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Driven by the desire to reduce environmental impacts and achieve energy independence, electric vehicles
(EVs) are poised to receive mass acceptance from the general public. However, simultaneously connect-
ing to electric distribution grid and charging with large number of EVs bring the necessity of optimizing
the charging and discharging behaviors of EVs, due to the security and economy issue of the grid oper-
ation. To address this issue, we propose a novel EV charging model in this paper. The model concerns with
following aspects, including optimal power flow (OPF), statistic characteristics of EVs, EV owners’ degree
of satisfaction (DoS), and the power grid cost. An improved particle swarm optimization (PSO) algorithm
is proposed for the model optimization. To evaluate our proposed optimal EV charging strategy, a 10-bus
power distribution system simulation is performed for performance investigation. Simulation results
show that the proposed strategy can reduce the operational cost of the power grid considerately, while
meeting the EV owner’s driving requirement. Also, better performance on the global search capability and
optimal result of the improved particle swarm optimization algorithm is verified.
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1. Introduction

Electric vehicles (EVs) are the inevitable trend in the automotive
industry’s development of energy-saving and environmentally
friendly cars [1–8]. EV technology presents a good option for signif-
icant reductions in gasoline consumption, smog precursors and the
emission of greenhouse gases. When connected to the electric distri-
bution grid, the power flow between EV and power grid can be bidi-
rectional; a charging EV is a load on the grid, whereas a discharging
EV is a power source [9–14]. However, if large numbers of EVs con-
nect to the grid simultaneously, some important issues including the
EV concentration at a certain location at a given time, its level of
charging, SOC of battery and the charger characteristics should be
considered. For example, the power quality of power grid will be
affected by EV charging [15,16], such as the THD (Total Harmonic
Distortion) of the total current and the voltage. According to the
analysis of voltage violations, power losses and line loading, there
are significant impacts on distribution networks due to EVs charging
[17–19]. Without a comprehensive and effective EV charging control
system, undesirable increases in peak power demand will exhaust
the available capacity in the grid [20], and the electrical power net-
work cannot be prepared to respond to these requests. All in all,
power quality, lines and equipment overloading, increased grid
power losses, supply demand imbalances, and instability problems
are among the most serious impacts introduced by EVs [21,11,22].
Also, EVs need a long charging period to ensure a fully charged bat-
tery from the EV owner’s perspective. Therefore, the coordination of
the charging and discharging is necessary to optimize the operation
of power grid and to meet driving demand of EV owners.

There are some existing literatures about smart charging strate-
gies of EVs. [23] discusses an improved strategy to perform the dis-
charge (and charge) of the batteries for its life-time point-of-view.
Several EVs’ coordinated charging control strategies are studied in
[24–26], but only public charging stations are considered without
the impacts on the power grid. A power system stochastic economic
dispatch model is constructed in [27], which includes EVs and wind
turbines, but the power grid constraints are not considered. Follow-
ing the concept of spot prices in an electrical market, a centralized
charging strategy of plug-in hybrid electric vehicles (PHEVs) is
proposed based on demand side response in [28], but the vehicle-
to-grid (V2G) strategy is not involved. The literature [29] evaluates
the coordinated operation of EVs with conventional thermal power
and wind turbines, but the transmission loss and power grid secu-
rity constraints are not considered. The power system economic
dispatch strategy involving the EVs charging and discharging is
studied in [30–32]. However, the EV charging and discharging
power constraints are ignored. A charging optimization method
considering both EV charging demand and voltage constraints is
proposed in [33] to minimize the power losses of distribution sys-
tems, and a linearly constrained convex quadratic programming
model is constructed at each iteration by correcting nodal voltages
iteratively. An optimal charging model for replacement of an EVs’
battery to consider the minimum user charge cost and daily load
curve fluctuation is introduced in [34,35], but V2G has not been
considered yet. The study in [36] proposes data mining technology
to extract electricity market prices and historical information to
reduce user costs to assist the charging behavior of EVs. [37] pro-
poses EV smart charging strategies based on the forecast of future
electricity prices and dynamic programming algorithms. [38-40]
present a time-coordinated optimal power flow strategy to control
charging and discharging of EVs without considering the impacts of
EV charging on grid security. Literature [41] formulates a globally
optimal scheduling scheme, in which the charging powers are opti-
mized to minimize the total cost of all EVs which perform charging
and discharging during the day. Because the optimization problem
is a convex optimization problem, it can be solved efficiently with
interior point methods. Literature [42] shows that EVs can balance
the electricity demand and promote the wind power integration.
Literature [43] studies an optimization problem of scheduling EV
charging with energy storage considering both the day-ahead and
real-time markets, and a MILP model based heuristic algorithm is
proposed to solve the problem in polynomial time, but EVs dis-
charging and EV owners’ benefit are not mentioned. From the per-
spective of an aggregator, literature [44] discusses how to manage
the electricity market participation of a vehicle fleet and presents
a framework for optimizing EVs charging and discharging in elec-
tricity spot prices with different driving patterns of vehicle fleet,
while grid network loss and SOC of EVs are ignored. By formulating
the optimization problem as a linear program, literature [45] pro-
poses a smart charging algorithm which offers significant financial
benefits to customers and aggregators for different battery replace-
ment costs, and additional system flexibility as well as peak load
reductions are also observed, but the cost of grid control equipment
is not involved. In order to minimize the charging cost, literature
[46] proposes a heuristic method to solve the optimized model
for controlling EV charging loads in response to time-of-use (TOU)
price in a regulated market, but V2G is not involved. Literature
[47] proposes a novel method of planning the charging of electric
drive vehicles including electricity grid constraints. Also, this
method establishes an individual charging plan for each vehicle
and avoids distribution grid congestion while satisfying the
requirements of the individual vehicle owners.

