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This paper presents a multi-level Taguchi-factorial two-stage stochastic programming (MTTSP) approach
for supporting water resources management under parameter uncertainties and their interactions.
MTTSP is capable of performing uncertainty analysis, policy analysis, factor screening, and interaction
detection in a comprehensive and systematic way. A water resources management problem is used to
demonstrate the applicability of the proposed approach. The results indicate that interval solutions
can be generated for the objective function and decision variables, and a variety of decision alternatives
can be obtained under different policy scenarios. The experimental data obtained from the Taguchi’s
orthogonal array design are helpful in identifying the significant factors affecting the total net benefit.
Then the findings from the multi-level factorial experiment reveal the latent interactions among those
important factors and their curvature effects on the model response. Such a sequential strategy of exper-
imental designs is useful in analyzing the interactions for a large number of factors in a computationally
efficient manner.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The world has been turning its attention to the increasingly
critical issue of water scarcity. According to the United Nations,
approximately 700 million people in 43 countries are now suffer-
ing from water scarcity, and it is projected that 1.8 billion people
will be living in countries or regions with absolute water scarcity
by 2025 (UN-Water, 2006). The limited availability of water leads
to a growing competition for water use among municipality, indus-
try and agriculture in many countries. As rapid population growth
and economic development, the competition for limited supplies
will intensify, resulting in tensions and conflicts among water
users. Therefore, wise decisions are desired to make best use of
limited water resources. Optimization techniques have played an
important role in helping decision makers (DMs) allocate and man-
age water resources in an effective and efficient way. However, a
variety of uncertainties exist in water resources management sys-
tems and their latent interactions may further intensify the com-
plexity in the decision-making process. As a result, conventional
optimization methods such as linear programming, quadratic
programming and integer programming would become ineffective
when a variety of uncertainties exist in system components.

Over the past few years, a number of optimization methods
have been proposed for dealing with uncertainties in water
resources management (Abdelaziz, 2012; Bravo & Gonzalez,
2009; Chung, Lansey, & Bayraksan, 2009; Gaivoronski, Sechi, &
Zuddas, 2012; Guo, Huang, Zhu, & Wang, 2010; Li, Huang, Nie, &
Liu, 2008, 2009; Qin, Huang, Zeng, Chakma, & Huang, 2007;
Teegavarapu, 2010; Wang & Huang, 2011, 2012). Among these
methods, two-stage stochastic programming (TSP) has the ability
to take corrective actions after a random event occurs (Birge &
Louveaux, 1988, 1997). In a TSP model, two groups of decision vari-
ables can be distinguished. The first-stage decision must be made
prior to the realization of random variables, and then the second-
stage decision can be determined after a random event takes place.
The recourse action in the second stage is effective in minimizing
the risk of infeasibility as a result of the first-stage decision. TSP
can thus be used to tackle uncertain information presented as
probability distributions and make decisions in a two-stage fash-
ion. However, TSP has difficulty in dealing with uncertainties when
the sample size is too small to generate distribution functions.
Even if such distributions are available, addressing them in large-
scale optimization models can be challenging.
ization
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Interval-parameter linear programming (ILP) is efficient in
coping with uncertain information expressed as interval numbers
with known lower and upper bounds but unknown distribution
functions (Huang, Baetz, & Patry, 1992). Moreover, ILP can reflect
interval information in the coefficients of the objective function
and constraints, as well as in the solutions of the objective-function
value and decision variables, which is helpful for DMs to interpret
and adjust decision schemes according to practical situations. Con-
sequently, an integration of TSP and ILP is desired to enhance the
capability of addressing uncertainties in different formats (Huang
& Loucks, 2000).

The aforementioned optimization methods mainly focus on
addressing parameter uncertainties that exist in various formats
such as intervals, fuzzy sets and probability distributions. How-
ever, they can hardly reveal the potential interactions among
model parameters in the optimization model. It is thus necessary
to explore the correlated parameters and their contributions to
the variability of the model output. Factorial designs have been
widely used to study the interaction effects of two or more factors
on a response variable (Lewis & Dean, 2001; Lin, Huang, Lu, & He,
2008; Mabilia, Scipioni, Vegliò, & Tomasi Scianò, 2010;
Onsekizoglu, Bahceci, & Acar, 2010; Qin, Huang, & Chakma, 2008;
Wang & Huang, 2013; Wang, Huang, & Veawab, 2013; Zhou,
Huang, & Yang, 2013). All these studies used the most popular
two-level factorial design which assumed that the response was
linear over the range of the factor levels chosen. However, many
real-world problems involve the nonlinear relationships between
the factors and the response. The two-level factorial experiment
cannot address the nonlinear effects. Thus, the multi-level factorial
design is proposed to detect the curvature in the response function
(Box & Behnken, 1960; Wu & Hamada, 2009; Xu, Chen, & Wu,
2004). As the number of factors increases, the multi-level factorial
design would become infeasible from a time and resource view-
point due to a large number of experimental runs required.

