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Abstract

Novelty detection is the identi-cation of new or unknown data or signal that a machine learning system is not aware of
during training. Novelty detection is one of the fundamental requirements of a good classi-cation or identi-cation system
since sometimes the test data contains information about objects that were not known at the time of training the model. In
this paper we provide state-of-the-art review in the area of novelty detection based on statistical approaches. The second
part paper details novelty detection using neural networks. As discussed, there are a multitude of applications where novelty
detection is extremely important including signal processing, computer vision, pattern recognition, data mining, and robotics.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Detecting novel events is an important ability of
any signal classi-cation scheme. Given the fact that
we can never train a machine learning system on all
possible object classes whose data the system is likely
to encounter, it becomes important that it is able to
di?erentiate between known and unknown object in-
formation during testing. It has been realised in prac-
tice by several studies that the novelty detection is an
extremely challenging task. It is for this reason that
there exist several models of novelty detection that
have been shown to perform well on di?erent data. It
is clearly evident that there is no single best model for
novelty detection and the success depends not only on
the type of method used but also statistical properties
of data handled.
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Several applications require the classi-er to act
as a detector rather as a classi-er, that is, the re-
quirement is to detect whether an input is part of the
data that the classi-er was trained on or it is in fact
unknown. This technique is useful in applications
such as fault detection [11,14,30,53], radar target
detection [7], detection of masses in mammograms
[54], hand written digit recognition [55], Internet
and e-commerce [34], statistical process control [22],
and several others. Recently, there has been an in-
creased interest in novelty detection as a number
of research articles have appeared on autonomous
systems based on adaptive machine learning. How-
ever, only a very few surveys have appeared, e.g.
[40]. Much of earlier work and interest in novelty
detection sprung from the study of control systems.
High integrity systems could not use the traditional
classi-cation method for a number of reasons; abnor-
malities are very rare or there may be no data that
describes the fault conditions. Novelty detection of-
fered a solution to this problem by modelling normal
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data and using a distance measure and a threshold
for determining abnormality. In recent years novelty
detection has been used in a number of other
applications especially signal processing and image
analysis (e.g. biometrics). In these applications the
problem becomes more complicated with multiple
classes, high dimensionality, noisy features and quite
often not enough samples. As such, novelty detection
methods have tried to keep up with these problems to
o?er solutions that can be used in the real world. In
this paper we review some of the currently used meth-
ods on novelty detection using statistical approaches.
There are several important issues related to novelty

detection. We can summarise them in terms of the
following principles.

(a) Principle of robustness and trade-o5: a nov-
elty detection method must be capable of robust
performance on test data that maximises the
exclusion of novel samples while minimising
the exclusion of known samples. This trade-o?
should be, to a limited extent, predictable and
under experimental control.

(b) Principle of uniform data scaling: in order to as-
sist novelty detection, it should be possible that
all test data and training data after normalisation
lie within the same range [49].

(c) Principle of parameter minimisation: a novelty
detection method should aim to minimise the
number of parameters that are user set.

(d) Principle of generalisation: the system should be
able to generalise without confusing generalised
information as novel [55].

(e) Principle of independence: the novelty detection
method should be independent of the number of
features, and classes available and it should show
reasonable performance in the context of imbal-
anced data set, low number of samples, and noise.

(f) Principle of adaptability: a system that recog-
nises novel samples during test should be able to
use this information for retraining [47].

(g) Principle of computational complexity: a num-
ber of novelty detection applications are online
and therefore the computational complexity of a
novelty detection mechanism should be as less as
possible.

In this survey, we study a number of approaches
to novelty detection and remark on how well these

studies address the above principles. Each approach
has a number of di?erent methods and we detail of the
important studies in these areas.

2. Statistical approaches

Statistical approaches are mostly based on mod-
elling data based on its statistical properties and using
this information to estimate whether a test samples
comes from the same distribution or not. The tech-
niques used vary in terms of their complexity [40].
The simplest approach can be based on constructing a
density function for data of a known class, and then as-
suming that data is normal computing the probability
of a test sample of belonging to that class. The prob-
ability estimate can be thresholded to signal novelty.
Another simple model can simply -nd the distance of
the sample from a class mean and threshold on the
basis of how many standard deviations away the sam-
ple is [36,37]. The distance measure itself can be Ma-
halanobis or some other probabilistic distance [57].
Manson et al. [35] also discuss the choice of features
based on their ability for novelty detection. In such a
scheme a novelty index is used to rank features on their
ability for detecting novelty. Another simple statisti-
cal scheme for outlier rejection is based on the use of
box-plots [33]. The box plot is a well-known display
of the -ve-number summary (lower extreme, lower
quartile, median, upper quartile, upper extreme). Box
plots are most suitable for exploring both symmetric
and skewed quantitative univariate data, but they can
also identify infrequent values from categorical data.
The data (univariate) is sorted in ascending order and
the outliers are ranked according to the frequencies
of univariate outlier values. Samples with the highest
frequencies are discarded. A predetermined percent-
age of the worst examples can be discarded. Knorr et
al. [31] suggest that an object O in a data set T is a
distance-based (DB) outlier if at least fraction p of
the objects in T lie at a distance greater than D from
O. More speci-cally, based on a standard multidimen-
sional indexing structure, they execute a range search
with radius D for each object O. Once there are at
least M neighbours in the D-neighbourhood they stop
the search and declare O a non-outlier otherwise O is
rejected as an outlier. The technique is based in other
words on a nearest neighbour scheme such as [26]
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and [21]. The main contribution of this study is that
the authors present a solution for fast indexing and
search in large multidimensional databases. Several
advanced statistical modelling techniques also exist
for novelty detection. For example, one can use mix-
ture models for modelling complex data distributions
or using a hidden markov model for novelty detection
as discussed later.
Two main approaches exist to the estimation

of the probability density function, parametric and
non-parametric methods [15]. The parametric ap-
proach assumes that the data comes from a family
of known distributions, such as the normal distri-
bution and certain parameters are calculated to -t
this distribution. However, in most real world situ-
ations the underlying distribution of the data is not
known therefore such techniques have little practical
importance. In non-parametric methods the overall
form of the density function is derived from the data
as well as the parameters of the model. As a result
non-parametric methods give greater Iexibility in
general systems. One of the most intuitive and widely
used non-parametric technique is histogram analysis.
However, the shape of the density estimate can vary
signi-cantly, depending on the choice of the origin,
which is often purely arbitrary. Things get even worse
when the density estimation of multivariate data is
required. A better way of estimating density functions
is kernel methods. They are similar to histograms
in that they are built up of a number of individual
kernels centred on the sampled data points. A param-
eter h determines the width of the kernel and how
smooth the estimation becomes. The kernel function
is usually a symmetric probability density function,
being non-negative over its domain and should inte-
grate to unity over the de-ned range. The value of
the density at some arbitrary value x is dependent on
the distance between the observed data and the shape
of the kernel. Clearly, the smoothing parameter h
plays a central role on the estimation of the density.
Choosing a global value h might result in a density
function that does not adequately describe the data,
particularly in regions of low data density (various
techniques may be employed to locally adjust h).
Parametric methods for estimating the probability

density function have sometimes limited use since
they require extensive a priori knowledge of the prob-
lem. Non-parametric statistical approaches make no

assumption on the form of data distribution and are
therefore more Iexible (though more computationally
expensive). Density estimation in these cases can be
performed using either nearest neighbour methods or
Parzen window method. Once more, a probability es-
timate of the test sample belonging to the distribution
can be obtained which can be thresholded. These ap-
proaches have limitations with regards to the choice of
parameters (neighbours used, smoothing parameters),
and diJculty in tackling noise in data. We discuss the
parametric and non-parametric approaches in detail in
Sections 2.1 and 2.2, respectively.

