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Abstract—Cloud computing is an emerging technology and 
it allows users to pay as you need and has the high 
performance. Cloud computing is a heterogeneous system as 
well and it holds large amount of application data. In the 
process of scheduling some intensive data or computing an 
intensive application, it is acknowledged that optimizing the 
transferring and processing time is crucial to an application 
program. In this paper in order to minimize the cost of the 
processing we formulate a model for task scheduling and 
propose a particle swarm optimization (PSO) algorithm 
which is based on small position value rule. By virtue of 
comparing PSO algorithm with the PSO algorithm 
embedded in crossover and mutation and in the local 
research, the experiment results show the PSO algorithm 
not only converges faster but also runs faster than the other 
two algorithms in a large scale. The experiment results 
prove that the PSO algorithm is more suitable to cloud 
computing. 
 
Index Terms—computing cloud, data intensive, computing 
intensive, particle swarm optimization, task scheduling 
 

I.  INTRODUCTION 

Scientific applications are usually complex and data- 
intensive. In many fields, such as astronomy [1], high-
energy physics [2] and bioinformatics [3], scientists need 
to analyze terabytes of data either from the existing data 
resources or from the collected physical devices. The 
scientific analysis is usually computation intensive and 
data intensive, and it is natural that it takes a long time for 
execution. In other aspects, data intensive is not only in 
the scientific applications, but also in the web 
environment. Data intensive computing, in the web 
environment, promotes the distributed application of web 
clusters because of their scalability and cost-effectiveness 
instead of one web server with high performance. In 
order to minimize the response time and the processing 
time, the task scheduling policy, in such systems, focuses 
on the manner of scheduling the tasks that decrease the 

data movement and increase the processing ability of 
these systems and thus, improve the performance. 
Running scientific workflow application usually needs 
not only high performance computing but also massive 
storage [4]. Nowadays, popular scientific workflows are 
deployed in grid systems [5] because they have high 
performance and large storage. However, grid computing  
is suitable for specialized application and grid computing 
is not available for users all over the world to use. Cloud 
computing is a new paradigm for distributed computing. 
The new emergence of cloud computing technologies 
provides method to deal with complex applications which 
are the applications of great deal of data and needing high 
performance applications. Clouds have been define to be 
a type of parallel and distributed system consisting of 
inter-connected and virtualized computers. These 
computers can be dynamically provisioned as per user's 
requirements [6]. Berkeley [7] about the define of cloud  
as following: "Cloud Computing refers to both the 
applications delivered as services over the Internet and 
the hardware and systems software in the datacenters that 
provide those services. The services themselves have 
long been referred to as Software as a Service (SaaS). 
The datacenter hardware and software is what we will 
call a Cloud. When a Cloud is made available in a pay-as-
you-go manner to the general public, we call it a Public 
Cloud". Reference [8] made a comprehensive comparison 
of grid computing and cloud computing. Cloud 
computing system and grid system have like features, for 
example, they have high performance and massive 
storage, and all these can meet the needs of scientific 
workflow. As cloud computing has the advantages of 
delivering a flexible, high-performance, pay-as-you-go, 
on-demand offering service over the internet, common 
users and scientists can  use cloud computing resolve 
complex application. 
    In terms of our problems, the complex applications can 
be divided into two classes. The one is computing 
intensive, the other is data intensive. As far as the data 
intensive application, our scheduling strategy should 
decrease the data movement which means decreases the 
transferring time; but the computing intensive tasks, our 
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scheduling strategy should schedule the data to the high 
performance computer. In order to take cloud computing, 
scientific workflow will gain a more utilizations. 
However, we face a lot of new challenges, of which data 
and task scheduling are one. How to efficient schedule all 
the tasks of an application is the most important problem. 
In this paper, we focus on minimizing the total executing 
cost and transferring time. In order to reduce the 
executing time, we schedule the computing intensive 
tasks to the high performance computer. As the tasks 
scheduling is a NP-complete problem, some heuristic 
algorithms have been used to resolve this kind of 
problems. Thus, we achieve the task scheduling by using 
a method called Particle Swarm Optimization (PSO). 