To reduce the number of experiments to a practical level when
there are many factors to be studied, factor screening is necessary
to identify a few factors that have significant effects on the response
and remove those insignificant ones at the early stage of the facto-
rial experiment. The concept of Taguchi’s orthogonal arrays is an
effective and efficient means of identifying the importance of fac-
tors through performing only a small subset of the experimental
runs (Adenso-Díaz & Laguna, 2006). Nevertheless, it can hardly pro-
vide information on how these factors interact. Thus, Taguchi’s
orthogonal arrays can be employed to screen out the important fac-
tors from a large number of potential factors in a computationally
efficient way. Then the multi-level factorial design can be used to
analyze the interactions among those important factors. Combining
the Taguchi’s orthogonal arrays with the multi-level factorial
design is thus a sound strategy to study the potential interactions
for a large number of factors at multiple levels.

The objective of this study is to develop a multi-level Taguchi-
factorial two-stage stochastic programming (MTTSP) approach
through incorporating ILP, TSP, Taguchi’s orthogonal arrays, and
the multi-level factorial design within a general framework. MTTSP
is capable of analyzing parameter uncertainties and their
interactions in a comprehensive and systematic manner. A water
resources management problem will be used to illustrate the
applicability of the proposed method.
2. Methodology

2.1. Interval-parameter two-stage stochastic programming

Consider a problem wherein a water manager is responsible for
allocating water to multiple users, with the objective of
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maximizing the total net benefit through identifying optimized
water-allocation schemes. As these users need to know how much
water they can expect so as to make sound plans for their activities
and investments, a prescribed amount of water is promised to each
user according to local water management policies. If the promised
water is delivered, it will bring net benefits to the local economy;
otherwise, the users will have to obtain water from other sources
or curtail their expansion plans, resulting in economic penalties
(Maqsood, Huang, & Yeomans, 2005).

In this problem, a first-stage decision on the water-allocation
targets must be made before unknown seasonal flows are realized.
When the uncertainty of seasonal flows is uncovered, a second-
stage recourse decision can be made to compensate for any adverse
effects that may have been experienced as a result of the first-stage
decision. Thus, this problem under consideration can be
formulated as a TSP model (Huang & Loucks, 2000):

Max f ¼
Xm

i¼1

NBiTi � E
Xm

i¼1

CiSiQ

" #
ð1aÞ

subject to:

Xm

i¼1

ðTi � SiQ Þ 6 Q ; ð1bÞ

SiQ 6 Ti 6 Ti max; 8i; ð1cÞ
SiQ P 0; 8i: ð1dÞ

where f is total net benefit ($); NBi is net benefit to user i per meter3

of water allocated ($/meter3); Ti (first-stage decision variable) is
allocation target for water that is promised to user i (meter3); E[�]
is expected value of a random variable; Ci is loss to user i per meter3

of water not delivered, Ci > NBi ($/meter3); SiQ (second-stage deci-
sion variable) is shortage of water to user i when the seasonal flow
is Q (meter3); Q (random variable) is total amount of the seasonal
flow (meter3); Timax is maximum allowable allocation amount for
user i (meter3); m is number of water users; i is index of water
users, i = 1, 2, 3, with i = 1 for the municipality, i = 2 for the indus-
trial sector, and i = 3 for the agricultural sector.

To solve the above problem through linear programming, the
distribution of Q must be approximated by a set of discrete values
(i.e. random seasonal flow can be discretized into three interval
numbers representing low, medium and high flows with each
having a probability of occurrence). Letting Q take values qj with
probabilities pj (j = 1, 2, . . . , n), we have:

E
Xm

i¼1

CiSiQ

" #
¼
Xm

i¼1

Ci

Xn

j¼1

pjSij

 !
ð2Þ

Thus, model (1) can be reformulated as follows:

Max f ¼
Xm

i¼1

NBiTi �
Xm

i¼1

Xn

j¼1

pjCiSij ð3aÞ

subject to:

Xm

i¼1

ðTi � SijÞ 6 qj; 8j; ð3bÞ

Sij 6 Ti 6 Ti max; 8i; j; ð3cÞ
Sij P 0; 8i; j: ð3dÞ

where Sij denotes the amount by which the water-allocation target
(Ti) is not met when the seasonal flow is qj with probability pj.

Model (3) is effective in tackling uncertainty in water availabil-
ity (qj) presented as probability distributions. However, uncertain-
ties may also exist in other parameters such as net benefits (NBi),
penalties (Ci), and water-allocation targets (Ti). In real-world
problems, it is difficult to generate probability distributions for
i-factorial two-stage stochastic programming approach for characterization
urces management. European Journal of Operational Research (2014), http://

http://dx.doi.org/10.1016/j.ejor.2014.07.011
http://dx.doi.org/10.1016/j.ejor.2014.07.011


S. Wang, G.H. Huang / European Journal of Operational Research xxx (2014) xxx–xxx 3
these parameters with small sample sizes. Thus, ILP can be
integrated within the TSP framework to communicate uncertain-
ties in NBi, Ci, and Ti into the optimization process. This leads to
an interval-parameter two-stage stochastic programming (ITSP)
model as follows:

Max f� ¼
Xm

i¼1

NB�i T�i �
Xm

i¼1

Xn

j¼1

pjC
�
i S�ij ð4aÞ

subject to:

Xm

i¼1

T�i � S�ij
� �

6 q�j ; 8j; ð4bÞ

S�ij 6 T�i 6 Ti max; 8i; j; ð4cÞ
S�ij P 0; 8i; j: ð4dÞ

where NB�i ; T�i ; C�i ; S�ij , and q�j are interval parameters/variables.
An interval number is defined as a range with known lower and
upper bounds (Huang, 1998). For example, letting a� and a+ be
the lower and upper bounds of a±, respectively, we have
a± = [a�, a+] = {t 2 aja� 6 t 6 a+}.