2.1. Parametric approaches

Parametric approaches make an assumption that
data distributions are Gaussian in nature and they
can be modelled statistically based on data means
and covariance. A number of studies have theoret-
ically investigated novelty detection for such data.
Of particular importance is the trade-o? between the
recognition rate and the proportion of data rejected
[24]. The error rate and the reject rate are commonly
used to describe the performance level of a pattern
recognition system. Because of uncertainty and noise
inherent in any pattern recognition task, errors are
generally unavoidable. The option to reject is intro-
duced to safeguard against excessive misclassi-cation.
However, the trade-o? between the errors and rejects
is seldom one to one. Whenever the reject option is
exercised, some outliers of known classes are also re-
jected. Chow [8] studied the trade-o? in detail to -nd
an optimal threshold for rejection. It is obvious that a
recognition rule is optimum if for a given error rate
(error probability) it minimizes the reject rate (reject
probability). The author showed that the optimum
rule is to reject a pattern if the maximum of the a pos-
teriori probabilities is less than some threshold. The
error and reject trade-o? were derived for the Bayes
optimum recognition system with an option to reject.
Hansen et al. [24] extended the work of Chow by

introducing the role of classi-er con-dence in its de-
cisions. Intuitively a rejection rule is based on the
amount of con-dence a classi-er has on a given clas-
si-cation. The novelty rejection scheme used in this
study was based on an ensemble of neural network
classi-ers employing a consensus scheme. The pattern
is classi-ed in the category with the majority of votes.
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If the number of votes the winning class receives is �,
then a threshold is placed on �=N where N is the num-
ber of classi-ers. If �=N is below the threshold then
the pattern is rejected.
In most recognition tasks, the underlying proba-

bility distributions of the patterns are not completely
known. Hence, the optimal threshold as given by
Chow is no longer very useful. Fumera et al. [21]
tackle this problem. Their method provides an al-
ternative, which works well even if the a posteriori
probabilities are a?ected by errors. The authors sug-
gest using multiple thresholds, one for each class.
The threshold is placed on the maximum a posteri-
ori probability just as in Chow [8] but in this case
each class has a di?erent threshold. Their results us-
ing nearest neighbour and neural network classi-ers
show that the scheme outperforms the one based on
parametric assumption.
Another improvement to Chow’s original study was

made by Foggia et al. [19]. In pattern recognition prob-
lems the idea of combining various experts with the
aim of compensating the weakness of each single ex-
pert, has been widely investigated. The main problem
is that the combination rule should be able to solve the
conIicts i.e. when the experts disagree. In these cases
the experts’ -nal decision may be unreliable and it
might be desirable to reject such patterns for more so-
phisticated processing. Foggia et al. extend the work of
Cordella et al. [9] and De Stefano et al. [51], applying
their technique to multi expert systems. The technique
is also similar to that of Hansen [24]. In this paper, a re-
ject option for the MES architecture is de-ned, which
drops the assumption of knowing the exact values of
a posteriori probabilities. The reject option is de-ned
for an MES architecture with the Bayesian combin-
ing (BC) rule. The BC rule estimates the a posteriori
probability that the input sample belongs to each class
and selects the class with the highest probability. A
value between 0 and 1 can be calculated for these two
reasons with values near 1 characterizing reliable clas-
si-cation and values near 0 indicating unreliable clas-
si-cations. These two parameters can be combined in
several ways and then thresholded for rejection. The
threshold is computed by maximizing a function that
measures the MES classi-cation e?ectiveness in the
considered application domain.
Some approaches have suggested the use of ar-

ti-cially generated anomalies that can improve the

novelty detection performance of a system. Wei et al.
[58] suggest how arti-cial anomalies (novelties) can
be injected into the training data to help the learner
discover a boundary around the original data. To gen-
erate arti-cial anomalies close to the known data, a
useful heuristic is to randomly change the value of one
feature of an existing example while leaving the other
features unaltered. Sparse regions are characterized by
infrequent values of individual features. To amplify
sparse regions, they proportionally create more arti--
cial anomalies around them. The technique only works
if the novel class (anomalies) do not overlap with the
known classes. After the random anomalies are gener-
ated, a classi-cation takes place and random anomalies
that are misclassi-ed as known are removed from the
data. The process is repeated until a satisfactory size
of stable random anomalies data is created. This sys-
tem was tested on a network intrusion detection task.
It was found that better performance is obtained if the
training data is augmented with data of the anomalous
classes. It was also found that the number of random
anomalies generated is not critical for the system per-
formance.
We now discuss some of the advanced methods

of parametric statistical novelty detection including
probabilistic/GMM approaches (Section 2.1.1), Hid-
den Markov models (Section 2.1.2) and hypothesis
testing (Section 2.1.3). These approaches are more
complex than the use of linear schemes of novelty de-
tection [17] and they are primarily aimed at data den-
sity estimation using robust statistics.

2.1.1. Probabilistic/GMM approaches
Gaussian mixture modelling (GMM) models gen-

eral distributions estimating the density using fewer
kernels than the number of patterns in the train-
ing set. The parameters of the model are chosen by
maximising the log likelihood of the training data
with respect to the model. This is done using opti-
misation algorithms such as conjugate gradients or
reestimation techniques such as the EM algorithm.
However, GMM su?er from the curse of dimen-
sionality in the sense that if the dimensionality of
the data is high, a very large number of samples
are needed to train the model. A number of studies
have used GMM for novelty detection as described
below.
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Roberts and Tarassenko [45] developed a robust
method for novelty detection, which aims to mini-
mize the number of heuristically chosen thresholds in
the novelty decision process. The novelty detection
method used is similar to those of Barnett and Lewis
[2], Bishop [4], Tarassenko [53], Parra et al. [41], Tax
and Duin [55], Desforges et al. [15], Brotherton et
al. [5], Tarassenko et al. [54], Yeung and Chow [63],
and others, based on the density function of the train-
ing data estimated with a GMM. The parameters of
the GMM are estimated with the EM algorithm. The
major contribution of this paper is that the algorithm
decides to add a Gaussian unit based on some auto-
matic criterion that determines the number of Gaus-
sians. The growth decision is based on monitoring the
smallest Mahalanobis distance between a training vec-
tor and each Gaussian within the network. The growth
threshold is initially set to 0 and it is progressively
increased. The algorithm ensures that every Gaussian
has seen each sample in the training data at least once.
The maximum growth threshold found by the algo-
rithm is also used as the novelty threshold. If the max-
imum posterior probability of a test vector is below
this threshold then it is rejected as a novelty. The tech-
nique was tested on a medical signal-processing task
to detect epileptic seizures. A total of 195 Gaussian
kernels were grown by the system exhibiting very high
performance rates.
Tarassenko [53] applies his novelty detection tech-