Our main contributions in this paper are as follows: 
(1)We formulate a model for task scheduling in cloud 

computing to minimize the overall time of executing 
and transmitting. 

(2)We design a PSO algorithm to solve task 
scheduling based on the proposed model, compare 
and analyze with other algorithm based on PSO. 

 The rest of this paper is organized as follows. Section 
Ⅱ presents related work. Section Ⅲ introduces the task 
scheduling and formulate the mode. Section Ⅳ gives the 
details of the algorithm of task scheduling. Section Ⅴ 
demonstrates the simulation result and the evaluation. 
Section Ⅵ concludes the paper. 

II.  RELATED WORK 

Task scheduling is very important to scientific 
workflows and task scheduling is challenge problems too. 
It has been research before in traditional distributed 
computing systems. Reference [9] is a scheduler in the 
Grid that guarantees that task scheduling activities can be 
queued, scheduled, monitored and managed in a fault 
tolerant manner. Reference [10] proposed a task 
scheduling strategy for urgent computing environments to 
guarantee the data's robustness. Reference [11] proposed 
an energy-aware strategy for task scheduling in RAID-
structured storage systems. Reference [12] studies 
multicore computational accelerators and the MapReduce 
programming model for high performance computing at 
scale in cloud computing. They evaluated system design 
alternatives and capabilities aware task scheduling for 
large-scale data processing on accelerator-based 
distributed systems. They enhanced the MapReduce 
programming model with runtime support for utilizing 
multiple types of computational accelerators via runtime 
workload adaptation and for adaptively mapping 
MapReduce workloads to accelerators in virtualized 
execution environments. However, none of them focuses 
on reducing the processing cost and transmitting time 
between data centers on the Internet. As cloud computing 
has become more and more important, new data 
management systems have designed, such as Google's 
GFS (Google File System) and Hadoop. Their data hide 
in the infrastructures and the users can not control them. 
The GFS is designed mainly for Web search applications. 
Some researchs are based on cloud computing. The 

Cumulus project [13] introduced scientific cloud 
architecture for a data centre. And the Nimbus [14] 
toolkit can directly turn a cluster into a cloud and it has 
already been used to build a cloud for scientific 
applications. Within a small cluster, data movement is not 
a big problem, because there are fast connections between 
nodes, i.e. the Ethernet，and the processing time is not 
longer. However, the scientific cloud workflow system is 
distributed applications which need to be executed across 
several data centers on the internet.  

In recent studies, Reference [15] from the cost aspect 
studied the compute-intensive and data-intensive 
application. They formulate a non-liner programming 
model to minimize the data retrieval and executing cost 
of data-intensive workflows in clouds. Reference [16] 
investigated the effectiveness of rescheduling using cloud 
resources to increase the reliability of job completion. 
Specifically, schedules are initially generated using grid 
resources while cloud resources are used only for 
rescheduling to deal with delays in job completion. A job 
in their study refers to a bag-of-tasks application that 
consists of a large number of independent tasks; this job 
model is common in many science and engineering 
applications. They have devised a novel rescheduling 
technique, called rescheduling using clouds for reliable 
completion and applied it to three well-known existing 
heuristics. Reference [17] proposed matrix based k-means 
clustering strategy to reduce the data movement in cloud 
computing. However, the reducing of data movement and 
cost do not mean that the processing cost and transmitting 
time decrease. In this work, we try to schedule the 
application data based on PSO algorithm in order to 
reduce the data transmitting time and process cost. 

