
Task Scheduling Optimization in Cloud
Computing Based on Heuristic Algorithm

Lizheng Guo1,2

1 College of Information Sciences and Technology, Donghua University, Shanghai 201620, China ;
P

2
PDepartment of Computer Science and Engineering, Henan University of Urban Construction, Pingdingshan 467633,

China
{Hkftjh@yahoo.com.cn}

Shuguang Zhao1, Shigen Shen1, Changyuan Jiang1

1 College of Information Sciences and Technology, Donghua University, Shanghai 201620, China
{sgzhao@dhu.edu.cn, kxsg@21cn.com, njjcy@126.com}

Abstract—Cloud computing is an emerging technology and
it allows users to pay as you need and has the high
performance. Cloud computing is a heterogeneous system as
well and it holds large amount of application data. In the
process of scheduling some intensive data or computing an
intensive application, it is acknowledged that optimizing the
transferring and processing time is crucial to an application
program. In this paper in order to minimize the cost of the
processing we formulate a model for task scheduling and
propose a particle swarm optimization (PSO) algorithm
which is based on small position value rule. By virtue of
comparing PSO algorithm with the PSO algorithm
embedded in crossover and mutation and in the local
research, the experiment results show the PSO algorithm
not only converges faster but also runs faster than the other
two algorithms in a large scale. The experiment results
prove that the PSO algorithm is more suitable to cloud
computing.

Index Terms—computing cloud, data intensive, computing
intensive, particle swarm optimization, task scheduling

I. INTRODUCTION

Scientific applications are usually complex and data-
intensive. In many fields, such as astronomy [1], high-
energy physics [2] and bioinformatics [3], scientists need
to analyze terabytes of data either from the existing data
resources or from the collected physical devices. The
scientific analysis is usually computation intensive and
data intensive, and it is natural that it takes a long time for
execution. In other aspects, data intensive is not only in
the scientific applications, but also in the web
environment. Data intensive computing, in the web
environment, promotes the distributed application of web
clusters because of their scalability and cost-effectiveness
instead of one web server with high performance. In
order to minimize the response time and the processing
time, the task scheduling policy, in such systems, focuses
on the manner of scheduling the tasks that decrease the

data movement and increase the processing ability of
these systems and thus, improve the performance.
Running scientific workflow application usually needs
not only high performance computing but also massive
storage [4]. Nowadays, popular scientific workflows are
deployed in grid systems [5] because they have high
performance and large storage. However, grid computing
is suitable for specialized application and grid computing
is not available for users all over the world to use. Cloud
computing is a new paradigm for distributed computing.
The new emergence of cloud computing technologies
provides method to deal with complex applications which
are the applications of great deal of data and needing high
performance applications. Clouds have been define to be
a type of parallel and distributed system consisting of
inter-connected and virtualized computers. These
computers can be dynamically provisioned as per user's
requirements [6]. Berkeley [7] about the define of cloud
as following: "Cloud Computing refers to both the
applications delivered as services over the Internet and
the hardware and systems software in the datacenters that
provide those services. The services themselves have
long been referred to as Software as a Service (SaaS).
The datacenter hardware and software is what we will
call a Cloud. When a Cloud is made available in a pay-as-
you-go manner to the general public, we call it a Public
Cloud". Reference [8] made a comprehensive comparison
of grid computing and cloud computing. Cloud
computing system and grid system have like features, for
example, they have high performance and massive
storage, and all these can meet the needs of scientific
workflow. As cloud computing has the advantages of
delivering a flexible, high-performance, pay-as-you-go,
on-demand offering service over the internet, common
users and scientists can use cloud computing resolve
complex application.
 In terms of our problems, the complex applications can
be divided into two classes. The one is computing
intensive, the other is data intensive. As far as the data
intensive application, our scheduling strategy should
decrease the data movement which means decreases the
transferring time; but the computing intensive tasks, our

Corresponding author.
E-mail address: kftjh@yahoo.com.cn

JOURNAL OF NETWORKS, VOL. 7, NO. 3, MARCH 2012 547

© 2012 ACADEMY PUBLISHER
doi:10.4304/jnw.7.3.547-553

scheduling strategy should schedule the data to the high
performance computer. In order to take cloud computing,
scientific workflow will gain a more utilizations.
However, we face a lot of new challenges, of which data
and task scheduling are one. How to efficient schedule all
the tasks of an application is the most important problem.
In this paper, we focus on minimizing the total executing
cost and transferring time. In order to reduce the
executing time, we schedule the computing intensive
tasks to the high performance computer. As the tasks
scheduling is a NP-complete problem, some heuristic
algorithms have been used to resolve this kind of
problems. Thus, we achieve the task scheduling by using
a method called Particle Swarm Optimization (PSO).