nique to the detection of masses in mammograms.
Mammography is a well-suited problem for novelty
detection as often the question is whether a mass ex-
ists in the mammogram or not, and examples of ab-
normal tissue are often scarce compared to examples
of normal tissue. The idea is to build a model of nor-
mality of the training data using only normal examples
and then compare the test patterns against this model.
An assumption is made that the abnormalities are uni-
formly distributed outside the boundaries of normality.
The description of normality is made using the uncon-
ditional probability density estimation of the training
data. If a test vector falls in a region of input space
with a density under a pre-determined threshold then
the test vector is considered to be novel. This tech-
nique is very similar to Bishop [4], except that it tack-
les regions in the training space with low density but
with legitimate training objects. If such regions exist,
setting a global novelty threshold will fail to reject

all novel cases but will reject a lot of normal cases.
The solution presented here is the implementation of
a local novelty threshold that depends on the density
of the data in that region of input space. The space
is partitioned using the k-means algorithm to several
parts according to their input space and the density
function is calculated independently within each par-
tition. The precise number of partitions is not critical.
The authors considered two ways of density estima-
tion, Gaussian mixture models and Parzen windows
and found that Parzen windows work much better due
to the unavailability of a large number of training sam-
ples. The technique was tested on 120 images from the
MIAS database. In all of the 40 cases the mass-like
structures were correctly identi-ed as novel except in
two cases. Unfortunately a large number of false pos-
itives were also discovered.
A similar approach is taken by Tarssenko et al. [54]

for jet engine fault detection. The input data is initially
pre-processed and a simpler model of the distribution
of the input space is chosen in a transformed space.
The transform is such that the Euclidean distance in
the transformed space is equal to the Mahalanobis dis-
tance in the original space. The transformation is done
using two di?erent methods, component-wise normal-
isation and the whitening transform. The distribution
of normal vectors in the transformed space is approxi-
mated by a small number of spherical clusters selected
using the k-means clustering algorithm (k ¡ 5). Each
cluster radius is calculated as the average distance be-
tween the feature vectors belonging to the cluster and
the cluster centre. The novelty test is based on thresh-
olding the shortest normalised distance of the test
vector to a cluster centre. The distance to the nearest
cluster mean is normalised by the radius of the clus-
ter in order to account for varying data densities in
di?erent regions of the input space. If the test vector
is suJciently far from all cluster centres then it is in
a region of space with very few known training sam-
ples and hence it is deemed to be novel. The novelty
threshold is set so as to accept all training samples.
This method was tested on jet engine fault detection
and compared with Parzen windows method in previ-
ous study [53]. The method described slightly outper-
forms Parzen windows for the component-wise nor-
malisation transformation.
Parra et al. [41] present a new scheme of den-

sity estimation. Novelty detection is performed by
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-nding the underlying density of the training data us-
ing this novel technique. A hyper-sphere is drawn to
separate known regions from unknown regions. Novel
objects should ideally fall outside this hyper-sphere.
An appropriate threshold separates known from new
test objects. The strength of this study is its density
estimation technique that can be used with non-linear
distributions or distributions for which no a priori in-
formation is available. The factorization of a joint
probability distribution was formulated as a minimal
mutual information criterion under the constraint of
volume conservation. Volume conservation is imple-
mented by symplectic maps. A Gaussian upper bound
leads to a computationally eJcient optimisation tech-
nique, which in turn facilitates density estimation. The
method was tested for motor fault detection. The data
was very high dimensional and a combination of linear
PCA and symplectic maps was used to reduce the di-
mensionality. The novelty detection method then gave
as good or slightly better results when compared to
various other methods including MLP, RBF, nearest
neighbour and others.
Nairac et al. [38,39] present a method for novelty

detection based on a probabilistic framework applied
to those tasks when only a limited amount of train-
ing data is available. It is important that the dimen-
sionality of the data is kept relatively small because
in order for a good probability model to be estimated,
the number of inputs must be signi-cantly larger than
the number of dimensions. Because of the small num-
ber of samples in the training set, a GMM cannot be
used. Instead, a normalising transformation is applied
to the whole of the training data and a small num-
ber of spherical basis functions are then -tted to the
transformed data. The authors have used two normal-
ising methods; component-wise normalisation and a
whitening transformation. The placement of the basis
functions is done by a k-means algorithm with Eu-
clidean distance in the transformed space. For nov-
elty detection, the average distance between the data
vectors and their corresponding basis function in the
training data is computed. The novelty of a test vec-
tor is assessed by computing the shortest normalised
distance to a kernel centre. This is a locally de-ned
measure of novelty, since it is based on the distance
of the nearest kernel and it is normalised by the aver-
age distance of the data within that kernel. A valida-
tion set is used to set the novelty threshold which is

set as the most ‘novel’ point in the training set. The
method was tested on a fault detection task in a jet en-
gine. The component-wise normalisation gives much
better results in recognising previously unseen nor-
mal engine data although the whitening transform is
slightly better in recognising abnormal data. The au-
thors also suggest using a Monte Carlo simulation to
generate synthetic data to facilitate estimating the data
density of the training data when not enough samples
are present.
Tax and Duin [55] describe three methods of re-

jecting outliers based on the data density distribution.
Data objects in low probability areas are rejected us-
ing these methods [2,4,53]. The techniques are based
on di?erent methods of computing data density: mix-
tures of Gaussians, Parzen windows and a nearest
neighbour-based estimator. These methods for nov-
elty detection are then compared with a method based
on classi-er instability introduced in this study. Using
the mixtures of Gaussians method and Parzen win-
dows, the density distribution of the training data is
found. When the di?erence between the new object
and the mean of the training objects is larger than
three standard deviations in the training distribution,
the new object is rejected. With the nearest neighbour
method, a slightly di?erent approach is followed to
-nd the probability density. The distance of the new
object and its nearest neighbour in the training set is
found and the distance of this nearest neighbour and
its nearest neighbour in the training set is also found.
The quotient between the -rst and the second distance
is taken as indication of the novelty of the object. The
new method of novelty detection introduced here is
based on classi-er instability. They use a linear clas-
si-er based on maximizing Fisher’s criterion and ex-
tending the two-class classi-er for multiple classes.
They take bootstrap samples of the same size as the
original training set and train several classi-ers. The
outputs of these classi-ers di?er. The variation in the
outputs indicates the diversity between di?erent train-
ing sets. A large variation indicates that the object is
hard to classify. This variation is then thresholded.
The results show that this new method only outper-
forms the distribution probability methods when only
a small training set is available. In all other cases,
and especially when there is an abundance of training
data, Parzen windows method is the best. However,
the drawback of using Parzen windows is that a large
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number of samples are required for a proper estima-
tion and the width parameter  needs to be user-set.
For the Gaussian case, the problem is selecting the
correct number of kernels required which is often in-
tuitive. The system was tested on hand written digits
with good success.
Roberts [43,44] proposes extreme value theory