2.2. Robust two-step method

To solve model (4), a robust two-step method can be used to
convert the interval-parameter linear programming problem into
two submodels that correspond to the lower and upper bounds
of the objective-function value (Fan & Huang, 2012). In model
(4), since target values T�i

� �
are considered as uncertain inputs, it

is difficult to determine whether their lower bounds T�i
� �

or upper
bounds Tþi

� �
correspond to the upper bound of the total net benefit

(Huang & Loucks, 2000). Therefore, an optimized set of target
values will be identified to achieve a maximized total net
benefit. Accordingly, let T�i ¼ T�i þ DTiyi, where DTi ¼ Tþi � T�i , and
yi(0 6 yi 6 1) are decision variables that are used for identifying the
optimized target values. By introducing decision variables (yi),
model (4) can thus be reformulated to:

Max f� ¼
Xm

i¼1

NB�i T�i þ DTiyi

� �
�
Xm

i¼1

Xn

j¼1

pjC
�
i S�ij ð5aÞ

subject to:

Xm

i¼1

T�i þ DTiyi � S�ij
� �

6 q�j ; 8j; ð5bÞ

S�ij 6 T�i þ DTiyi 6 Ti max; 8i; j; ð5cÞ
S�ij P 0; 8i; j; ð5dÞ
0 6 yi 6 1; 8i: ð5eÞ

In model (5), since the objective is to maximize the total net benefit,
the submodel corresponding to the lower bound of the objective-
function value (f�) can be first formulated as follows:

Max f� ¼
Xm

i¼1

NB�i T�i þ DTiyi

� �
�
Xm

i¼1

Xn

j¼1

pjC
þ
i Sþij ð6aÞ

subject to:

Xm

i¼1

T�i þ DTiyi � Sþij
� �

6 q�j ; 8j; ð6bÞ

Sþij 6 T�i þ DTiyi 6 Ti max; 8i; j; ð6cÞ
Sþij P 0; 8i; j; ð6dÞ
0 6 yi 6 1; 8i: ð6eÞ

where Sþij and yi are decision variables, and their solutions of Sþijopt

and yiopt can be obtained through solving submodel (6). The
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optimized water-allocation targets can then be determined by cal-
culating T�iopt ¼ T�i þ DTiyiopt. Based on the solutions of submodel
(6), the submodel corresponding to the upper bound of the objec-
tive-function value (f+) can be formulated as follows:

Max fþ ¼
Xm

i¼1

NBþi T�i þ DTiyiopt

� �
�
Xm

i¼1

Xn

j¼1

pjC
�
i S�ij ð7aÞ

subject to:

Xm

i¼1

T�i þ DTiyiopt � S�ij
� �

6 qþj ; 8j; ð7bÞ

S�ij 6 T�i þ DTiyiopt; 8i; j; ð7cÞ
S�ij 6 Sþijopt; 8i; j: ð7dÞ
S�ij P 0; 8i; j: ð7eÞ

where S�ij are decision variables, and the solutions of S�ijopt can be
generated through solving submodel (7). Model (5) attempts to
obtain the lower and upper bounds on the maximum total net ben-

efit f�opt ¼ f�opt; fþopt

h i
. Submodel (6) obtains the lower bound f�opt. Sub-

model (7) obtains the upper bound fþopt based on the solutions of
submodel (6). Consequently, the value of fþopt is dependent on the
value of f�opt. By combining the solutions from two submodels, the
final solutions of model (5) under the optimized water-allocation
targets can thus be obtained as follows:

S�ijopt ¼ S�ijopt; Sþijopt

h i
; 8i; j; ð8aÞ

f�opt ¼ f�opt; fþopt

h i
ð8bÞ

where Sþijopt and f�opt are the solutions of submodel (6), and S�ijopt and
fþopt are the solutions of submodel (7). Thus, the optimized water-
allocation schemes are:

A�ijopt ¼ T�iopt � S�ijopt; 8i; j: ð9Þ

To facilitate more informed decision making in water resources
management, sensitivity analysis is an indispensable tool to
investigate the importance of uncertainties in model parameters.
Conventional sensitivity analysis examines the effects of changes
in a single parameter over its range assuming no changes in all
the other parameters. Such a one-parameter-at-a-time strategy
only reveals the individual impacts of parameters on the model
response, but it has trouble detecting their latent interaction
effects. Therefore, sensitivity analysis using statistical methods is
desired for conducting a more comprehensive investigation of
the importance of model parameters affecting system
performance.