Based on the concept of V2G, we present a new approach to
optimize the charging behavior of EVs within a power grid, where
both the EV owners and the power grid are considered. In Section 2,
according to the stochastic characteristics of EVs, an optimal
objective model based on optimal power flow is developed, which
includes the EV owners’ degree of satisfaction (DoS), the smooth-
ness of the power daily load curve, the reducing loss of active
power transmission and the adjustment of the power grid control
equipment. In addition, the model considers the network con-
straints, the on-load tap changer (OLTC) transformer constraints,
the transmission power constraints, the charging and discharging
power constraints and the EVs’ state of charge (SOC) constraints.
In Section 3, an improved particle swarm optimization (IPSO) algo-
rithm based on genetic variation is proposed. In Section 4, simula-
tions based on a practical distribution power grid are presented to
investigate the performance of the proposed charging strategy.
Concluding remarks are given in Section 5.

2. The optimal EV charging–discharging model

2.1. Electric vehicle model

The charging time of EVs is affected by the owner’s preference
which includes their driving demand and other factors. Statistical
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data of a car’s usage show that private cars are sitting 95% of the
day. To generate extra revenue, EV owners can transmit energy
to a power grid in the vehicle’s sitting time for bulk energy, spin-
ning reserves and frequency regulation. EVs are connected to the
grid in the parking time, so the characteristic curve of the number
of EVs connected to the grid in one day is basically a certain profile.
The time when EVs disconnect from power grid obeys a normal
distribution at commuting time while following a uniform
distribution in the vehicle’s remaining time [17,20]. The variable
Pleave,b is the probability when EVs disconnect from grid at time
b, thus Prb � 1 � Pleave,b, which is the proportion of EVs connected
to the grid at time b.

Generally, EVs need to travel longer distance and consume more
power in commuting time (8:00–10:00 am and 3:00–6:00 pm),
while EVs consume less power in rest time of a day. So EV’s con-
sumption power distribution in a day is shown in Fig. 1 [39].

After charging from the power grid to recharge the battery, the
surplus energy of EVs can be returned to the grid to serve the
power grid operation. To track the battery’s SOC, we define a var-
iable Estore

a;b as the remaining energy in the battery in the following
equation. Assuming that EVs connected to the power grid are on
the same node as an energy storage unit with bidirectional power
flow:

Estore
a;bþ1 ¼ Estore

a;b þ Prb � Na;EV � PEV
a;b � Dt � ð1� PrbÞ � Ev2r

b ð1Þ

where Estore
a;b and Estore

a;bþ1 represent the remaining energy of EVs on
node a at time b and time b + 1, respectively. Na,EV represents the
number of EVs of node a, Prb represents the proportion of EVs con-
nected to power grid at time b, Ev2r

b represents the energy possibly
depleted by EVs for driving at the moment b, PEV

a;b represents the
charging or discharging power of EVs on node a from time b to time
b + 1, and Dt (Unit: hour) is the time interval between b and b + 1.

2.2. The optimal charging strategy model

To optimize the charging and discharging behavior of a large
number of EVs connected to power grid, the objective function
consists of four objectives, which will be described in detail as
follows.