(EVT) for novelty detection that concerns abnormally
low or high values in the tails of data distributions.
As more data is observed, the value of this extreme
data changes. Knowledge of such statistics is useful
in such tasks as novelty detection, outlier removal or
for rejecting classi-cation or regression of patterns
that lie away from the expected statistics of some
training data set. A lot of work has been done previ-
ously in this area for data sets that are known to be
pure i.e. data sets that contain patterns from only one
class, e.g. [4,5,41,53]. These methods can be used in
cases where data for the normal case is abundant and
easily obtainable whereas examples for the abnormal
case are rare and very expensive to obtain such as
in medical and fault detection domains. However,
these methods become very sensitive in those cases
where the normal case contains very few examples of
the abnormal class. These examples are not enough
for classi-cation but enough to inIuence the density
distribution estimation of the normal class by -tting
abnormal data thus making the detection of abnormal
cases very problematic. EVT forms representations
for the tails of distributions. Fisher and Tippett [18]
showed that if the distribution function over a data
point is to be stable as the number of samples tends to
in-nity then it must weakly converge under a positive
aJne transform. The second key theorem of Fisher
and Tippett states that if the distribution is a non-
degenerate limit distribution for normalised maxima
then it can take only one of three forms. The -rst of
these forms is referred to as Gumbel distribution, and
used by Roberts [43,44]. His research is ultimately
concerned with samples drawn from a distribution
whose maxima distribution converges to the Gumbel
form. This distribution gives a probability of observ-
ing some extreme value and the parameters can be
determined using a Monte-Carlo simulation. A Gaus-
sian mixture model (GMM) is used to estimate the
distribution of the data, hence the EVT probability
can be used directly as the EVT distribution is derived
from the same range of data that the GMM is -tted

on. However, only the component closest to the data
point concerned (in the Mahalanobis sense) is used
to calculate the EVT probability as this dominates
the EVT statistics. The EM algorithm is used to esti-
mate the parameters of the GMM using the minimum
length coding to penalize models with higher com-
plexity. The technique was tested on a tremor and an
epilepsy data set with the objective of discriminating
between normal and abnormal behaviour as well as
on a noise removal task in an image (salt and pepper
noise). The technique exhibited very good perfor-
mance on all three tasks without the need of setting
novelty thresholds that plague other techniques based
on statistical novelty detection.
Yamanishi et al. [59] present SmartSifter (SS), an

outlier detection system from the viewpoint of statis-
tical learning theory, which works in data mining to
detect fraud, network intrusion, network monitoring,
etc. The work is focused on outlier detection based on
unsupervised learning of the information source. Ev-
ery time a datum is input, it is required to evaluate how
large the datum has deviated compared to a normal
pattern. SS uses a probabilistic model as representa-
tion of an underlying mechanism for data generation.
The probability density over the domain of categori-
cal variables is found using a histogram and a -nite
mixture model is employed for each histogram cell to
represent the probability density over the domain of
continues variables. Every time a datum is input, an
on-line learning algorithm is employed to update the
model. The authors have developed the sequentially
discounting Laplace estimation for learning the his-
togram density over the categorical domain and the
sequentially discounting expectation and maximizing
for learning the -nite mixture for the continues do-
main. SS gives a score to each datum on the basis
of the learned model indicating how much the model
has changed after learning. A high score means that
the datum is an outlier. According to the authors, the
novel features of SS include the fact that SS is adap-
tive to non-stationary data. This is useful in the cases
when drifting sources of time-series data are tackled.
Added to that, a score calculated by SS has a clear
statistical and information theoretic meaning. While
in other works heuristics such as cost or distances
such as Mahalanobis, etc. are used to describe outliers,
SS de-nes a score for a datum based on how much
the model has shifted after learning it. Finally, SS is
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computationally inexpensive and it can deal with both
categorical and continues variables. The system was
successfully tested on the network intrusion database,
KDD Cup, 1999.
Spence et al. [50] independently developed a class

of models for probability distributions of images called
hierarchical image probability (HIP) models. HIP con-
structs a tree-structured graph of the dependencies be-
tween hidden variables at di?erent scales, and uses
mixtures of multivariate Gaussians to model the local
distributions of vectors of features. The hidden vari-
ables are similar to Markov random -elds (MRF). The
method is applied to mammographic images to reject
those that contain cancerous regions given a set of
normal images as training data. Due to the tree struc-
ture, the belief network for the hidden variables is rel-
atively straightforward to train with an EM algorithm.
The expectation step can be performed directly. The
expectation is weighted by the probability of a label
or a parent–child pair of labels given the image. Once
the expectations are computed, the normal distribu-
tion makes the M step tractable. Detecting novel ex-
amples can be useful in a CAD system for generating
con-dence measures on the CAD output and identify-
ing data that could be useful for future training of the
model. The HIP model’s generative structure enables
novel examples to be identi-ed by thresholding the
log-likelihood of the models. The system was tested
on mammography images but no extensive results are
shown nor a comparison is made with competing sys-
tems. In addition, the authors do not explain how the
novelty threshold is selected or how critical it is to the
system performance.
Almost all statistical approaches dealing with nov-

elty detection are based on modelling the density of
the training data and rejecting test patterns that fall
in regions of low density. However, in order for such
techniques to work the training data itself needs to be
either free of outliers or the outliers to be known. The
most common data descriptor is the Gaussian mix-
ture model (GMM). Lauer [32] detail a method that
works when the training data is corrupted with an un-
known number of outliers. This approach is more ro-
bust against outliers so it can tolerate a small number
of them in the training data. To calibrate the algorithm,
classi-ed validation patterns are needed or a rough es-
timate of the proportion of outliers in the training data.
They start with the presumption that the training data

contains a small number of outliers. They model the
pattern distribution as the composition of a big per-
centage of normal patterns and a small proportion of
corrupted patterns. If � is the proportion of anoma-
lous patterns, PN is the distribution of normal patterns
and PO is the distribution of anomalous patterns then
the distribution of the whole training set is given as:
P(x)=(1−�)PN (x)+�PO(x). The value � can be in-
terpreted as the prior probability for outlying patterns
and the modelling is called the “mixture alternative”.
The learning task can now be decomposed into three
steps: (a) estimate P(x) from the given training data;
(b) decompose P(x) into PN (x) and PO(x), and (c)
decide whether x is an outlier given the probabilities
PN (x), PO(x) and the prior �. The second step is very
diJcult since there is no knowledge of anomalous
patterns or their number. In addition, the distribution
PO(x) cannot be estimated reliably due to the small
number of outliers in the training data. Therefore, the
second step cannot be performed directly, and instead,
an assumption on the distribution PO(x) is made and
the proportion �, and PN (x) is estimated on the basis
of that. The estimation of PN (x) is equivalent to the
determination of the distribution’s parameters. The us-
age of GMM is considered here and the EM algorithm
is employed to estimate the parameters. The approach
is run with di?erent values of �. The parameter � can
be optimised to resample the expected proportion of
outliers. In this respect, � is interpreted as a parameter
of the algorithm that controls the sensitivity against
anomalous patterns. The systemwas tested on arti-cial
datasets of various complexities and a real database of
medical data with patients carrying rare diseases. The
results were compared with the traditional approach to
novelty detection using data densities but without pro-
viding for outliers in the training set. This approach
outperforms the traditional approach.
Hickinbotham and Austin [27] describe a novelty