Reference [18] study the deployment selection 
challenge from two different and usually conflicting 
angles, namely from the user’s and the system provider’s 
perspective. Users want to optimize the execution of their 
specific requests without worrying about the 
consequences for the overall system. The provider’s 
objective however is to optimize the system throughput 
and allow a fair usage of the resources, or a usage mode 
as defined by the decision makers. While the users are 
most likely pursuing the same strategy for each request, 
the system responsible may face a dynamic environment, 
including changing requirements, changing usage 
patterns and changing decisions in terms of business 
objectives. To address this issue, they propose a multi-
objective optimization framework for selecting 
distributed deployments in a heterogeneous environment 
based on Genetic Algorithm (GA). 

In fact, task assignment has been found to be NP-
complete [19]. Since task assignment is NP-Complete 
problem, Genetic Algorithm (GA) has been used for task 
assignment [20]. But, genetic algorithm may not be the 
best method. Reference[21]  has illustrated that the 
particle swarm optimization algorithm is able to get the 
better schedule than genetic algorithm in grid computing. 
Reference [22] has shown that the performance of 
Particle Swarm Optimization (PSO) algorithm is better 
than GA algorithm in distributed system. Not only the 
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PSO algorithm solution quality is better than GA in most 
of the test cases, but also PSO algorithm run faster than 
GA. So, we use a method called Particle Swarm 
Optimization to optimize the task scheduling problem. In 
this paper, we focus on minimizing the total executing 
time and transferring time. 

III.  TASK SCHEDULING PROBLEM FORMULATION 

We denote the task scheduling as a task interaction 
graph (TIG). We describe the TIG by G(V,E), where 
V={1,2, …, n} represents the tasks of a application and 
E={Cij} indicates the information exchange between 
these tasks. The edge weigh eij between node i and j 
denotes the information exchange between these pair of 
tasks. The node is defined for processor centers. The node 
weigh w corresponds to the work capacity of the node. 
Fig. 1 shows an example of the task scheduling in a 
heterogeneous environment. 

 
Figure 1. A TIG example on heterogeneous system 

In this paper, we consider the task scheduling with the 
following scenarios. The processors in the cloud 
computing are heterogeneous and they have different 
processing ability which depend on their amount units of 
memory and performance of cup's capacity. A task's 
processing cost will be variety according to the task being 
assignment to different processors. On the other hand, the 
communication cost between two nodes will be changing 
because between two different node's bandwidth have 
diversity and changing over time. Our target is how to 
minimize the communication time and execution cost. In 
order to formulate the task scheduling, we define TBi Bi= {1, 
2, 3, …, n} as n independent tasks permutation and PBj B 
jB= B{1, 2, 3, …, m} as m computing resources and BBij ,Bi, 
j=B B{1, 2, 3, …, k}as the bandwidth between two nodes 
and k is the number of node；xBik B=1 if task i is assigned to 
processor k, and xBik B=0, otherwise; yBijklB=1 if k≠l and task i 
is assigned to processor k and task j is assigned to 
processor l, and yBijklB=0 otherwise; n is the number of tasks; 
m is the number of processors; DEBiBBk B is the amount of data 
that the i task assigning to the processor k and PBm B and PBc B 
are the processor's memory and CPU's capacity; DTBijB is 
the interchange data amount between task i and task j; 
Equation (1) and (2) respectively represent the executing 
cost and the transforming time. Supposing that the 
processing time is know for task i executing on processor 
j and the communication time is know for transmitting 

the data from i node to j node. Our purpose is how to map 
all the tasks to all the processors make the total time and 
cost minimizing, which making the (3) value is 
minimizing.  
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IV.  TASK SCHEDULING BASED ON PARTICLE SWARM 
OPTIMIZATION 

PSO is an algorithm proposed by Kennedy and 
Eberhart in 1995 [23]. Social behavior of organisms such 
as bird flocking and fish schooling motivated them to 
look into the effect of collaboration of species onto 
achieving their goals as a group. A large number of birds 
or fishes flock synchronously, change direction suddenly, 
and scatter and regroup together according to the 
individual and social experience. Each individual is 
called a particle. Each particle gains good experience 
from its past and the social past experience. Each particle 
not only knows its own best position, which is the pbest, 
but also knows the social best position, which is gbest. In 
the movement of all the particles, each particle adjusts its 
direction and velocity in the light of the pbest, gbest and 
its own current position ( k

ix ) and velocity ( k
iv ). The 

pbest and the gbest are dynamic adjustment each iteration. 
The improvements equations of PSO are listed as (7) and 
(8). The parameters and their mean of parameters are 
shown in tableⅠ. 