Our main contributions in this paper are as follows:
(1)We formulate a model for task scheduling in cloud

computing to minimize the overall time of executing
and transmitting.

(2)We design a PSO algorithm to solve task
scheduling based on the proposed model, compare
and analyze with other algorithm based on PSO.

 The rest of this paper is organized as follows. Section
Ⅱ presents related work. Section Ⅲ introduces the task
scheduling and formulate the mode. Section Ⅳ gives the
details of the algorithm of task scheduling. Section Ⅴ
demonstrates the simulation result and the evaluation.
Section Ⅵ concludes the paper.

II. RELATED WORK

Task scheduling is very important to scientific
workflows and task scheduling is challenge problems too.
It has been research before in traditional distributed
computing systems. Reference [9] is a scheduler in the
Grid that guarantees that task scheduling activities can be
queued, scheduled, monitored and managed in a fault
tolerant manner. Reference [10] proposed a task
scheduling strategy for urgent computing environments to
guarantee the data's robustness. Reference [11] proposed
an energy-aware strategy for task scheduling in RAID-
structured storage systems. Reference [12] studies
multicore computational accelerators and the MapReduce
programming model for high performance computing at
scale in cloud computing. They evaluated system design
alternatives and capabilities aware task scheduling for
large-scale data processing on accelerator-based
distributed systems. They enhanced the MapReduce
programming model with runtime support for utilizing
multiple types of computational accelerators via runtime
workload adaptation and for adaptively mapping
MapReduce workloads to accelerators in virtualized
execution environments. However, none of them focuses
on reducing the processing cost and transmitting time
between data centers on the Internet. As cloud computing
has become more and more important, new data
management systems have designed, such as Google's
GFS (Google File System) and Hadoop. Their data hide
in the infrastructures and the users can not control them.
The GFS is designed mainly for Web search applications.
Some researchs are based on cloud computing. The

Cumulus project [13] introduced scientific cloud
architecture for a data centre. And the Nimbus [14]
toolkit can directly turn a cluster into a cloud and it has
already been used to build a cloud for scientific
applications. Within a small cluster, data movement is not
a big problem, because there are fast connections between
nodes, i.e. the Ethernet，and the processing time is not
longer. However, the scientific cloud workflow system is
distributed applications which need to be executed across
several data centers on the internet.

In recent studies, Reference [15] from the cost aspect
studied the compute-intensive and data-intensive
application. They formulate a non-liner programming
model to minimize the data retrieval and executing cost
of data-intensive workflows in clouds. Reference [16]
investigated the effectiveness of rescheduling using cloud
resources to increase the reliability of job completion.
Specifically, schedules are initially generated using grid
resources while cloud resources are used only for
rescheduling to deal with delays in job completion. A job
in their study refers to a bag-of-tasks application that
consists of a large number of independent tasks; this job
model is common in many science and engineering
applications. They have devised a novel rescheduling
technique, called rescheduling using clouds for reliable
completion and applied it to three well-known existing
heuristics. Reference [17] proposed matrix based k-means
clustering strategy to reduce the data movement in cloud
computing. However, the reducing of data movement and
cost do not mean that the processing cost and transmitting
time decrease. In this work, we try to schedule the
application data based on PSO algorithm in order to
reduce the data transmitting time and process cost.

Reference [18] study the deployment selection
challenge from two different and usually conflicting
angles, namely from the user’s and the system provider’s
perspective. Users want to optimize the execution of their
specific requests without worrying about the
consequences for the overall system. The provider’s
objective however is to optimize the system throughput
and allow a fair usage of the resources, or a usage mode
as defined by the decision makers. While the users are
most likely pursuing the same strategy for each request,
the system responsible may face a dynamic environment,
including changing requirements, changing usage
patterns and changing decisions in terms of business
objectives. To address this issue, they propose a multi-
objective optimization framework for selecting
distributed deployments in a heterogeneous environment
based on Genetic Algorithm (GA).