detection method based on Gaussian mixture mod-
els (GMM) for sensor fault detection. The structural
health of airframes is often monitored by analysing the
frequency of occurrence matrix (FOOM) produced af-
ter each Iight. Unfortunately, these FOOMs also get
corrupted through time and corrupted FOOMs need
to be -ltered out. There are two classes of sensor
fault. The -rst is a random addition of counts and
the second is a shift in the response of a sensor to
the load it monitors. Noise distortion is independent
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of the nature of the Iight. They search for noise using
the mean and variance of each cell in the FOOMs. By
setting a threshold it is possible to count the number of
cells whose value was “unlikely” using the Gaussian
measure of probability. A suitable threshold can be
set experimentally. For the second problem it is nec-
essary to reduce the dimensionality of the input data.
The authors used the eigenface algorithm to achieve
this reduction. After the dimensionality of the train-
ing data is reduced, the authors model the distribution
of FOOM data using a Gaussian basis function neu-
ral network. The EM algorithm is used to estimate the
parameters of the GMM. The GMM provides a prob-
ability density function which forms the basis of the
novelty measure N . It is useful to scale N so that its
value lies between 0 and 1. A threshold is placed on
N reject patterns with low probability belonging to
the mixture model. The experimental results showed
good performance rejecting faulty FOOMs but a large
number of healthy FOOMs were also rejected. The
authors state that this is probably due to the high vari-
ability of strain events between Iights. It is therefore
anticipated that the addition of more data will correct
this problem.
Novelty detection in textual data based applications

has also generated considerable interested in the past
[1]. Topic detection and tracking (TDT), or novelty
detection, is a variant of the traditional classi-cation
problem to allow the classi-cation of new classes.
In TDT new topics emerge often which means that
the classi-er has to expand its seto? classes continu-
ously. The authors cluster the unlabelled documents
using a multinomial naTUve Bayes classi-er estimat-
ing the parameters using the EM algorithm. The esti-
mated probabilities are used to classify the unlabelled
documents to one of the known classes or a novel
class. In a novelty detection task, the parameter esti-
mation of newly identi-ed classes is unreliable due to
a complete lack of data. The authors propose an ag-
glomeration of the classes into hierarchy, with each
node formed recursively by pooling the data by its
children. Then they use shrinkage to improve these
estimates. Shrinkage linearly interpolates the param-
eter estimates of each leaf in the hierarchy with the
parameter estimates of the leaf’s ancestors. As an al-
ternative to the EM algorithm, the authors use deter-
ministic annealing (DA) for clustering. DA is based
on probabilistic and information-theoretic principles

that can be used to build a hierarchy and avoids many
poor locally optimal solutions that can trap the EM
algorithm. By constraining the entropy, they implic-
itly smooth the surface on which EM is hill climbing,
thus reducing the number of local optima in which EM
might get trapped. To build the hierarchy, the algo-
rithm starts with in-nite temperature so that no mat-
ter how many classes EM might assume, all parame-
ter estimates converge to the same value. Thus, there
is e?ectively only one class and it becomes the root
of the hierarchy. As the temperature is lowered, the
system undergoes phase transitions at which the e?ec-
tive number of clusters grows by splitting one node
in the hierarchy into two children. The approach is
extended to on-line novelty detection by assuming a
hierarchy obtained either by existing data or a priori
knowledge and determining for each subsequent doc-
ument whether it is the -rst to report on a given topic
or not. If the document is most likely in one of the
new nodes then the document is labelled as new. Sim-
ilarly, Hansen et al. [25] discuss the role of Gaussian
mixture modelling for textual data and novelty detec-
tion. The main purpose of this study is to demonstrate
how well known techniques for signal/data analysis
can also be used for textual information.

2.1.2. Hidden Markov models (HMM)
HMMs are stochastic models for sequential data

[16]. A given HMM contains a -nite number of unob-
servable (hidden) states. State transitions are governed
by a stochastic process to formMarkov chains. At each
state, some state-dependent events can be observed.
The emission probabilities of these observable events
are determined by a probability distribution, one for
each state. To estimate the parameters of an HMM for
modelling normal system behaviour, sequences of nor-
mal events collected from normal system operation are
used as training data. An expectation-maximization
(EM) algorithm is used to estimate the parameters.
Once an HMMhas been trained, when confronted with
test data, probability measures can be thresholded for
novelty detection.
Yeung et al. [64] describe the use of HMMs for

novelty detection for the application of intrusion
detection based on pro-ling system call sequences
and shell command sequences (computer security).
They present two main approaches. The -rst one is
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based on hidden Markov models (HMM). Given a
trained HMM, the sample likelihood of an observed
sequence with respect to the model can be computed
with the forward or backward algorithm. A threshold
on the probability can discriminate between nor-
mal and abnormal behaviour. The second technique
used is even simpler. The probability distribution
of normal system behaviour observed over some
time is modelled. A simple occurrence frequency
distribution is used for this purpose. The behaviour
of the system being monitored is modelled in the
same way. An information-theoretic measure known
as cross-entropy is used to measure how dissimilar
the two distributions are. A threshold can determine
whether the observed behaviour is abnormal. A val-
idation set is used to determine the threshold. In the
case of HMM, the threshold was chosen to be the
minimum likelihood among all training sequences.
For the second model, a cross-entropy value was com-
puted between the entire training set and each trace
in the training set. The threshold was chosen to be the
maximum cross-entropy. The information-theoretic
technique outperformed the HMM approach in all
experiments. However, the HMM model is bet-
ter suited for intrusion detection based on system
calls.

2.1.3. Hypothesis testing
A simple statistical technique for novelty detection

can be based on determining whether the test sam-
ple(s) comes from the same distribution as training
data or not. Ruotolo and Surace [46] use this approach
using a t-test to -nd damaged beams. The approach
described here starts by taking n1 measurements of
the -rst nf natural vibration frequencies of the struc-
ture at the virgin stage i.e. as soon as the structure is
built. After that, they periodically take n2 measure-
ments of the same natural frequencies and use a t-test
to compare n1 and n2. If the test shows signi-cant
di?erence between the two sets of measurements then
damage is present. The approach was tested on a case
study involving a continuous beam. The experimen-
tal data of the undamaged and damaged beam was
obtained running a -nite element program where the
cracks are simulated. The test was performed at 0.05
and 0.01 signi-cance levels and showed promising
results.

2.2. Non-parametric approaches

Non-parametric approaches do not make any as-
sumption on the statistical properties of data. Here we
consider three approaches namely, nearest neighbour
based density estimation, Parzen density estimation
and string matching approaches.