2.3. Multi-level Taguchi-factorial design

Factorial designs are the cornerstone of industrial experimenta-
tion and used extensively in industrial research and development
for process improvement, among which the multi-level factorial
design is a powerful statistical technique to study the effects of
several independent variables (factors) with multiple levels on a
dependent variable (response). As an extension of the most com-
mon two-level factorial design, the multi-level factorial design is
particularly useful when there is a curvilinear relationship
between the design factors and the response.

The most important case of the multi-level factorial design is
the 3k factorial design which consists of k factors with each at three
levels. The three levels of factors are represented as low, medium,
and high; they are often denoted by �1, 0, and +1, respectively. In
the 3k system of designs, there are 3k treatment combinations with
3k � 1 degrees of freedom between them. These treatment
-factorial two-stage stochastic programming approach for characterization
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combinations allow sums of squares to be computed for k main

effects with each having two degrees of freedom; k
2

� �
two-factor

interactions with each having four degrees of freedom;. . .; and one
k-factor interaction with 2k degrees of freedom. In general, an
h-factor interaction has 2hdegrees of freedom. Furthermore, any
h-factor interaction can be partitioned into 2h�1 orthogonal
two-degrees-of-freedom components (Montgomery, 2001). For
example, the three-factor interaction ABC can be subdivided into
four orthogonal two-degrees-of-freedom components, denoted by
ABC, ABC2, AB2C, and AB2C2, respectively. These components are
useful in constructing complex designs. Since the number of exper-
imental runs increases exponentially with the number of factors,
the 3k factorial design is too expensive to implement when there
are a large number of factors under consideration.

Therefore, factor screening is necessary to identify a short list of
important factors affecting the response when there is a long list of
possibly influential factors to be investigated. Such a screening
process generally tests only a fraction of the experimental runs
of a full factorial design, leading to a considerable reduction in
the computational effort. Taguchi’s orthogonal arrays are highly
fractional orthogonal designs proposed by Taguchi (1987), which
can help study the effects of factors on the response mean and vari-
ations in a fast and economic way. These designs can be used to
determine the main effects of factors using only a few experimen-
tal runs instead of having to test all possible combinations of the
levels of the factors in the factorial design (Taguchi, 1986). Such
a statistical technique allows for the maximum number of main
effects to be estimated in an orthogonal manner, with a minimum
number of experiments, resulting in a significant saving in the
experimental time and resources. Nevertheless, the main limita-
tion of the Taguchi method is the difficulty in detecting the poten-
tial interactions among factors due to its assumption that the
interaction effects are unimportant and can be ignored. Thus, the
concept of Taguchi’s orthogonal arrays can be employed to identify
important factors with an economic run size. Then the multi-level
factorial design involving those important factors can be used to
study their interactions. Such a sequential strategy of experimental
designs can help ease the computational burden when there are
many factors to be studied.

Fig. 1 provides an outline of the proposed methodology that
incorporates ILP, TSP, Taguchi’s orthogonal arrays, and the multi-
level factorial design within a general framework. These methods
can be classified into two categories: optimization techniques
and statistical experimental designs. The optimization techniques
can be used to conduct uncertainty analysis and policy analysis;
the statistical experimental designs can be employed for factor
screening and interaction detection. Such an integrated approach
is capable of addressing parameter uncertainties and their interac-
tions in a systematic manner.
3. Case study

3.1. Statement of problems

Uncertainty is inherent in water resources planning and man-
agement; it arises from a variety of sources, such as inadequate
information, incomplete knowledge of parameter values, incorrect
assumptions, and hydrologic variability (e.g., precipitation, stream
flow, water quality). Decisions have to be made in the face of an
uncertain future, complicating the decision-making process. Thus,
water resources planning has always required an implicit handling
of uncertainty. Over the past decades, a number of optimization
methods have been developed for dealing with uncertainties in
water resources management. These methods are effective in
Please cite this article in press as: Wang, S., & Huang, G. H. A multi-level Taguch
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addressing parameter uncertainties that exist in the objective
function and constraints; however, they cannot reflect the
potential interactions among parameters and their effects on sys-
tem performance. Actually, model parameters do not exist inde-
pendently; they may interact in significant ways, intensifying the
complexity in the decision-making process. It is thus necessary
to perform a comprehensive analysis of parameter uncertainties
and their interactions for supporting water resources management
in an uncertain and complex environment.

3.2. Overview of the study system

The following case will be used to demonstrate the applicability
of the developed approach. A water manager is responsible for
allocating water from an unregulated reservoir to three users:
municipality, industry, and agriculture. The problem under consid-
eration is how to effectively allocate limited water to multiple
users in order to achieve a maximized total net benefit. Table 1
provides maximum allowable water allocations and prescribed
water-allocation targets, as well as the related economic data
acquired from governmental reports and public surveys. The sea-
sonal flows and the associated probabilities are shown in Table 2.