Power grid companies prefer to reduce the power loss in trans-
mission to lower the cost of the power grid operation; therefore,
reducing power loss is an objective. So the optimization objective
of power loss g1 is denoted as

g1 ¼
Xnb

b¼1

Xnl

a¼1

PLoss;ab ð2Þ
Fig. 1. The percent of EV’s power consumption in a day in urban area.
where nl is the number of branches included in the power grid, nb is
the total number of time intervals in one day, PLoss,ab is the active
power loss of branch a at time b.

When EVs are connected to power grid for charging and dis-
charging, the OLTC transformers and other grid control equipment
must adjust frequently to ensure the safe operation of the power
grid. However, frequent operation will shorten the life of such
equipment and increase the cost of the grid operation. Therefore,
minimizing the changing frequency of the OLTC tap position is
one of the objectives of power grid optimal operation. So the opti-
mization objective of adjustment frequency for power grid control
equipment g2 is denotes as

g2 ¼
Xnb

b¼1

Xnt

a¼1

jtjab � 1
��� ��� ð3Þ

where nt is the number of transformers, |t|ab is the ratio of OLTC a at
time b.

From the view of the power grid, grid operation desires a
smooth distribution of the daily load. After an ideal load curve
based on the average daily load curve is defined, we can minimize
the deviation from the actual load to the ideal load. So the optimi-
zation objective of the smoothness for the power daily load curve
g3 is denotes as

g3 ¼
Xnb

b¼1

ðPb � PÞ2 ð4Þ

where Pb is the total power grid load at time b, and P is the average
load in one day without EVs.

The role of EV owners is also important in the interaction of the
power grid and the EV. From the EV owners’ point of view, the EV
owners’ DoS should be an optimization objective. When the EV
leaves the power grid, the EV owner hopes that the energy in bat-
tery remains as much as possible, so the same to SOC. That is to
say, SOC means EV owner’s DoS. The optimization objective of EV
owners’ DoS g4 can be denoted as

g4 ¼ 1�
Pn

a¼1ca7

n
ð5Þ

where ca7 is the SOC of the EV on node a at 7:00 am, and n is the
number of nodes in the power grid. Higher EV owners’ DoS corre-
lates to a lower g4. In order to go to work in 7:00 am, the EV owner
will not discharge to power grid to remain energy in battery. After
7:00 am, the EV can discharge to power grid if the owner stays at
home or work place. At this time, the EV must remain enough
energy to meet the owner’s traveling need in the future, so c must
be greater than 0.6 (at least 60% of the energy remained in battery).

We can put all the optimization objectives together, so the
optimization for charging and discharging behavior of a large
number of EVs connected to power grid is considered as a multi-
objective optimization problem. Because there is no mutual cou-
pling between each optimization objective, the multi-objective
optimization problem can be transformed into a single objective
optimization by weighted linear combination in Eq. (6).

min f ¼ e1 � g1 þ e2 � g2 þ e3 � g3 þ e4 � g4 ð6Þ

where e1 is the weight of g1, e2 is the weight of g2, e3 is the weight of
g3, e4 is the weight of g4. g1, g2 and g3 represent the economics of
grid operation respectively, and they are equally important accord-
ing to the experience of power grid operator. While g4 represents
customers DoS, it is less important than grid operation because of
the practical situation in China. So we set e1, e2 and e3 as 0.3, and
e4 is set as 1 � 0.3 � 3 = 0.1.



Table 1
The parameters of constraints.

Definition Symbol Definition Symbol

Injection active power at node a PGa Injection reactive power at node a QGa

Active load at node a PDa Reactive load at node a QDa

Active power transmission of node a PTa Reactive power transmission of node a QTa

Maximum ratio of OLTC a |t|a,max Minimum ratio of OLTC a |t|a,min

Ratio of OLTC a |t|a EV’s charging power at node a PEV
a

Maximum of EV’s charging power at point a PEV
a;max

Maximum of EV’s discharging power at point a jPEV
a;minj

Maximum voltages of node a Va,max Minimum voltages of node a Va,min

Voltage of node a Va Active power transmission of line l Pl

Active power transmission limit of line l Pl,max Remaining energy of EV on node a Estore
a

EV’s battery capacity at node a Estore
a;max
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The following constraints in our optimization problem must be
satisfied at each time interval b, and the definitions of related
parameters are shown in Table 1.
PGa � PDa � PTa ¼ 0 ð7Þ
Q Ga � Q Da � Q Ta ¼ 0 ð8Þ

jtja;min 6 jtja 6 jtja;max ð9Þ

PEV
a;min 6 PEV

a 6 PEV
a;max ð10Þ

Va;min 6 Va 6 Va;max ð11Þ

jPlj 6 Pl;max ð12Þ

Estore
a P 0:1 � Estore

a;max ð13Þ
Eqs. (7) and (8) indicate the active and reactive power balance con-
straints of the nodes. Eq. (9) indicates the transformer ratio
restraint. Eq. (10) represents the EV’s charging and discharging
power constraint, while PEV

a > 0 represents EV charging and
PEV

a < 0 represents EV discharging. Eq. (11) represents the node
voltage amplitude constraint, and Eq. (12) is the branch’s transmis-
sion power constraint. The life of an EV’s battery will be shortened
due to the over-discharge of the battery, so the status of charging
batteries is constrained by Eq. (13) according to [48-50].