In fact, task assignment has been found to be NP-
complete [19]. Since task assignment is NP-Complete
problem, Genetic Algorithm (GA) has been used for task
assignment [20]. But, genetic algorithm may not be the
best method. Reference[21] has illustrated that the
particle swarm optimization algorithm is able to get the
better schedule than genetic algorithm in grid computing.
Reference [22] has shown that the performance of
Particle Swarm Optimization (PSO) algorithm is better
than GA algorithm in distributed system. Not only the

548 JOURNAL OF NETWORKS, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER

PSO algorithm solution quality is better than GA in most
of the test cases, but also PSO algorithm run faster than
GA. So, we use a method called Particle Swarm
Optimization to optimize the task scheduling problem. In
this paper, we focus on minimizing the total executing
time and transferring time.

III. TASK SCHEDULING PROBLEM FORMULATION

We denote the task scheduling as a task interaction
graph (TIG). We describe the TIG by G(V,E), where
V={1,2, …, n} represents the tasks of a application and
E={Cij} indicates the information exchange between
these tasks. The edge weigh eij between node i and j
denotes the information exchange between these pair of
tasks. The node is defined for processor centers. The node
weigh w corresponds to the work capacity of the node.
Fig. 1 shows an example of the task scheduling in a
heterogeneous environment.

Figure 1. A TIG example on heterogeneous system

In this paper, we consider the task scheduling with the
following scenarios. The processors in the cloud
computing are heterogeneous and they have different
processing ability which depend on their amount units of
memory and performance of cup's capacity. A task's
processing cost will be variety according to the task being
assignment to different processors. On the other hand, the
communication cost between two nodes will be changing
because between two different node's bandwidth have
diversity and changing over time. Our target is how to
minimize the communication time and execution cost. In
order to formulate the task scheduling, we define TBi Bi= {1,
2, 3, …, n} as n independent tasks permutation and PBj B
jB= B{1, 2, 3, …, m} as m computing resources and BBij ,Bi,
j=B B{1, 2, 3, …, k}as the bandwidth between two nodes
and k is the number of node；xBik B=1 if task i is assigned to
processor k, and xBik B=0, otherwise; yBijklB=1 if k≠l and task i
is assigned to processor k and task j is assigned to
processor l, and yBijklB=0 otherwise; n is the number of tasks;
m is the number of processors; DEBiBBk B is the amount of data
that the i task assigning to the processor k and PBm B and PBc B
are the processor's memory and CPU's capacity; DTBijB is
the interchange data amount between task i and task j;
Equation (1) and (2) respectively represent the executing
cost and the transforming time. Supposing that the
processing time is know for task i executing on processor
j and the communication time is know for transmitting

the data from i node to j node. Our purpose is how to map
all the tasks to all the processors make the total time and
cost minimizing, which making the (3) value is
minimizing.

1 1
() *

n m
ik

exe ik
i k

DEC M x
Pm Pc= =

=
∗∑∑ . (1)

1

1 1
()

n n
ij

t ijkl
i j i ij

DT
C M y

B

−

= = +

= ∗∑∑ . (2)

() () ()exe tTotal M C M C M= + . (3)

Subject to
1

1, 1,2,...
m

ik
k

x i n
=

= ∀ =∑ . (4)

1 1
1, , 1, 2,..., ,

m m

ijkl
k l

y i j n k l
= =

= ∀ = ≠∑∑ . (5)

, {0,1}, , , ,ik ijklx y i j k l∈ ∀ . (6)

IV. TASK SCHEDULING BASED ON PARTICLE SWARM
OPTIMIZATION

PSO is an algorithm proposed by Kennedy and
Eberhart in 1995 [23]. Social behavior of organisms such
as bird flocking and fish schooling motivated them to
look into the effect of collaboration of species onto
achieving their goals as a group. A large number of birds
or fishes flock synchronously, change direction suddenly,
and scatter and regroup together according to the
individual and social experience. Each individual is
called a particle. Each particle gains good experience
from its past and the social past experience. Each particle
not only knows its own best position, which is the pbest,
but also knows the social best position, which is gbest. In
the movement of all the particles, each particle adjusts its
direction and velocity in the light of the pbest, gbest and
its own current position (k

ix) and velocity (k
iv). The

pbest and the gbest are dynamic adjustment each iteration.
The improvements equations of PSO are listed as (7) and
(8). The parameters and their mean of parameters are
shown in tableⅠ.