3.3. Result analysis

Interval solutions could be first obtained through the ITSP
model introduced in Section 2. As shown in Fig. 2, the optimized
water-allocation schemes would be obtained in the format of inter-
vals with the lower and upper bounds. These interval solutions
stem from uncertainty in input parameters. Water scarcity would
occur if the amount of the available water is insufficient to satisfy
the promised water-allocation targets, resulting in an increasing
competition among municipality, industry and agriculture for the
limited water supply. Thus, the identification of the appropriate
water-allocation targets plays a key role in the decision-making
process. The optimized water-allocation targets to three water
users could be obtained by letting T�iopt ¼ T�i þ DTiyiopt. The solu-
tions of T�iopt indicate that the optimized water-allocation targets
would be 3.5 � 106 meter3 for the municipal use, 3.2 � 106 meter3

for the industrial use, and 4.7 � 106 meter3 for the agricultural use,
respectively. These prescribed targets would help achieve an opti-
mized total net benefit of $[324.4, 638.0] � 106. The water shortage
would be the difference between the water-allocation target and
the actual water allocation (i.e. water shortage = promised target
– water allocation) under a given stream flow condition with a
probability of occurrence. Thus, the results reveal that there would
be a water shortage [2.2, 3.2] � 106 meter3 for the industrial sector
when the stream flow is low with a probability of 20% and a water
shortage of [0, 3.4] � 106 meter3 for the agriculture sector when
the stream flow is medium with a probability of 60%. Conse-
quently, the water allocation would firstly be guaranteed for the
municipal use, secondly for the industrial use, and lastly for the
agricultural use when the water scarcity occurs. This is because
the municipal water use could bring the highest profit when its
water demand is satisfied; contrarily, it would be subject to the
highest penalty if the promised water is not delivered.

In real-world problems, policy making is crucial to the sustain-
able water resources systems planning. In this study, variations in
water-allocation targets correspond to different water resources
management policies. The ITSP framework is capable of establish-
ing an effective linkage between the water-allocation policies and
the associated economic implications. Solutions under various pol-
icy scenarios could thus be obtained by letting the water-allocation
targets T�i

� �
have different deterministic values. As shown in

Table 3, T�i ¼ T�i ði ¼ 1;2;3Þ implies that the water-allocation tar-
gets (expressed as intervals) for the municipality, industrial sector,
i-factorial two-stage stochastic programming approach for characterization
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Fig. 1. Outline of the proposed methodology.

Table 1
Water-allocation targets (106 meter3) and the related economic data ($/meter3).

User

Municipal (i = 1) Industrial (i = 2) Agricultural (i = 3)

Maximum allowable allocation (Timax) 8 8 8
Water allocation target T�i

� �
[2.7, 3.7] [3.2, 5.2] [4.7, 7.7]

Net benefit when water demand is satisfied NB�i
� �

[90, 110] [45, 55] [28, 32]

Reduction of net benefit when demand is not delivered C�i
� �

[220, 280] [60, 90] [50, 70]

S. Wang, G.H. Huang / European Journal of Operational Research xxx (2014) xxx–xxx 5

Please cite this article in press as: Wang, S., & Huang, G. H. A multi-level Taguchi-factorial two-stage stochastic programming approach for characterization
of parameter uncertainties and their interactions: An application to water resources management. European Journal of Operational Research (2014), http://
dx.doi.org/10.1016/j.ejor.2014.07.011

http://dx.doi.org/10.1016/j.ejor.2014.07.011
http://dx.doi.org/10.1016/j.ejor.2014.07.011


Table 2
Seasonal flows (106 meter3) and the associated probabilities.

Seasonal flow q�j
� �

Probability (pj) (%)

Low flow (j = 1) [3.5, 4.5] 20
Medium flow (j = 2) [8.0, 12.0] 60
High flow (j = 3) [15.0, 19.0] 20

Fig. 2. Optimized water-allocation patterns under low (L), medium (M), and high
(H) flows.
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and agricultural sector reach their lower bounds. Such a conserva-
tive policy would generate both less water shortage and less water
allocation, but a higher risk of wasting available water resources.
Contrarily, T�i ¼ Tþi ði ¼ 1;2;3Þ implies that the water-allocation
targets reach their upper bounds. Despite such an optimistic policy
would lead to more water allocation, it would face a higher risk of
system failure when the promised water is not delivered due to the
inadequate water supply. T�i ¼ Tmid

i ði ¼ 1;2;3Þ implies that the
water-allocation targets reach their mid-values, representing a
neutral water-allocation policy. From the economic point of view,
the optimistic policy would bring the highest total net benefit of
$671.6 � 106 under advantageous conditions (e.g., when the
stream flow is high), but at the same time the lowest total net ben-
efit of $175.6 � 106 under demanding conditions (e.g., when the
stream flow is low). Conversely, the conservative policy would gen-
erate the lowest upper-bound total net benefit of $559.6 � 106 and
the highest lower-bound total net benefit of $300.4 � 106, indicat-
ing a relatively low system risk. As the water-allocation policies are
directly associated with economic benefits and system-failure
risks, it is indispensable to perform the policy analysis for support-
ing water resources management under uncertainty.

To address parameter uncertainties in a thorough manner, not
only the uncertain parameters need to be incorporated into the
Table 3
Solutions (106 meter3) under different scenarios of the water-allocation targets.