Based on |t|a and PEV
a , Va, Pl and Estore

a can be derived after power
flow calculation of Eq. (14). The power flow of grid can be con-
trolled by the charging and discharging power of EVs and the ratio
of adjustable transformers, so |t|a and PEV

a are control variables, Va,
Pl and Estore

a are state variables.

PTa ¼ Va

X
j2a

VjðGaj cos haj þ Baj sin hajÞ

Q Ta ¼ Va

X
j2a

VjðGaj sin haj � Baj cos hajÞ

jPlj ¼ jPijj ¼ jViVjðGij cos hij þ Bij sin hijÞ � V2
i Gijj

PLoss;l ¼ Pij þ Pji

Ploss;km ¼ jVkj2jtj2Gkm þ jVmj2Gkm � 2jVkjjVmjjtjGkm cos hkm

8>>>>>>>>>><
>>>>>>>>>>:

ð14Þ

where Va and Vj are voltages of node a and j, respectively. Gaj is the
conductance between node a and node j, and Baj is the susceptance
between node a and node j. haj is the phase angle difference
between node a and node j. PLoss,l is the active power loss of branch
l. Ploss,km is the active power loss of the branch between node k and
node m with an OLTC, and |t| is the ratio of OLTC.

The matrix of control variables is denoted as follows:

ui ¼

PEV
11 PEV

12 � � � PEV
1nb

..

. ..
. ..

. ..
.

PEV
n1 PEV

n2 � � � PEV
nnb

jtj11 jtj12 � � � jtj1nb

2
6666664

3
7777775

i

ð15Þ
3. Improved particle swarm optimization (IPSO) based on gene
algorithm and simulated annealing

The key of the optimization model for EVs charging and dis-
charging is how to solve the optimal power flow (OPF) model,
which is a nonlinear, non-convex, large-scale, static optimization
problem with both continuous and discrete control variables. The
exact algorithms, such as Linear Programming, Nonlinear Program-
ming and Interior Point Methods, can be applied to solve tradi-
tional OPF problem. These methods rely on convexity to obtain
the global optimum solution and as such are forced to simplify
relationships in order to ensure convexity [51]. However, the
EVs’ charging and discharging problem is non-convex due to the
existence of the nonlinear AC power flow equality constraints. So
the exact algorithms are not guaranteed to converge to the global
optimum of the non-convex OPF problem [52]. Also, the presence
of discrete control variables, such as transformer tap positions, fur-
ther complicates the solution. The particle swarm optimization
(PSO) algorithm can overcome the limitations of non-convex and
discrete control variables, and it has some advantages such as sim-
plicity, easy realization, fewer parameters and fast convergence
compared with traditional optimization algorithms (and including
meta-heuristics algorithms). Furthermore, its ability of global opti-
mum can be improved. Therefore, it is a good choice to implement
EV charging and discharging strategy.

A penalty function method is usually applied to inequality con-
straints, but the determination of such a penalty factor in our case
is difficult. If the penalty factor is too large, it may lead to a lack of
convergence; meanwhile, a small penalty factor will make such a
penalty useless. An improper penalty function method may even
cause the annihilation of the particles [53].

In this paper, a feasible reservation strategy is applied to handle
the inequality constraints. It is assumed that the feasible region
defined in the constraints of our charging and discharging model
is F and the number of particles in the swarm is N. When particle
i advances to generation k, its evolution position is denoted as
uk

i ¼ ðuk
i1;u

k
i2; . . . ; uk

iDÞ which is the control variable matrix, and its
fitness value is denoted as f ðuk

i Þ. The best location in its search his-
tory is pk

i ¼ ðpk
i1; p

k
i2; . . . ; pk

iDÞ, and the best fitness value in its search
history is f ðpk

i Þ. The best position of the group’s evolution in gener-
ation k is gk ¼ ðgk

1; g
k
2; . . . ; gk

DÞ.
The initial value of the position of the particles is randomly gen-

erated. To increase the probability of searching the global optimal
solution by following the particle in this space, it is necessary to
make all initialized particles uniformly distributed in the feasible
region during the population initialization. The best position of
each particle and group will be updated only when the searched
solution falls into the feasible region and when it is better than
the previous solution. The feasible reservation strategy only allows
a feasible solution to guide the particle flight because a search of



Fig. 2. The flowchart of the proposed strategy based on IPSO.
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the particle in the infeasible region is deemed invalid; therefore,
the calculation efficiency of the algorithm is improved.