The PSO algorithm is similar to other evolutionary 
algorithm. In PSO, each particle is a candidate solution of 
the underlying problem and has n dimensions which are 
decided by special problem. Particles position and 
velocity are initialized randomly. Each particle has a 
fitness value, which will be evaluated by a fitness 
function to be optimization in each generation. Each 
particle knows the pbest and gbest. In each generation the 
velocity and the position of particle will be update in light 
of (7) and (8) respectively. 
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TABLEⅠ.  PARAMETERS AND THE MEAN OF THE PARAMETERS 

Parameters Mean of the parameters 

k
iv  

velocity of particle i at 
iteration k 

1k
iv +

 
velocity of particle i at 

iteration k+1 
k
ix  

position of particle i at 
iteration k 

1k
ix +

 
position of particle i at 

iteration k+1 
ω  inertia weight 

1c , 2c  acceleration coefficients 

1rand , 2rand  random number between 0 
and 1 

ipbest  best position of particle i 

gbest  best position of entire 
particles in a population 

1
1 1

2 2

*( )

*( )

k k k
i i i i

k
i

v v c rand pbest x

c rand gbest x

ω+ = + − +

−
.               (7) 

1k k k
i i ix x v+ = +  .                                                          (8) 

A.  Particle representation  
Our target is resolving the task scheduling, so we 

should map each underlying solution to a particle. We 
define every particle as n dimensions vector response to 
the n tasks. An element delegates a task and the element 
is an integer value between 1 and n. The particle 
represents one of the task scheduling. Fig.2 describes an 
illustrative example for the task assignment to PSO 
particle mapping. 

Task1 Task2 Task3 Task4 Task5 

Processor3 Processor1 Processor2 Processor1 Processor3 

Figure 2. Task assignment to PSO particle mapping 

B.  Initial Swarm Generation 
   The initial particle population is constructed randomly 
for PSO algorithm. The position and velocity of each 
particle initial value produce according to the following 
formula [24]: 

1
min max min( )ix x x x rand= + − ×  .                            (9) 

1
min max min( )iv v v v rand= + − ×  .                            (10) 

Where maxx = maxv = 4.0 minx = minv =-0.4 and rand is a 
random value between 0 and 1. 

As the velocity is a continuous value and our task 
scheduling is a discrete permutation in PSO algorithm, 
we should transform the continuous value to discrete 
permutation. The small position value (SPV) rule [10] 
which borrowed from the random key representation to 

solve the task assignment can convert the continuous 
value to discrete permutation. 

We use the SPV rule transform a continuous position 
vector 1 2[ , ,..., ]i i i i

k nx x x x=  to a dispersed value 
permutation vector 1 2[ , ,..., ]i i i i

k ns s s s= . In order to counting 
the processing time, we should map each element of the 
vector i

ks  into processor's vector 1 2[ , ,..., ]i i i i
k np p p p= . The 

converting operation is defined as following equation: 

mod 1k k
i ip s m= +  .                                                     (11) 

TABLE Ⅱ. ILLUSTRATE THE RESULT OF PARTICLE
k
ix

OF PSO 

ALGORITHM TO
k
ip

FOR 7 TASKS AND 5 PROCESSORS. 