T�i ¼ T�i T�i ¼ Tþi

i = 1 i = 2 i = 3 i = 1 i =

Target T�i
� �

2.7 3.2 4.7 3.7 5.2

Shortage S�ij
� �

:

j = 1 0 [1.4, 2.4] 4.7 [0, 0.2] [4.4
j = 2 0 0 [0, 2.6] 0 [0,
j = 3 0 0 0 0 0

Allocation A�ij
� �

:

j = 1 2.7 [0.8, 1.8] 0 [3.5, 3.7] [0,
j = 2 2.7 3.2 [2.1, 4.7] 3.7 [4.3
j = 3 2.7 3.2 4.7 3.7 5.2
Total net benefit f ± = $[300.4, 559.6] � 106 f ± = $[175.6, 671.6]
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optimization process, but also their potential interactions and the
consequent effects on system performance should be analyzed.
Table 4 shows all uncertain parameters in the ITSP model; they
are chosen as the factors of interest. To carry out the factorial
experiment, these factors are denoted as A, B, C, D, E, F, G, H, and
J, respectively. As all the factors are present at three levels, such
a three-level factorial design with nine factors would require
19,683 experimental runs, resulting in a tremendous computa-
tional effort. At the initial stage of the factorial experiment, an effi-
cient screening procedure is thus necessary to identify a subset of
the factors that have a significant effect on the model response and
eliminate those unimportant factors from further analysis. A full
factorial experiment can then be performed on the smaller subset
of factors. Such a sequential strategy can help achieve a remarkable
savings of the computational resources.

The concept of Taguchi’s orthogonal arrays is thus proposed as
an effective and efficient method for investigating the main effects
of the nine factors at three levels. Table 5 provides the Taguchi’s L27

(39) orthogonal array used for the multi-level factorial experiment,
as well as the corresponding optimization results. Such an orthog-
onal array design only requires 27 experimental runs for estimating
the main effects of the nine factors. The results indicate that varia-
tions of these factors would cause a noticeable difference in total
net benefits. It is thus necessary to examine their effects and ana-
lyze those dominant factors as well as their potential interactions.

Fig. 3 presents the main effects plot for the nine factors at three
levels, which is helpful in visualizing the magnitudes of main
effects of factors. In the main effects plot, the points are the means
of total net benefits at the various levels of each factor, with a ref-
erence line drawn at the grand mean of total net benefits. This plot
reveals that factor H has the greatest magnitude of the main effect
upon the total net benefit. The total net benefit would increase
from $443.7 to $516.7 � 106 and then from $516.7 to
$588.5 � 106, if the amount of the medium flow varies from its
low level of 8 to its mid-level of 10 � 106 meter3 and then from
its mid-level of 10 to its high level of 12 � 106 meter3, respectively.
This is because the medium flow has the highest probability of
occurrence (60%); any change in the amount for the medium flow
would cause a considerable variation in the total net benefit. Con-
trarily, factor J with a near-zero slope has the smallest contribution
to the variability of the total net benefit, since no water shortage
would occur and the water demands of all users would be always
satisfied when the stream flow is high.

As shown in Table 6, the effects of factors are estimated based
on the means (averages) of total net benefits. The results indicate
that factor H has the largest delta value of $144.8 � 106 in means
of total net benefits (delta value is calculated as the difference
between maximum and minimum means of total net benefits),
implying that factor H has the most significant effect on the model
T�i ¼ TðmidÞ
i

2 i = 3 i = 1 i = 2 i = 3

7.7 3.2 4.2 6.2

, 5.2] 7.7 0 [2.9, 3.9] 6.2
0.9] [4.6, 7.7] 0 0 [1.6, 5.6]

[0, 1.6] 0 0 0

0.8] 0 3.2 [0.3, 1.3] 0
, 5.2] [0, 3.1] 3.2 4.2 [0.6, 4.6]

[6.1, 7.7] 3.2 4.2 6.2
� 106 f ± = $[258.4, 636.6] � 106
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Table 4
Investigated factors at three levels.

Symbol Factor Level

Low (�1) Medium (0) High (+1)

A Net benefit to municipal user per meter3 of water allocated ($/meter3) 90 100 110
B Net benefit to industrial user per meter3 of water allocated ($/meter3) 45 50 55
C Net benefit to agricultural user per meter3 of water allocated ($/meter3) 28 30 32
D Loss to municipal user per meter3 of water not delivered ($/meter3) 220 250 280
E Loss to industrial user per meter3 of water not delivered ($/meter3) 60 75 90
F Loss to agricultural user per meter3 of water not delivered ($/meter3) 50 60 70
G Amount of low flow (106 meter3) 3.5 4.0 4.5
H Amount of medium flow (106 meter3) 8 10 12
J Amount of high flow (106 meter3) 15 17 19

Table 5
Taguchi’s L27 (39) orthogonal array and the corresponding optimization results.