The PSO algorithm is similar to other evolutionary
algorithm. In PSO, each particle is a candidate solution of
the underlying problem and has n dimensions which are
decided by special problem. Particles position and
velocity are initialized randomly. Each particle has a
fitness value, which will be evaluated by a fitness
function to be optimization in each generation. Each
particle knows the pbest and gbest. In each generation the
velocity and the position of particle will be update in light
of (7) and (8) respectively.

JOURNAL OF NETWORKS, VOL. 7, NO. 3, MARCH 2012 549

© 2012 ACADEMY PUBLISHER

TABLEⅠ. PARAMETERS AND THE MEAN OF THE PARAMETERS

Parameters Mean of the parameters

k
iv

velocity of particle i at
iteration k

1k
iv +

velocity of particle i at

iteration k+1
k
ix

position of particle i at
iteration k

1k
ix +

position of particle i at

iteration k+1
ω inertia weight

1c , 2c acceleration coefficients

1rand , 2rand random number between 0
and 1

ipbest best position of particle i

gbest best position of entire
particles in a population

1
1 1

2 2

*()

*()

k k k
i i i i

k
i

v v c rand pbest x

c rand gbest x

ω+ = + − +

−
. (7)

1k k k
i i ix x v+ = + . (8)

A. Particle representation
Our target is resolving the task scheduling, so we

should map each underlying solution to a particle. We
define every particle as n dimensions vector response to
the n tasks. An element delegates a task and the element
is an integer value between 1 and n. The particle
represents one of the task scheduling. Fig.2 describes an
illustrative example for the task assignment to PSO
particle mapping.

Task1 Task2 Task3 Task4 Task5

Processor3 Processor1 Processor2 Processor1 Processor3

Figure 2. Task assignment to PSO particle mapping

B. Initial Swarm Generation
 The initial particle population is constructed randomly
for PSO algorithm. The position and velocity of each
particle initial value produce according to the following
formula [24]:

1
min max min()ix x x x rand= + − × . (9)

1
min max min()iv v v v rand= + − × . (10)

Where maxx = maxv = 4.0 minx = minv =-0.4 and rand is a
random value between 0 and 1.

As the velocity is a continuous value and our task
scheduling is a discrete permutation in PSO algorithm,
we should transform the continuous value to discrete
permutation. The small position value (SPV) rule [10]
which borrowed from the random key representation to

solve the task assignment can convert the continuous
value to discrete permutation.

We use the SPV rule transform a continuous position
vector 1 2[, ,...,]i i i i

k nx x x x= to a dispersed value
permutation vector 1 2[, ,...,]i i i i

k ns s s s= . In order to counting
the processing time, we should map each element of the
vector i

ks into processor's vector 1 2[, ,...,]i i i i
k np p p p= . The

converting operation is defined as following equation:

mod 1k k
i ip s m= + . (11)

TABLE Ⅱ. ILLUSTRATE THE RESULT OF PARTICLE
k
ix

OF PSO

ALGORITHM TO
k
ip

FOR 7 TASKS AND 5 PROCESSORS.

Dimension k
ix k

is k
ip

1 0.1587 2 3
2 3.6189 6 2
3 2.3824 5 1
4 0.0292 1 2
5 0.8254 3 4
6 2.0063 4 5
7 3.8130 7 3

C. The PSO Algorithm
The details algorithm is described in PSO algorithm.

The algorithm begins with k random particle vector and
each particle is n dimensions. Every particle vector is a
candidate solution of the underlying problem. The
particles are the task to be assigned and the dimensions of
the particle are the number of the special tasks in a
workflow. Then, each particle moves by the direction on
the pbest and gbest until the maximal number of
iterations. When the algorithm executes over, the gbest
and fitness value are the corresponding task scheduling
and the minimal cost of the optimal strategy.

PSO algorithm
1. Initialize particle position vector and velocity vector
randomly according (9) and (10). The vector's dimension
equal to the size of the special tasks.
2. Convert the continuous position vector
(1 2[, ,...,]i i i i

k nx x x x=) to discrete vector (1 2[, ,...,]i i i i
k ns s s s=)

in light of SPV rule. Then, transform the 1 2[, ,...,]i i i i
k ns s s s=

to processor's vector (1 2[, ,...,]i i i i
k np p p p=) according to

(11). Last, calculating each particle's fitness value as in
(3).
3. If one particle's fitness value is better than current,
setting current value replace previous pbest and as the
new pbest.
4. Selecting the best particle from all the particle as the
gbest .
5. For all particles update their position and velocity by
(7) and (8).
6. If reaching to the maximum iteration or getting the
ideal result stops, otherwise repeating from Step 2.