The development of best position of particle i based on its
search history is as follows:

pk
i ¼

uk
i ; ðuk

i 2 FÞ \ ðf ðuk
i Þ < f ðpk�1

i ÞÞ
pk�1

i ; ðuk
i R FÞ [ ðf ðuk

i ÞP f ðpk�1
i ÞÞ

(
ð16Þ

The equation of the group’s development is as follows:

gk ¼ minðpk
1; p

k
2; . . . ;pk

NÞ ð17Þ

Each particle updates its position based on its own best explo-
ration, best swarm overall experience, and its previous velocity
according to the following model:

vk
id ¼ wvk�1

id þ c1 � rand1 � ðpk
id � uk�1

id Þ þ c2 � rand2

� ðgk
d � uk�1

id Þ ð18Þ

uk
id ¼ uk�1

id þ vk
id ð19Þ

where i = 1, 2, . . ., N, N is the population size of PSO. d = 1, 2, . . ., D, D
is the dimension of the search space. c1 and c2 are two positive con-
stants. rand1 and rand2 are two randomly generated numbers in a
range of [0,1], w is the inertia weight, pk

id is the best position particle
i based on its own experience, gk

d is the best position based on over-
all swarm’s experience and k is the iteration index.

In an iterative version of PSO, the variable w is the inertia factor.
A large w means better a global search ability of the PSO, while a
small w means better local search ability. To balance the global
search ability and the local search ability [54], this paper uses a lin-
ear decreasing function in the iterative process.

w ¼ wmax � ððwmax �wminÞ=kmaxÞ � k ð20Þ

where wmax is the initial value and wmin is the ending value, kmax is
the maximum number of iterations, and k is the current number of
iterations.

The main disadvantage of PSO algorithm is that it is difficult to
get the optimal global solution. To overcome this difficulty, this
paper applies a Gaussian mutation in a genetic algorithm (GA) to
force some particles to mutate, and it applies the annealing mech-
anism of a simulated annealing algorithm to accept the adverse
mutation with certain probability [55,56]. As a result, the diversity
of particles is increased and the global search ability is improved.

In each evolution, a specified number of particles are randomly
selected to mutate based on the probability of mutation.

u0id ¼ uid½1þ n� ð21Þ

where u0id is the new position of particle i after a mutation, and n is
the random number obeying the standard normal distribution. An
acceptance of the mutation depends on the annealing mechanism
of simulated annealing algorithm after the fitness value calculation.

f 0i ¼ f ðu0idÞ
fi ¼ f ðuidÞ

�
Df ¼ f 0i � fi ð22Þ

uid ¼
u0id;minð1; e�Df=TÞ > f

uid;other

(
ð23Þ

where T is the annealing temperature, and f is the random variable
with a standard uniform distribution from 0 to 1. In Eq. (23), if
Df 6 0, uid is replaced by u0id with probability of 1. If Df > 0, uid is
replaced by u0id with probability of e�Df/T [55].

The cooling schedule is calculated as follows.

Tk ¼ kTk�1 ð24Þ

where Tk is the annealing temperature of the kth iteration, k is the
coefficient of cooling temperature.
The flowchart of solving EVs charging and discharging strategy
with IPSO is shown in Fig. 2.
4. Simulation analysis and results

4.1. Simulation system

To verify the effectiveness and feasibility of the charge–
discharge strategy, a simulation of the practical distribution power
grid in Kaili City in China is carried out, which is shown in Fig. 3.
Node 10 is a slack bus, and there is an OLTC between node 10
and node 2. It is assumed that EVs obey the uniform distribution
in the space and there are 10 EVs on each node. The simulation



Fig. 3. The power grid model.

Fig. 4. A typical daily load curve.

Fig. 5. Total charging load curve of EVs.
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adopts a per-unit system for calculation, in which the base capacity
is 1 MVA, and the base voltage is 10 kV.