Run Factor Total net
benefit ($106)

A B C D E F G H J

1 �1 �1 �1 �1 �1 �1 �1 �1 �1 409.7
2 �1 �1 �1 �1 0 0 0 0 0 451.1
3 �1 �1 �1 �1 +1 +1 +1 +1 +1 510.4
4 �1 0 0 0 �1 �1 �1 0 0 506.6
5 �1 0 0 0 0 0 0 +1 +1 548.1
6 �1 0 0 0 +1 +1 +1 �1 �1 373.8
7 �1 + 1 + 1 +1 �1 �1 �1 +1 +1 600.8
8 �1 +1 +1 +1 0 0 0 �1 �1 434.3
9 �1 +1 +1 +1 +1 +1 +1 0 0 483.2

10 0 �1 0 +1 �1 0 +1 �1 0 440.2
11 0 �1 0 +1 0 +1 �1 0 +1 462.8
12 0 �1 0 +1 +1 �1 0 +1 �1 566.6
13 0 0 +1 �1 �1 0 +1 0 +1 541.6
14 0 0 +1 �1 0 +1 �1 +1 �1 571.8
15 0 0 +1 �1 +1 �1 0 �1 0 475.4
16 0 +1 �1 0 �1 0 +1 +1 �1 620.8
17 0 +1 �1 0 0 +1 �1 �1 0 402.6
18 0 +1 �1 0 +1 �1 0 0 +1 544.4
19 +1 �1 +1 0 �1 +1 0 �1 +1 469.4
20 +1 �1 +1 0 0 �1 +1 0 �1 570.4
21 +1 �1 +1 0 +1 0 �1 +1 0 588.2
22 +1 0 �1 +1 �1 +1 0 0 �1 545.0
23 +1 0 �1 +1 0 �1 +1 +1 0 637.6
24 +1 0 �1 +1 +1 0 �1 �1 +1 443.8
25 +1 +1 0 �1 �1 +1 0 +1 0 652.4
26 +1 +1 0 �1 0 �1 +1 �1 +1 544.0
27 +1 +1 0 �1 +1 0 �1 0 �1 545.6
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response. Contrarily, factor J has the smallest delta value of
$3.1 � 106 in means of total net benefits and thus has little influ-
ence on the response. The significance of all the factors affecting
the economic objective is determined according to the delta values.
Accordingly, factors A, B, C, E, F, G, and H are identified as the dom-
inant factors, while factors D and J are unimportant factors and
thus removed from further factorial experiments.

Based on the results of the Taguchi’s orthogonal array experi-
ment, a full factorial experiment involving those important factors
was performed to analyze their interaction effects on system per-
formance. Such a three-level factorial design with seven factors
requires 2187 experimental runs for estimating the joint effects
of factors. The half-normal plot is a graphical technique used to
help distinguish between important and unimportant effects of
factors; it is particularly useful for analyzing the unreplicated fac-
torial experiments. Fig. 4 presents the half-normal plot of effects,
which is a plot of the absolute values of effect estimates against
their cumulative normal probabilities. Effects that lie along the
straight line are deemed to be insignificant, whereas prominent
effects lie away from the line. Accordingly, the important effects
that emerge from this analysis are the main effects of factors H,
A, F, B, E, G, and C, as well as the interaction effects of factors F
and H, E and F, B and F, and B and E.
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The interaction plot for factors F and H at three levels is pre-
sented in Fig. 5. This plot shows the total net benefit versus the
amount of the medium flow for each of the three different agricul-
tural costs. It reveals that the change in the total net benefit differs
across the three levels of factor H depending on the level of factor
F, implying that an interaction between these factors occurs that
their effects are dependent upon each other. The highest total
net benefit of $600.7 � 106 would be obtained when factor F is at
its low level and factor H is at its high level. Fig. 6 presents the full
interactions plot matrix for factors E, F, and H at three levels, in
which each pair of factors provides two panels. This plot reveals
that the three lines of factor F would decline as factor E varies
across its low, medium, and high levels, whereas the dashed line
representing the high level of factor F decreases faster than the
other two, implying an interaction between this pair of factors.
Although all the three lines of factor E would go up at different
rates when factor H increases across its low, medium, and high lev-
els, their interaction does not seem as strong as it does for factors E
and F.
4. Discussion

In this study, the water allocation problem was also solved
using the factorial two-stage stochastic programming (FTSP)
method presented by Zhou and Huang (2011). Table 7 shows the
effects of significant factors and their interactions identified
through FTSP. The results reveal that there are more significant
two-factor interactions (e.g., factors A and C and factors E and H)
identified by using FTSP compared to using the MTTSP approach.
For example, the results of FTSP indicate that the interaction
between the loss to industrial user per meter3 of water not deliv-
ered and the amount of medium flow has a significant contribution
to the variability of the total net benefit, while such an interaction
has little effect on the economic objective in the light of the results
of MTTSP. This is because FTSP used a 29�3 fractional factorial
design in which two-factor interaction effects might be con-
founded with other two-factor interactions, resulting in difficulty
in separating two-factor interactions from one another. In compar-
ison, MTTSP used a full factorial design that allowed a clear estima-
tion of all two-factor interactions, avoiding the misleading
information. Moreover, the Taguchi’s orthogonal array used in
MTTSP is a highly fractional orthogonal design that can identify
the main effects of factors using only a small number of experi-
mental runs (27 runs in this study), leading to a remarkable saving
in the experimental time and resources.