Dimension k
ix  k

is  k
ip  

1 0.1587 2 3 
2 3.6189 6 2 
3 2.3824 5 1 
4 0.0292 1 2 
5 0.8254 3 4 
6 2.0063 4 5 
7 3.8130 7 3 

C. The PSO Algorithm 
The details algorithm is described in PSO algorithm. 

The algorithm begins with k random particle vector and 
each particle is n dimensions. Every particle vector is a 
candidate solution of the underlying problem. The 
particles are the task to be assigned and the dimensions of 
the particle are the number of the special tasks in a 
workflow. Then, each particle moves by the direction on 
the pbest and gbest until the maximal number of 
iterations. When the algorithm executes over, the gbest 
and fitness value are the corresponding task scheduling 
and the minimal cost of the optimal strategy.  

PSO algorithm 
1. Initialize particle position vector and velocity vector 
randomly according (9) and (10). The vector's dimension 
equal to the size of the special tasks. 
2. Convert the continuous position vector 
( 1 2[ , ,..., ]i i i i

k nx x x x= ) to discrete vector ( 1 2[ , ,..., ]i i i i
k ns s s s= ) 

in light of SPV rule. Then, transform the 1 2[ , ,..., ]i i i i
k ns s s s=  

to processor's vector ( 1 2[ , ,..., ]i i i i
k np p p p= ) according to 

(11). Last, calculating each particle's fitness value as in 
(3). 
3. If one particle's fitness value is better than current, 
setting current value replace previous pbest and as the 
new pbest. 
4. Selecting the best particle from all the particle as the 
gbest . 
5. For all particles update their position and velocity by 
(7) and (8). 
6. If reaching to the maximum iteration or getting the 
ideal result stops, otherwise repeating from Step 2.  
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V.  EXPERIMENTAL RESULT 

A.  Performance Metric 
As a measure of performance, on one hand, we used 

cost for the processing and transforming to a placation as 
a metric. On the other hand, we measure the executing 
time and the convergence as a metric. We use PSO 
embed in SPV (SPO) algorithm, PSO algorithm embed in 
crossover and mutation (CM-PSO), PSO algorithm 
embed in local search (L-PSO) to compare the above 
metric. 

B. Experimental Settings 
In order to presenting the amount of communications 

between tasks, we define the communication density ρ of 
G (V,E) as   

| |
( 1) / 2

E
n n

ρ =
−

 .                                                       (12) 

 Where |E| is the numbers of existing communication 
between all tasks, n represents the number of the total 
tasks and n(n-1)/2 indicates the maximal number of 
communication demand in the all tasks. The other factors 
are the number of tasks (n) and the number of processors 
(m). 
   The testing data set is produce randomly. We 

normalize the processor's CPU and memory, restricting 
between 1 and 250, the task data is among 1 and 10000, 
the communication data is between 50 and 10000, and the 
bandwidth varies form 10 to 1000. In the following part, 
all of the experiments are tested on an Intel(R) 
Pentium(R) Dual CPU E2160 1.80 GHz with 1G RAM. 
The parameter is as following: size of swarm is 30, self-
recognition coefficient c1 is 1.49445, social coefficient c2 
is 1.49445, and inertial weight w is 0.729 [25], crossover 
is 0.8 and mutation is 0.01.   

C. Comparative Performance 
As PSO algorithm and hybrid PSO algorithm are 

stochastic and a result may be different for a particular 
problem, each problem runs 10 times and gets the 
average value. Moreover, the fitness function is the main 
source providing the leading the target to optimal solution, 
the performance test based on the minimum cost obtained 
when the algorithm has run exact numbers, here, we set 
the iterations is 10000. Table Ⅲ shows the average result 
using the three algorithms. From the table Ⅲ, we can get 
the conclusion: three algorithm performance is almost the 
same when the task is little, here is 7 tasks and 5 
processors, the CPU's running time have a little 
difference, the PSO is small, the L-PSO is middle and the 
CM-PSO is the big; when the task is 25 and the processor 
is 12, the cost of PSO is little better than the other two, 
but the running time of the L-PSO is almost three times 
the PSO and the CM-PSO is nearly two time PSO; when 
the task is 70, processor is 25, in terms of cost and 
running time, PSO performance is the best, especially in 
the running time.  
D. Convergence Analysis 