550 JOURNAL OF NETWORKS, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER

V. EXPERIMENTAL RESULT

A. Performance Metric
As a measure of performance, on one hand, we used

cost for the processing and transforming to a placation as
a metric. On the other hand, we measure the executing
time and the convergence as a metric. We use PSO
embed in SPV (SPO) algorithm, PSO algorithm embed in
crossover and mutation (CM-PSO), PSO algorithm
embed in local search (L-PSO) to compare the above
metric.

B. Experimental Settings
In order to presenting the amount of communications

between tasks, we define the communication density ρ of
G (V,E) as

| |
(1) / 2

E
n n

ρ =
−

 . (12)

 Where |E| is the numbers of existing communication
between all tasks, n represents the number of the total
tasks and n(n-1)/2 indicates the maximal number of
communication demand in the all tasks. The other factors
are the number of tasks (n) and the number of processors
(m).
 The testing data set is produce randomly. We

normalize the processor's CPU and memory, restricting
between 1 and 250, the task data is among 1 and 10000,
the communication data is between 50 and 10000, and the
bandwidth varies form 10 to 1000. In the following part,
all of the experiments are tested on an Intel(R)
Pentium(R) Dual CPU E2160 1.80 GHz with 1G RAM.
The parameter is as following: size of swarm is 30, self-
recognition coefficient c1 is 1.49445, social coefficient c2
is 1.49445, and inertial weight w is 0.729 [25], crossover
is 0.8 and mutation is 0.01.

C. Comparative Performance
As PSO algorithm and hybrid PSO algorithm are

stochastic and a result may be different for a particular
problem, each problem runs 10 times and gets the
average value. Moreover, the fitness function is the main
source providing the leading the target to optimal solution,
the performance test based on the minimum cost obtained
when the algorithm has run exact numbers, here, we set
the iterations is 10000. Table Ⅲ shows the average result
using the three algorithms. From the table Ⅲ, we can get
the conclusion: three algorithm performance is almost the
same when the task is little, here is 7 tasks and 5
processors, the CPU's running time have a little
difference, the PSO is small, the L-PSO is middle and the
CM-PSO is the big; when the task is 25 and the processor
is 12, the cost of PSO is little better than the other two,
but the running time of the L-PSO is almost three times
the PSO and the CM-PSO is nearly two time PSO; when
the task is 70, processor is 25, in terms of cost and
running time, PSO performance is the best, especially in
the running time.
D. Convergence Analysis

From Fig. 3 we can see that the each iteration time of
PSO is the least in the PSO, CR-PSO and L-PSO when

the task=25, processor=12 and ρ =0.75. This represents
that PSO algorithm runs faster than other algorithm. Fig.
4 describes the completion time of the three algorithm
when task=70, processor=25 and ρ =0.75. It also display
that PSO usually had a better average completion time
value than the other two. From Fig. 3 and Fig.4 we can
get the conclusion that the PSO algorithm runs faster than
CR-PSO and L-PSO. The algorithm running time is a
very important technology parameter which represents
the time of having found the optimal resolution of an
application. To some extent it determines good or bad of
an algorithm and it is especially important to a time
intensive application. Fig. 5 gives the cost of the three
algorithms on 25 tasks, ρ =0.75 and 12 processors; it
represents the L-PSO convergence quicker than the other
two, but the cost of the L-PSO is better than the other
algorithm. Fig. 6 shows the cost of PSO, CR-PSO and the
L-PSO about 70 tasks, ρ =0.75 and 25 processors; it
represents the PSO both converging faster and optimizing
better than CR-PSO and L-PSO. As PSO algorithm not
only runs faster, but also save the processing time in the
large and complex conditions. In cloud computing there
are many tasks and processors, so PSO algorithm suits
more to cloud computing. Moreover, the spending time of
the PSO algorithm is shorter than that of other two
algorithms.

VI. CONCLUSIONS

In many different domains, in order to improve the
efficiency the optimizing task scheduling is necessary. In
cloud computing resources distribute all over the world,
and the data usually is bigger and the bandwidth often is
narrower, these problems are more important. In this
paper, we presented the task scheduling optimizing
method in cloud computing, and we formulate a model
for task scheduling to minimize the cost of the problem
and solved it by a PSO algorithm. By comparing and
analyzing particle swarm algorithm with crossover,
mutation and local search algorithm based on particle
swarm, we propose the particle swarm algorithm embed
in SPV, which represents better performance.
Experimental result manifests that the PSO algorithm
both gains optimal solution and converges faster in large
tasks than the other two. Moreover, running time is
shorter than the other two too. It is obvious that PSO is
more suitable to cloud computing.