Besides, FTSP used the most popular two-level factorial design.
Fig. 7 presents the full interaction plot matrix for factors E, F, and H
at two levels. This plot reveals that the model response is linear
over the range of the factor levels. However, the nonlinear relation-
ships between the factors and the response inherently exist in
-factorial two-stage stochastic programming approach for characterization
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Fig. 3. Main effects plot.

Table 6
Response table for means of total net benefits ($106).

Level Factor

A B C D E F G H J

1 479.8 496.5 507.3 522.4 531.8 539.5 503.5 443.7 515.3
2 514.0 516.0 515.6 513.8 513.6 512.6 520.7 516.7 515.3
3 555.2 536.5 526.1 512.7 503.5 496.8 524.7 588.5 518.4
Delta (Max–Min) 75.4 39.9 18.9 9.7 28.3 42.7 21.1 144.8 3.1
Rank 2 4 7 8 5 3 6 1 9

Note: Factors in bold are identified as the significant factors.
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many practical applications. The two-level factorial experiment
can hardly reveal the nonlinear effects. In comparison, MTTSP is
able to detect the curvature in the response function (see Fig. 6).

In this study, MTTSP is capable not only of communicating
uncertainties presented in the formats of intervals/probability
Please cite this article in press as: Wang, S., & Huang, G. H. A multi-level Taguch
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distributions into the optimization process and reflecting them in
the resulting solutions, but also of establishing an effective linkage
between the prescribed water-allocation policies and the associ-
ated economic implications, providing an in-depth policy analysis.
On the other hand, MTTSP employed the Taguchi’ orthogonal array
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Fig. 6. Full interaction plot matrix for factors E, F, and H at three levels.

Table 7
Effects of significant factors and their interactions.

Factor Standardized effect Sum of squares Contribution (%)

A 73.87 87320.25 17.92
B 43.70 30555.04 6.27
C 18.83 5670.09 1.16
E �30.20 14592.64 3.00
F �40.50 26244.00 5.39
G 22.27 7938.81 1.63
H 139.00 309100.00 63.46
AC 4.90 384.16 0.079
BE �4.87 380.25 0.078
BF �3.37 182.25 0.037
EF �4.52 327.61 0.067
EH 4.17 278.89 0.057
FH 15.72 3956.41 0.81
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Fig. 7. Full interaction plot matrix for factors E, F, and H at two levels.
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as a screening technique to identify important factors with an
economic number of experimental runs, and then performed a full
factorial experiment involving those important factors to investi-
gate their potential interactions. Such a sequential strategy of
experimental designs is useful in analyzing the interactions for a
large number of factors of interest in a computationally efficient
manner. Moreover, the multi-level factorial design used in MTTSP
is capable of detecting the curvature in the factor-response rela-
tionship, while it is impossible to reflect such a nonlinear effect
Please cite this article in press as: Wang, S., & Huang, G. H. A multi-level Taguchi
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with the two-level factorial design due to its assumption of linear-
ity over the range of factor levels. In real-world problems, MTTSP is
thus helpful for decision makers to identify the dominant factors
and their latent interactions in the decision-making process, as
well as to make sound decisions of water allocation under com-
pound and interactive uncertainties.
5. Conclusions

In this study, a MTTSP approach was developed for the analysis
of parameter uncertainties and their interactions. MTTSP incorpo-
rated ILP, TSP, Taguchi’s orthogonal arrays, and the multi-level fac-
torial design within a general framework. Such an integrated
approach was capable of performing uncertainty analysis, policy
analysis, factor screening, and interaction detection in a systematic
and computational efficient manner.

A water resources management problem was used to demon-
strate the applicability of the proposed method. Interval solutions
were generated for the objective function and decision variables so
that decision makers could identify desired water-allocation
schemes with maximized total net benefits. A variety of decision
alternatives were also generated under different scenarios of
water-allocation targets, which could help decision makers to for-
mulate appropriate water resources management policies accord-
ing to practical situations. The results obtained from the
Taguchi’s orthogonal array experiment were helpful in identifying
the significant factors affecting the means of total net benefits.
Then the findings from the factorial experiment revealed the
potential interactions among those important factors at three lev-
els and their curvature effects on the model response, as well as the
valuable information hidden beneath their interrelationships.

This study is a first attempt to support water resources manage-
ment by using the proposed MTTSP approach. This approach would
also be applicable to other environmental management problems
in the presence of correlated parameters. The two-stage stochastic
program in this study was solved based on approximating the
underlying probability distribution by a discrete set of representa-
tive scenarios, and decisions were then made in two stages. Such a
two-stage decision procedure is thus incapable of dealing with
large-scale optimization problems that often involve a multi-stage
decision process. Therefore, one potential extension of this
research is to develop a multi-stage stochastic program for tackling
large-scale dynamic decision problems. Nevertheless, the
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computational complexity for solving the stochastic program
would be getting worse with an increasing number of stages in
combination with a large number of possible random outcomes
at each stage. It is thus desired to integrate multi-stage stochastic
programming with other optimization techniques such as Benders
Decomposition for solving large-scale stochastic optimization
problems in a computationally efficient manner.
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