useful work they accomplish. Finally, we plan
to investigate the applicability of the HT scheme to other
hard to parallelize applications.
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Figure 8: Speedups achieved on the Nehalem platform
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Figure 9: Speedups achieved on the Westmere platform

160316031609



5 10 15 20
#Threads

0.0

0.2

0.4

0.6

0.8

1.0

S
p
e
e
d
u
p

100Kx100K

rand100Kx100K

rmat100Kx100K

ssca100Kx280K

5 10 15 20
#Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

S
p
e
e
d
u
p

100Kx500K

rand100Kx500K

rmat100Kx500K

ssca100Kx600K

5 10 15 20
#Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
p
e
e
d
u
p

1Mx1M

rand1Mx1M

rmat1Mx1M

ssca1Mx3M

5 10 15 20
#Threads

0.0

0.5

1.0

1.5

2.0

2.5

S
p
e
e
d
u
p

1Mx5M

rand1Mx5M

rmat1Mx5M

ssca1Mx6M

5 10 15 20
#Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
p
e
e
d
u
p

1Mx10M

rand1Mx10M

rmat1Mx10M

ssca1Mx11M

5 10 15 20
#Threads

0

1

2

3

4

5

S
p
e
e
d
u
p

1Mx20M

rand1Mx20M

rmat1Mx20M

ssca1Mx29M

Figure 10: Speedups achieved on the Dunnington platform
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