2.2.1. kNN based approaches
The k-nearest neighbour algorithm is another tech-

nique for estimating the density function of data [40].
This technique overcomes some of the problems of
Parzen window in that it does not require a smoothing
parameter. Instead, the width parameter is set as a re-
sult of the position of the data point in relation to other
data points by considering the k-nearest patterns in
the training data to the test pattern. The problem with
this technique is that for large sized datasets, a large
number of computations have to be performed. For
novelty detection the distribution of normal vectors
is described by a small number of spherical clusters
placed by the k-nearest neighbour technique. Novelty
is assessed by measuring the normalised distance of
a test sample from the cluster centres. A number of
studies have used such an approach to novelty detec-
tion as detailed below.
Hellman [26] used the nearest neighbour (NN) clas-

si-er for rejecting patterns with higher risk of being
misclassi-ed. This was in the same spirit as Chow
[8] who used a threshold on the a posteriori proba-
bilities of a Bayes optimum recognition system re-
jecting patterns with low probability. Chow however
assumed that for a given data, a priori probabilities
and conditional probability density are known. In most
practical applications however these statistics are un-
known and have to be inferred from a set of labelled
examples. The advantage of this approach is that it
makes no assumptions concerning these underlying
statistics. Moreover, Cover and Hart [10] have shown
that as the number of training samples tends to in-n-
ity the nearest neighbour risk is no greater than twice
the Bayes risk, regardless of the underlying statistics.
Hellman explained that using the single NN there is
not enough information to reject on some samples and
not on others. More information is necessary and it is
given by considering two NNs. If both come from the
same class then the pattern is classi-ed otherwise it is
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rejected. Hellman showed that going from the single
NN to the new rule, the increase in reject rate is twice
the decrease in probability of error. Thus, if errors are
at least twice as costly as rejects, the new rule always
has lower total cost than the single NN rule. This rule
can be extended to examine k NNs and classify only
when all the neighbours agree. This approach is very
conservative and hence the author proposed an alter-
native: examine the k NNs and if all neighbours agree
classify the test pattern otherwise reject it. It has to be
said here that the author does not claim this to be a
novelty detection approach, but merely a method for
rejecting patterns with high misclassi-cation risk. It
can however work for novelty detection if the novel
classes induce high confusion in the classi-er; other-
wise the novel classes will be erroneously classi-ed
to one of the training classes.
Guttormsson et al. [23] present a novelty detection

method applied to rotor fault detection. The training
data is -rst subjected to simple outlier removal to en-
sure pureness. Any pattern that lies more than three
standard deviations from the average is removed from
the set. For novelty detection, a surface is imposed
around the set of healthy signals. If a new signal falls
outside this surface it is deemed to be novel. Surfaces
that can be placed around the healthy points include
a spherical boundary, an elliptical boundary, a rectan-
gular boundary formed by the extrema of the data, or
min-max surface and nearest neighbour boundaries. In
the -rst two methods, a new pattern is compared to the
centre of either the hyper-sphere using the Euclidean
distance or the ellipse using the Mahalanobis distance.
For the min–max technique, the smallest possible box
containing all the healthy data is used. The dimensions
of the box are determined by the minima and max-
ima of the signature signals. The nearest neighbour
novelty detector allows for more general data topol-
ogy. Here, minimum Euclidean distances are found
between each point and its closest neighbour. The dis-
tance proportional to the maximum of these distances
is then used as a decision parameter. Every incoming
point is compared to every point in the healthy set. If
the new point is at a greater distance from each of the
healthy points than the decision parameter then a nov-
elty is declared. The radius of the hyper-sphere and the
ellipse controls the trade-o? between novelty detec-
tion and false alarms. Similarly the ball drawn around
each training point in the nearest neighbour method

and the min–max parameters in the hyper-box meth-
ods increase the method’s sensitivity to novelty. The
experimental results showed that the elliptical surface
is the most suitable for novelty detection.
A number of techniques model the density of the

training data and use it for novelty detection, e.g.
[2,4,5,15,41,53–55,64]. This requires a large number
of samples to overcome the curse of dimensionality.
In fact most other novelty detection techniques re-
quire a large amount of data to form the ‘normal’ class
especially in high dimensions. The simplest model
when just a little amount of data is available is the uni-
modal normal distribution. Tax and Duin [56] suggest
modelling the probability density of the data with a
unimodal normal distribution and threshold the prob-
ability density accepting 95% of the data placing a
threshold on the Mahalanobis distance. Instead of
modelling the complete probability density, an in-
dication can be obtained by comparing distances.
This method is based on the local density of the test
object and the nearest neighbour in the training set.
The distance between the test pattern and its nearest
neighbour in the training data is found along with the
distance of the neighbour and it’s own nearest neigh-
bour. The quotient between the two distances is an
indication of novelty. The Euclidian distance is used
for this purpose. This method is very useful for dis-
tributions with relatively fast decaying probabilities.
The techniques were tested on both real and arti-cial
data and found to be very useful when very little
amount of training data exist (less than -ve samples
per feature).
Jiang et al. [29] propose a two-phase clustering

algorithm for outlier detection based on a modi-ed
k-means algorithm and a minimum spanning tree
(MST). The k-means algorithm is modi-ed as to
calculate the minimum distance between any pair of
cluster centres. If the distance of a pattern and its
closest cluster is larger than this distance, then the
pattern is assigned to a new cluster. In the extreme
case, each pattern will form its own cluster and there-
fore so an upper limit kmax is de-ned. When kmax is
reached, two nearest clusters are merged. The cluster
centres de-ned with the modi-ed k-means algorithm
are regarded as nodes, which are used to form an
MST based upon the distance between every two
nodes. After the MST is constructed, the longest edge
of a tree is removed from the forest and it is replaced
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with two newly obtained sub trees. The small clusters
(the tree with less number of nodes) are selected and
regarded as outliers. Three di?erent datasets were
used to compare this technique with the traditional
k-means clustering algorithm. In all of their exper-
iments, the new technique outperformed baseline
techniques tested. The datasets used include the iris
data, sugar cane breeding data and e-mail log data.
Yang and Liu [60] describe two approaches to nov-

elty detection in document classi-cation: linear least
squares -t (LLSF) and k-nearest neighbour (k-NN)
classi-er approach. The k-NN algorithm is very sim-
ple. The k nearest neighbours of a test pattern are
found in the training set. The categories of the k near-
est neighbours are used to weight the category candi-
dates. The similarity score of each neighbour is used
as a weight. If several neighbours share the same cat-
egory, then the per-neighbour weights of that cate-
gory are added together, and the resulting weighted
sum is used as the likelihood score of that category
with respect to the test pattern. A threshold set using
cross-validation can be applied to determine whether
a test pattern is suJciently ‘novel’ to be rejected.
In LLSF, a multivariate regression model is auto-
matically learnt from the training data and its cat-
egories. By solving a linear least-squares -t on the
training pairs (input–output) of vectors, one can ob-
tain a matrix of regression coeJcients. The solution
matrix de-nes a mapping from an arbitrary pattern
to a vector of weighted categories. By sorting these
category weights, a ranked list of categories is ob-
tained for the pattern. By thresholding on these cate-
gory weights, category assignments can be obtained.
Each category has a speci-c threshold determined us-
ing cross-validation. A minimum on each threshold
can be imposed for novelty detection and pattern re-
jection.
Yang et al. [62] describe a very simple novelty

detection method applied to document classi-cation.
Training data from old events is used to learn use-
ful statistics for the prediction of new (novel) events.
Their approach consists of the following steps: clas-
sifying documents into broad topics each of which
consists of multiple events, identifying named enti-
ties, optimising their weight relative to normal words
for each topic, and computing a stop-word list per
topic. Finally, they measure the novelty of a new doc-
ument conditioned on the system-predicted topic for

that document. The algorithm is very simple. When a
new document arrives, it is compared with all the doc-
uments available. If its nearest neighbour in its past
has a cosine similarity score below a threshold, then
the document is labelled as novel meaning that it is the
-rst story of a novel event otherwise it is labelled as
old and added to the history. The threshold is set using
cross-validation. The algorithm works at two-levels.
At the -rst level, a classi-er determines the broad topic
of the arrived document and at the second level the
novelty detector decides if the document describes a
new event or an old event. The method was applied
to a benchmark document database and showed very
good performance. The technique is very simplistic
and will probably fail in most other domains that ex-
hibit high complexity between the various objects. It is
however an interesting approach to novelty detection.