From Fig. 3 we can see that the each iteration time of 
PSO is the least in the PSO, CR-PSO and L-PSO when 

the task=25, processor=12 and ρ =0.75. This represents 
that PSO algorithm runs faster than other algorithm. Fig. 
4 describes the completion time of the three algorithm 
when task=70, processor=25 and ρ =0.75. It also display 
that PSO usually had a better average completion time 
value than the other two. From Fig. 3 and Fig.4 we can 
get the conclusion that the PSO algorithm runs faster than 
CR-PSO and L-PSO. The algorithm running time is a 
very important technology parameter which represents 
the time of having found the optimal resolution of an 
application. To some extent it determines good or bad of 
an algorithm and it is especially important to a time 
intensive application. Fig. 5 gives the cost of the three 
algorithms on 25 tasks, ρ =0.75 and 12 processors; it 
represents the L-PSO convergence quicker than the other 
two, but the cost of the L-PSO is better than the other 
algorithm. Fig. 6 shows the cost of PSO, CR-PSO and the 
L-PSO about 70 tasks, ρ =0.75 and 25 processors; it 
represents the PSO both converging faster and optimizing 
better than CR-PSO and L-PSO. As PSO algorithm not 
only runs faster, but also save the processing time in the 
large and complex conditions.  In cloud computing there 
are many tasks and processors, so PSO algorithm suits 
more to cloud computing. Moreover, the spending time of 
the PSO algorithm is shorter than that of other two 
algorithms. 

VI.   CONCLUSIONS 

In many different domains, in order to improve the 
efficiency the optimizing task scheduling is necessary. In 
cloud computing resources distribute all over the world, 
and the data usually is bigger and the bandwidth often is 
narrower, these problems are more important. In this 
paper, we presented the task scheduling optimizing 
method in cloud computing, and we formulate a model 
for task scheduling to minimize the cost of the problem 
and solved it by a PSO algorithm. By comparing and 
analyzing particle swarm algorithm with crossover, 
mutation and local search algorithm based on particle 
swarm, we propose the particle swarm algorithm embed 
in SPV, which represents better performance. 
Experimental result manifests that the PSO algorithm 
both gains optimal solution and converges faster in large 
tasks than the other two. Moreover, running time is 
shorter than the other two too. It is obvious that PSO is 
more suitable to cloud computing.   

In future work, our research is to center on the energy 
efficiency and service availability in cloud computing 
system. We aim to improve task scheduling optimization 
and make optimization policy to optimize not only the 
efficiency, but also the energy and service level 
agreement. 
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Figure 3. 25 tasks and 12 processors                                                Figure 4. 70 tasks and 25 processors 

 

Figure 5.  25 tasks and 12 processors                                    Figure 6. 70 tasks and 25 processors 

Table Ⅲ. The average costs and the used CPU times by PSO, CM-PSO and L-PSO over different problems. 
 

n m ρ  

PSO CM-PSO L-PSO 
Cost CPU 

time 
Cost CPU 

time 
Cost CPU 

time 
7 5 0.25 204.09 5.63 204.09 14.51 204.09 8.62 
  0.5 205.13 5.86 205.13 14.77 205.13 8.90 
  0.75 260.70 6.14 260.70 15.01 260.70 9.17 

25 12 0.25 1131.9 11.08 1129.8 20.28 1134.2 47.18 
  0.5 1206.1 14.27 1210.3 23.57 1211.8 52.78 
  0.75 1179.9 17.34 1182.8 26.64 1169.6 58.94 

70 25 0.25 3369.8 38.69 3437.5 51.53 3385.2 329.96 
  0.5 2477.9 64.81 2497.8 76.39 2493.4 407.10 
  0.75 4378.0 92.47 4513.8 102.81 4526.2 478.89 
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