The simulation network is a 10 kV distribution power grid, in
which the voltage of the slack bus is 10.5 kV (5% higher than the
rated voltage). The allowable voltage range of node voltage is
±7% and the range of ratio adjustment of an OLTC is ±2 � 2.5%.

The total load of power grid can be divided into the basic load of
its users and the charging load of the EVs. The basic load is known
from the typical daily load curve shown in Fig. 4. To simplify the
calculation, the 24-h day is divided into 48 intervals with each var-
iable remaining constant in each time interval.

4.2. Unregulated charge simulation

When power grid operators do not control the charging behav-
ior of EVs and EV owners’ desire to charge their EVs, this charging
mode can be called unregulated charging. In such uncoordinated
charging scenario, initial charging time and charging period are
affected by personal preference and other random factors. The only
objective of charging is to get enough energy to satisfy the travel-
ing need, and the effect of charging on power grid is ignored by EV
owner. According to the theory of probability limit, the initial
charging time of EVs can be considered to obey normal distribu-
tion. As people usually plug EV to the grid for charging when they
reach home from work, the initial charging time follows the nor-
mal distribution N(19, 1) [22,57]. It can be expressed as follows:

uðtÞ ¼ 1ffiffiffiffiffiffiffi
2p
p e�

ðx�19Þ2
2 ð25Þ
The total number of EVs in each node is NEV, then the number of
EVs connected to the grid to start charging is Nt in time interval
[t, t + Dt], and it can be expressed as follows.

Nt ¼ NEV

Z tþDt

t
uðtÞdt ð26Þ

The charging period will last generally 5–8 h [58], and it
assumes that charging time for all EVs connected to the grid fol-
lows the uniform distribution in the interval [5,8]. The power grid
is shown in Fig. 3, and the load is shown in Fig. 4. There are 10 EVs
in each node. The parameters of the EVs [39] are based on the Nis-
san Leaf EV. The EV’s charging power is constant and its value is
3.12 kW, and the capacity of the battery is 24 kW h.

A Monte Carlo simulation of the charging process for EVs is per-
formed. As shown in Fig. 5, total charging load grows fast at
7:00 pm when is the peak period of electricity consumption in
uncoordinated charging scenario, so the dumb charge will enlarge
the peak-valley difference during 7:00–9:00 pm.

4.3. Optimal charging and discharging simulation

Comparing with the uncoordinated charging scenario, power
grid operators can cooperate with EV owners on optimal charging
to satisfy the needs of both power grid and EV owners. To investi-
gate the benefit of the optimal charging strategy, simulations with
the same power grid, the same load, the same EVs, the same num-
bers of EVs in each node, the same initial value of SOC and the
same needs of traveling in a day are carried out.

According to literature [39], the EV’s maximum charge and dis-
charge power are both 3.12 kW and we assume that EVs charge
and discharge continuously with maximal power. It is assumed
that the time when EVs are disconnected from the power grid in
the morning and afternoon obeys the normal distributions
N(7.5, 0.25) and N(17.5, 0.25), respectively, and that the probability
of EVs to disconnect from the power grid is 0.02 between the time
09:00 and 16:30. Therefore, the proportion of EVs connected to
power grid at each moment in one day is calculated, as shown in
Fig. 6.

The EVs’ charging strategy is calculated by both traditional par-
ticle swarm optimization algorithm and IPSO algorithm, respec-
tively. The parameters of the IPSO are shown in Table 2.

Learning factor c1 and c2 are used to control the impact of their
own experience and group experience on their current speed
respectively. Generally, c1 is equal to c2 and their value is between
0 and 4. In this paper, the value of c1 and c2 is 1.49445 [53,59]. w is
called inertia weight factor which is non-negative, and it controls



Fig. 6. The proportion of EVs connected to the power grid in one day.

Table 2
IPSO parameters.

Parameter Symbol Value

Learning factor C1 1.49445
Learning factor C2 1.49445
Maximum inertia factor wmax 0.9
Minimum inertia factor wmin 0.4
Population size N 50
Mutation probability Pm 0.2
Initial annealing temperature T0 1e6
Coefficient of cooling temperature k 0.9
Maximum number of iterations kmax 1200