2.2.2. Parzen density estimation
Parzen windows method [16] can be used for

non-parametric data density estimation. Yeung and
Chow [63] follow a well-established novelty detec-
tion approach, based on estimating the density of
the training data and rejecting patterns (similar to
[4,5,15,41,53–55]). The authors apply their technique
on an intrusion detection problem. The authors have
chosen Gaussian kernel functions for two reasons.
First, the Gaussian function is smooth and hence the
density estimation also varies smoothly and second,
if a radially symmetrical Gaussian is assumed, the
function can be completely speci-ed by a variance
parameter only. The novelty threshold is set using a
separate training set called ‘threshold determination
set’ and it is applied on the unconditional probability
p(x) of a test pattern x based on the modelled distri-
bution. The technique was tested using the data set
from KDD Cup, 1999.

2.2.3. String matching approaches
String matching approaches are based on treating

training data as templates represented by a string
(vector of features) and then computing some mea-
sure of dissimilarity between training and test data.
Forrest et al. [20] present a method for solving the
problem of distinguishing self from Non-Self using
a change-detection algorithm based on the way the
natural immune system achieves the same task. The
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self-data is converted to binary format forming a
collection S. Then a large number of random strings
are generated forming a set R0. Strings from R0 are
matched against the strings in S and those that match
are eliminated. Since perfect matching is extremely
rare, the matching criterion is relaxed so as to con-
sider only r contiguous matches in the strings. Once
R0 is created, new patterns are converted to binary
and matched against R0. If a match is found, then the
new pattern belongs to Non-Self and is rejected. A
number of experiments were performed designed to
test various aspects of the detection system. The sys-
tem was tested on network intrusion tasks and found
to perform extremely well.
A further extension to this work is provided by

Dasgupta and Forrest [11] and Dasgupta and Nino
[14] whose work is biologically inspired (based on
immuno-computing concepts [52]). In our bodies nov-
elty detection is carried out by T-cells that have recep-
tors in their surface that can detect foreign proteins.
The body releases a large number of T-cells but only
allows those that do not match any of the body’s own
cells to circulate. If a T-cell matches any cell in the
body then that cell is deemed as foreign and it is dealt
with. The novelty detection technique presented here
works in a similar way. A suJcient subset of the train-
ing data is taken and the analogue values are made
discrete by sampling. Each point is assigned an integer
value and then converted to binary form. Thereafter, a
large set of strings, called detectors, is generated that
do not match the strings obtained by the training data.
If a new data point, after being encoded, matches any
of the detectors then a deviation from the normal sys-
tem behaviour is evaluated and it is treated as novel
data. The matching is performed based on a matching
threshold r that sets the number of bits that have to
match before two strings are deemed similar. One ma-
jor concern, as identi-ed by the authors, of this system
is the matching threshold. This has to be data speci-c
and its correct setting is essential for satisfactory sys-
tem performance. With larger r the detectors become
too sensitive to any novelty in the data whereas small
r might not result on a reasonable size of detector set.
This technique was tested on tool breakage detection
and the results on an average of 50 runs showed very
good performance in detecting abnormal behaviour.
Further work in this area extends the previous two

studies [12]. This paper extends the idea presented in

previous work of Dasgupta and Forrest [11] and Das-
gupta and Nino [14] to multi-class approach. Specif-
ically the non-self (unknown) space will be further
classi-ed into multiple subclasses to determine the
level of abnormality. The technique is implemented
on a computer intrusion task. In an anomaly detec-
tion system it is an acceptable assumption that the
normal operation of the system can be characterized
by a series of observations over time. Also, normal
system behaviour generally exhibits stable patterns
when observed over a period of time. This is the com-
mon ground in many fault detection systems includ-
ing those proposed by Tarassenko [53], Japcowicz
[28], Dasgupta and Forrest [11], Tarassenko [54], and
Campbell and Bennett [6]. According to Dasgupta and
Gonzalez, a naTUve approach to the task is to determine
the minimum and maximum values of the monitored
parameters and measure the abnormality as a devia-
tion from these values. However, such an approach
will not consider the fact that normality is dependent
on time and values that might be acceptable at a given
time might not be acceptable at a di?erent time. Added
to that, the notion of normality depends on the correla-
tion and interaction of various parameters (features).
In this paper, a sliding window is used for pattern char-
acterization and the normal behaviour of the system is
represented by a subspace called Self and its compli-
ment non-self. Two approaches are described here for
fault detection, positive characterization and negative
characterization. Positive characterization is a nearest
neighbour technique that records the Euclidean dis-
tance between a test vector and its nearest neighbour in
the Self subspace. A user-set value determines the al-
lowable variability in the Self subspace. If the distance
exceeds this value then the vector is deemed to be ab-
normal. The technique is implemented using KD-Tree
for faster querying. The negative characterization ap-
proach is more in tune with Dasgupta and Forrest [11]
and Dasgupta and Nino [14], but implemented using
genetic algorithms (GAs) to build a representation of
the non-self subspace using the Self subspace as input.
GAs are used to evolve rules to cover the non-self sub-
space, although the shape of neither Self or non-self
subspaces is known a priori (the patterns that belong
to self can be used to approximate those subspaces).
The genetic algorithm attempts to evolve ‘good’ rules
that cover the non-self space. The goodness of rule is
determined by various factors: the number of normal



2494 M. Markou, S. Singh / Signal Processing 83 (2003) 2481–2497

samples that cover the space, its area and the overlap
with other rules. This is a multi-objective, multi-modal
optimisation problem. The objective is to -nd not only
a single solution but a number of solutions that co-
operatively solve the problem. Since the covering of
the non-self space is accomplished by a set of rules,
it is necessary to evolve multiple rules. A sequential
niching algorithm is employed to evolve these dif-
ferent rules. During system operation, if a test vec-
tor falls in the non-self space then it is deemed to be
abnormal. The two techniques were tested and com-
pared on a computer intrusion detection system. The
data was obtained from the MIT-Lincoln Lab. The at-
tack free data was used for training and the system
was tested using both systems. The negative charac-
terization approach was clearly more eJcient (in time
and space) compared to the positive characterization
although the positive characterization exhibited more
precise results.
Finally, Dasgupta and Majumdar [13] extend the

above studies for multi-dimensional data. The tech-
nique proposed is identical to the one described in
those previous papers except that the multidimensional
data is -rst passed through PCA for dimensionality
reduction discarding features that accounted for less
than 20% variability selecting only two dimensions.
The two dimensions were binary encoded as before but
unlike those studied the binary strings were also gray
coded. The system was tested on a network anomaly
detection task and although good overall results were
obtained, some anomalies went undetected.