In future work, our research is to center on the energy
efficiency and service availability in cloud computing
system. We aim to improve task scheduling optimization
and make optimization policy to optimize not only the
efficiency, but also the energy and service level
agreement.

ACKNOWLEDGMENT

The authors would like to thank the anonymous
reviewers for their valuable comments and suggestions
that have improved the presentation, quality and
correctness of this paper.

JOURNAL OF NETWORKS, VOL. 7, NO. 3, MARCH 2012 551

© 2012 ACADEMY PUBLISHER

Figure 3. 25 tasks and 12 processors Figure 4. 70 tasks and 25 processors

Figure 5. 25 tasks and 12 processors Figure 6. 70 tasks and 25 processors

Table Ⅲ. The average costs and the used CPU times by PSO, CM-PSO and L-PSO over different problems.

n m ρ

PSO CM-PSO L-PSO
Cost CPU

time
Cost CPU

time
Cost CPU

time
7 5 0.25 204.09 5.63 204.09 14.51 204.09 8.62
 0.5 205.13 5.86 205.13 14.77 205.13 8.90
 0.75 260.70 6.14 260.70 15.01 260.70 9.17

25 12 0.25 1131.9 11.08 1129.8 20.28 1134.2 47.18
 0.5 1206.1 14.27 1210.3 23.57 1211.8 52.78
 0.75 1179.9 17.34 1182.8 26.64 1169.6 58.94

70 25 0.25 3369.8 38.69 3437.5 51.53 3385.2 329.96
 0.5 2477.9 64.81 2497.8 76.39 2493.4 407.10
 0.75 4378.0 92.47 4513.8 102.81 4526.2 478.89

REFERENCES
[1] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S.

Patil, M.-H. Su, K. Vahi,M. Livny, Pegasus: mapping
scientific workflows onto the grid, in: European Across
Grids Conference, Nicosia, Cyprus, 2004, pp. 11–20.

[2] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E.A. Lee,Scientific workflow management and
the Kepler system, Concurrency and Computation: Practice
and Experience (2005) 1039–1065.

[3] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M.
Greenwood, T. Carver, K.Glover, M.R. Pocock, A. Wipat, P.

Li, Taverna: a tool for the composition and enactment of
bioinformatics workflows, Bioinformatics 20 (2004) 3045–
3054.

[4] E. Deelman, A. Chervenak, Data management challenges of
data-intensive scientific workflows, in: IEEE International
Symposium on Cluster Computing and the Grid, (2008)
687–692.

[5] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E.A. Lee, Scientific workflow management and
the Kepler system, Concurrency and Computation: Practice
and Experience (2005) 1039–1065.

[6] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, andI.
Brandic. Cloud computing and emerging it platforms:

552 JOURNAL OF NETWORKS, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER

Vision,hype, and reality for delivering computing as the
5thutility. Future Generation Computer Systems,(2009)
25(6):599–616 .

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. H. Lee, D. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. Above the Clouds: A Berkeley View of
Cloud Computing
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS
-2009-28.html

[8] I. Foster, Z. Yong, I. Raicu, S. Lu, Cloud computing and
grid computing 360-degree compared, in: Grid Computing
Environments Workshop, GCE'08, (2008) 1–10.

[9] T. Kosar, M. Livny, Stork: Making data placement a first
class citizen in the grid, in: Proceedings of 24th
International Conference on Distributed Computing
Systems, ICDCS 2004,(2004) 342–349.

[10] J.M. Cope, N. Trebon, H.M. Tufo, P. Beckman, Robust
data placement in urgent computing environments, in:
IEEE International Symposium on Parallel &Distributed
Processing, IPDPS 2009, (2009)1–13.

[11] T. Xie, SEA: A striping-based energy-aware strategy for
data placement in RAID-structured storage systems, IEEE
Transactions on Computers 57 (2008) 748–761.