Fig. 7. The distribution of objective function value in simulation.
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the impact of previous speed on the current speed. The previous
speed has greater impact on the current speed and particles have
better global search ability with larger w, while smaller w means
less impact on the current speed and better local search ability of
particles. w is descending between the range [60] of [0.4,0.9]
according to linear decreasing rules in the search process. N is
the population size of particles, and particles lack diversity with
small N so that the algorithm will easily converge to local optimi-
zation. Also very large N will result in complex and meaningless
calculation. In this paper, the value of N is defined as 50 [60]. Pm

is the mutation probability and its value is defined as 0.2 to pre-
vent local optimization and non-convergence in this paper. Simu-
lated annealing algorithm accepts worse solution with a certain
probability. The initial temperature should be sufficiently high so
that the probability of receiving a worse solution is high. Then
the temperature is gradually reduced to decrease the probability
gradually, and it will improve the diversity of particles in the pop-
ulation in the beginning of calculation. If the initial temperature is
not high enough or falling too fast, it is not conducive to global
optimization. And temperature must be slowly cooled, so the cool-
ing factor k is close to 1. According to literature [55], T0 = 1e6, and
k ¼ 0:9. In one iteration of the PSO algorithm, the temperature
declines with the rate of 90% and 20% of particles mutate in each
iteration, then the acceptance of new mutation particles will be
determined according to Eqs. (22) and (23). The algorithm does
not converge with less iterations, while more iterations increase
Table 3
The objective function value of traditional PSO and IPSO.

Best value Worst value Average value Variance value

Traditional PSO 0.6115 0.8782 0.7195 0.0055
IPSO 0.5721 0.7765 0.6716 0.0023
computation complexity, so the maximum iterations are 1200.
The maximum flight speed of particles is |ud,max � ud,min| [60].

Both the IPSO and traditional PSO are repeated for 100 times,
and the results are showed in Table 3 and Fig. 7. In Fig. 7, IPSO
has better performance on best optimization value, worst optimi-
zation value and average value. Also, the probability of optimized
solution in IPSO is greater than that in traditional PSO. Because
the optimization model for EVs charging and discharging includes
a number of control variables, the algorithm requires a number of
iterations (i.e., 1200) to converge. As shown in Fig. 8, the objective
function value of IPSO is larger than PSO’s with lower decreasing
speed in the middle of the convergence process. The particles
accept the worse solution with a large probability, so the diversity
of particles will increase. According to Eq. (23), the probability of
accepting worse solution becomes very small as iterations increase
and annealing temperature decrease. So that IPSO can finally con-
verge to a smaller objective function than PSO with fast conver-
gence rate. Table 3 shows that the IPSO can achieve about 6%
decrease in objective function value, which means obvious eco-
nomic benefit. For example, Kaili city consumes electricity of about
6 billion kW h per year, and the percentage of its network losses is
about 4.0%. The electricity price is 0.538 CNY per kW h, so 6%
decrease of objective function value means that the network loss
will reduce at least two million CNY per year.

To investigate the statistical significance of the global optimal
ability of the proposed IPSO, two-sample t-tests are carried out
based on the simulation results. We assume that X1, X2, . . ., X100

and Y1, Y2, . . ., Y100 are objective function values obtained by
Fig. 8. The convergence curve of traditional PSO and IPSO.



Fig. 10. The transformation ratio of OLTC.

Fig. 11. The daily load curve of the whole power grid.
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running IPSO and traditional PSO for 100 times respectively. They
are samples from normal population X 	 Nðl1;r2

1Þ and
Y 	 Nðl2;r2

2Þ, �x and �y are the mean of X1, X2, . . ., X100 and
Y1, Y2, . . ., Y100 respectively. Statistical hypothesis are H0 : l1 P l2

and H1:l1 < l2. The significant level is set as 0.05 [61], thus the
rejection region is f�x� �y < �0:0148g according to t-distribution.
Because �x� �y ¼ �0:0479 < �0:0148, H0 should be rejected and
H1 should be accepted. So the average value of IPSO is less than
that of traditional PSO from the view of statistics, which means
the IPSO has better ability than traditional PSO to find global opti-
mal solution.

Based on the 100 independent simulation results, we calculate
the average value of the objective function, SOC, ratio of OLTC,
active load and network losses, among others.

The SOC curve of the EV at node 8 is shown in Fig. 9. Because
this paper does not involve charging tariff, end-user cost does
not be considered. As shown in Fig. 9, SOC is closer to 1 at 7:00
am considering owner’s DoS than without it. EV owner’s DoS
increases because the SOC in proposed strategy is much higher
than that without considering DoS, then longer traveling distance
can be obtained. The final value of SOC in a day is the initial value
of next day. In the next day, EVs charging and discharging plan will
be recalculated according to that day’s initial SOC and other infor-
mation. So the initial and final SOC values do not need to be the
same. Also the arrangement of next day needs to be re-simulated
according to the input of the next day.

To simplify the calculation, the ratio of an OLTC changes contin-
uously in the range from 0.95 to 1.05 in the simulation, while the
adjustment range of the actual ratio should be ±2 � 2.5%. In prac-
tice, the OLTC tap is only fixed at the closest ratio to the five
discrete values, including 0.95, 0.975, 1, 1.025 and 1.05.

The optimized ratio of an OLTC is shown in Fig. 10, in which no
adjustment of the OLTC is needed after the optimization at a peak
load.

The daily load curve of the slack bus 10 is shown in Fig. 11, which
also represents the daily load curve of the entire distribution net-
work. Without any EVs charging, the peak load is 1.2011 MW, the
valley (minimum) load is 0.2925 MW, and the peak-to-valley dif-
ference is 0.9086 MW, whereas they are changed to 1.0280 MW,
0.4786 MW and 0.5494 MW, respectively, with the optimal charg-
ing and discharging of EVs. As shown, the optimized strategy of
the charging and discharging of EVs has a better performance on
the power valleys and peaks than no EVs and uncoordinated
charging.
Fig. 9. An electric vehicle’s SOC.

Fig. 12. The active power loss of power grid.
The transmission loss curves of the network before and after
EVs are connected to the grid are shown in Fig. 12. The total trans-
mission loss of one day is 0.5975 MW without any EVs connected



Fig. 13. The proportion of EVs connected to the grid.

Fig. 14. The daily load curve of the whole power grid.

Fig. 15. The active power loss of power grid.

Fig. 16. The daily load curve of the whole power grid.
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to the power grid, which will be 0.7627 MW when EVs are charging
in an uncoordinated manner. The total transmission loss changes
to 0.5771 MW after the power grid operator controls EVs to charge
and discharge by the optimal charging strategy. As a result, the
transmission loss is reduced to 24.3% less than the loss of uncoor-
dinated charging.
Fig. 17. The active power loss of power grid.
4.4. The impact of probability distribution

To investigate the impact of probability distribution on optimi-
zation, simulations of different distributions are carried out. The
proportion of EVs connected to power grid at each moment in
one day is presented in Fig. 13. The time when EVs are discon-
nected from the power grid in the morning and afternoon obeys
the normal distributions N(7.5, 0.25) and N (17.5, 0.25) respec-
tively in case 1, also the probability of EVs disconnecting from
the power grid during 09:00–16:30 is 0.02. The time when EVs
are disconnected from the power grid in the morning and after-
noon obeys the uniform distribution in case 2, and the probability
is 0.3. The probability of EVs disconnecting from the power grid
during 09:00–16:30 in case 2 is 0.02 too. Figs. 14 and 15 show that
the optimal results of active load and network loss have little dif-
ference between normal distribution and uniform distribution. So
EVs have almost no impact on the optimization results no matter
what kind of distributions is used.
4.5. The impact of the initial value of SOC

The initial value of SOC is given randomly in this paper. To
investigate whether the initial value of SOC has an obvious impact
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on the result, simulation is repeated with different initial values of
SOC. As shown in Figs. 16 and 17, the initial value of SOC has little
impact on the optimal results.
5. Conclusions

The large development of electric vehicles brings us to the con-
cern of the impacts on the electricity grid. However, if large num-
bers of EVs connect to the grid simultaneously, there could be a
wide variety of impacts to the grid. Based on the random manner
in which EVs are connected to the power grid, EV charging models
are analyzed with the accessing time character. Simulation results
show that uncoordinated charging of EVs enlarges peak-to-valley
difference and active power loss of power grid, which is caused
by charging load of EVs.

So the arrangement of the charging or discharging of EVs con-
nected to a power grid must be regulated with the increasing com-
mercial application of EVs. Considering the constraints of power
grid operation and battery function, an optimal power flow based
EV charging and discharging strategy is proposed to improve the
economic and technical performance of power grid operation. It
is clear that optimal scheduling of charging provides significant
benefits to all involved. Comparing with the uncoordinated charg-
ing and non-EV-accession, results from this work have shown that
the peak-to-valley difference and active power loss are obviously
reduced, together with increased DoS of EV owners and reduced
adjustment frequencies of the OLTC. Also, different distributions
of EVs connecting time and different initial-values of SOC have
no impact on the optimized results.

An improved particle swarm optimization (IPSO) algorithm
based on genetic variation and simulated annealing is developed
to solve the optimization of charging and discharging of EVs.
And, better performance on the global search capability and opti-
mal result of the IPSO algorithm is verified.

Future work will involve low carbon, renewable generations
and layer-by-layer optimization for a large number of EVs in the
power grid.
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