[12] M. Mustafa Rafique a,∗ , Ali R. Butt a, Dimitrios S.
Nikolopoulos b,c, A capabilities-aware framework for
using computational accelerators in data-intensive
computing, J. Parallel Distrib. Comput. 71 (2011) 185–
197

[13] L. Wang, J. Tao, M. Kunze, A.C. Castellanos, D. Kramer,
W. Karl, Scientific cloud computing: Early definition and
experience, in: 10th IEEE International Conference on
High
Performance Computing and Communications,
HPCC'08,(2008) 825–830.

[14] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, M.
Tsugawa, Science clouds:Early experiences in cloud
computing for scientific applications, in: First Workshop
on Cloud Computing and its Applications, CCA'08,(2008)
1–6.

[15] S. Pandey, A. Barker, K. K. Gupta, R. Buyya ,Minimizing
Execution costs when using globally distributed cloud
services,2010 24th IEEE International Conference on
Advanced Information Networking and Applications

[16] Y. C. Lee, A. Y. Zomaya, Rescheduling for reliable job
completion with the support of clouds, Future Generation
Computer Systems 26 (2010) 1192_1199

[17] D Yuan, Y Yang, X Liu, A data placement strategy in
scientific cloud workflows, Future Generation Computer
Systems(2010)1200-1214

[18] E. Vineka, P. P. Beranb, E. Schikutab, A dynamic multi-
objective optimization framework for selecting distributed
deployments in a heterogeneous environment , Procedia
Computer Science 4 (2011) 166–175

[19] V.M. Lo, "Task assignment in distributed systems", PhD
dissertation, Dep. Comput. Sci., Univ. Illinois, Oct. 1983.

[20] G. Gharooni-fard, F. Moein-darbari, H. Deldari and A.
Morvaridi, Procedia Computer Science, Volume 1, Issue
1, May 2010,Pages1445-1454 ,ICCS 2010.

[21] L. Zhang, Y.H. Chen, R.Y Sun, S. Jing, B. Yang. " A task
scehduling algorithm based on PSO fro Grid Computing",
International Jouranal of Computational Intelligence
Research.(2008),pp.37-43.

[22] A. Salman. "Particle swarm optimization for task
assignment Problem". Microprocessors and Microsystems,
November 2002. 26(8):363–371.

[23] Kennedy J, Eberhart RC (1995), Particle swarm

optimization. In:Proceedings IEEE Int’l. Conf. on Neural
Networks, vol. IV,1942– 1948.

[24] M. Fatih Tasgetiren, Yun-Chia Liang, Mehmet Sevkli, and
Gunes Gencyilmaz, “Particle swarm optimization and
differential evolution for single machine total weighted
tardiness problem,” International Journal of Production
Research, (2006) 4737-4754

[25] Y Shi, R C Eberhart. Empirical study of particle swarm
optimization. Proc. IEEE Congr. Evol. Comput.
(1999)1945-1950.

Lizheng Guo was born in Kaifeng,
China. He has completed his Maser’s
degrees in the College of Computer
Science and Technology of Chongqing
University of Posts and
Telecommunications, Chongqing, China
in 2005. He is currently pursuing his
Ph.D. in Pattern Recognition and
Intelligent System at the College of
Information Science and Technology,

Donghua University, Shanghai, China. His research interests
include distributed system, intelligent computing, cloud
computing and grid computing.

Shuguang Zhao received the B.S.
degree in information processing from
Xidian University, Xi’an, China, 1986,
the M.S. degree in signal and
information processing and Ph.D. degree
in circuit and system from Xidian
University, Xi’an, China, in 1992 and
2003, respectively. He is currently
Professor at Donghua University. His

research interests include evolvable hardware and intelligent
signal processing.

Shigen Shen received his B.S. degree
in Mathematics Education from Zhejiang
Normal University, Jinhua, China in
1995, his M.S. degree in Computer
Science and Technology from Zhejiang
University, Hangzhou, China in 2005. He
is currently pursuing his Ph.D. in Pattern
Recognition and Intelligent System at the
College of Information Science and
Technology, Donghua University,

Shanghai, China. His current research interests include Wireless
Sensor Networks and Game Theory.

Changyuan Jiang was born in
Anqing, China. He has completed his
Master’s degrees in the College of
Computer Science and Technology of
Nanjing Normal University, Nanjing,
Jiangsu, China, in 2005. He is currently
a Ph.D candidate in the College of
Information Science and Technology of
the Donghua University, Shanghai,
China. His research interests include
distributed system, intelligent

computing.

JOURNAL OF NETWORKS, VOL. 7, NO. 3, MARCH 2012 553

© 2012 ACADEMY PUBLISHER