2.2.4. Clustering approaches
Clustering based approaches are aimed at partition-

ing data into a number of clusters, where each data
point can be assigned a degree of membership to each
of the clusters. If the degree of membership is thresh-
olded to suggest if a data point belongs or not to a
cluster, novelty can be detected when a sample be-
longs to none of the available classes.
Pizzi et al. [42] describe EvIdent, a data analy-

sis software for quickly detecting, investigating and
visualizing novel events in a set of images as they
evolve in time and/or frequency. This work follows
the earlier research by Scarth et al. [48]. For instance,
in magnetic resonance neuro-images, novelty may
manifest itself as neural activations in a time course.

Conventional data analysis methods of fMRIs assume
that a model of the requisite function is available (for
example, a brain’s response to a designed cognitive or
motor stimulus) and that the validity of this model can
be tested by statistical methods of inference.
However, in the case of neuroscience, researchers are
probing brain function with increasingly complex cog-
nitive experiments. This complexity demands that any
model validation approach should be versatile, adap-
tive, data-driven and model-free. Therefore, novelty
detection is a prime candidate in solving this problem.
EvIdent clusters time courses within the volumetric
data, using a much-enhanced variant of Bezdek’s
fuzzy C-means algorithm [3]. The time courses are
separated in such a way that the intra-cluster distance
is minimised, while simultaneously maximising the
inter-cluster distances. The fuzzy index m controls
the fuzziness of the cluster portions: as m approaches
1, the fuzzy C-means algorithm converges to a clas-
sical hard means algorithm. As m approaches ∞, all
cluster centroids tend towards the centroid of all time
courses. The use of the fuzzy C-means as opposed
to the classical k-means algorithm is dictated by the
ability of the former to avoid getting stuck to local
minima of the objective function it tries to optimise.
Fuzzy cluster analysis produces for each cluster a
membership map for each anatomical slice of the
volumetric data. The membership map is an image
representing the degree of membership of each active
voxel to each cluster. By thresholding a membership
map, those voxels that belong to the cluster with at
least the user-speci-ed level of membership can be
identi-ed.
Yang et al. [61] attempt to automatically detect

novel events from a temporally ordered stream of news
stories, either retrospectively or as the stories arrive.
The objective is to identify stories in several continu-
ous news streams that belong to previously unidenti-
-ed events. This can be done in an on-line fashion, i.e.
as the events occur or an accumulated collection. In
retrospective event detection, stories are grouped to-
gether where each cluster uniquely identi-es an event.
In on-line event detection each document is labelled
as it arrives in sequence with a new or old Iag indi-
cating whether or not the document is the -rst story
discussing a novel event. Two clustering approaches
are investigated: an agglomerative (hierarchical) al-
gorithm based on group-average clustering (GAC),
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and a single pass algorithm (INCR) that generates a
non-hierarchical partition of the input collection. The
former is appropriate for retrospective event detec-
tion whereas the latter can be used for both. A story
is represented using a vector of weighted terms. The
normalised vector sum of documents in a cluster is
used to represent the cluster and it is called a pro-
totype or centroid. The standard cosine similarity
measure is used to describe the similarity of a cluster
centroid and a document. GAC is an agglomerative
algorithm that maximises the average similarity be-
tween document pairs in the resulting clusters. At
each iteration it divides the current set of clusters into
buckets and does local clustering within each bucket.
The process is repeated and generates clusters at
higher and higher levels until a prede-ned number of
clusters are obtained. The input to the algorithm is a
set of documents and the output is a forest of cluster
trees with the number of trees speci-ed by the user.
Clusters are produced by growing a binary tree using
the bottom up approach. Novelty detection is used
in the case of single-pass clustering. The algorithm
sequentially processes the input documents, one at a
time, and grows clusters incrementally. A new doc-
ument is classi-ed to its most similar cluster if the
similarity exceeds a prede-ned threshold otherwise it
becomes the seed for a new cluster. By adjusting the
threshold one can obtain clusters at di?erent levels of
granularity.

3. Conclusion

In this paper we have presented a survey of novelty
detection using statistical approaches. Most of such
research is driven by modelling data distributions and
then estimating the probability of test data to belong to
such distributions. In such model-based approaches,
one does need to specify or make assumptions on the
nature of training data. In addition, the amount and
quality of training data becomes very important in the
robust determination of training data distribution pa-
rameters. Statistical approaches however are cheap to
compute and straightforward in their explanation of
the techniques used. Their main competition for the
novelty detection task comes from a variety of neu-
ral networks, something we discuss in our successive
paper.

References

[1] L.D. Baker, T. Hofmann, A.K. McCallum, Y. Yang, A
hierarchical probabilistic model for novelty detection in text,
Technical Report, 1999.

[2] V. Barnett, T. Lewis, Outliers in Statistical Data, Wiley, NY,
USA, 1994.

[3] J.C. Bezdek, R. Ehrlich, W. Full, FCM: the fuzzy c-means
clustering algorithm, Computers and Geosciences, Vol. 10,
1984, pp. 191–203.

[4] C. Bishop, Novelty detection and neural network validation,
Proceedings of the IEE Conference on Vision and Image
Signal Processing, 1994, pp. 217–222.

[5] T. Brotherton, T. Johnson, G. Chadderdon, Classi-cation and
novelty detection using linear models and a class dependent—
elliptical basis function neural network, Proceedings of the
IJCNN Conference, Anchorage, May 1998.

[6] C. Campbell, K.P. Bennett, A linear programming approach
to novelty detection, in: Advances in NIPS, Vol. 14, MIT
Press, Cambridge, MA, USA, 2001.

[7] G.A. Carpenter, M.A. Rubin, W.W. Streilein, ARTMAP-FD:
familiarity discrimination applied to radar target recognition,
Proceedings of the International Conference on Neural
Networks, Vol. III, Houston, TX, 1997, pp. 1459–1464.

[8] C.K. Chow, On optimum recognition error and reject tradeo?,
IEEE Trans. Inform. Theory IT-16 (1) (January 1970)
41–46.

[9] L.P. Cordella, C. De Stefano, F. Tortorella, M. Vento, A
method for improving classi-cation reliability of multilayer
perceptrons, IEEE Trans. Neural Networks 6 (5) (1995)
1140–1147.

[10] T. Cover, P. Hart, Nearest neighbor pattern classi-cation,
IEEE Trans. Inform. Theory 13 (1967) 21–27.

[11] D. Dasgupta, S. Forrest, Novelty-detection in time series
data using ideas from immunology, Proceedings of the
International Conference on Intelligent Systems, Reno,
Nevada, 1996.

[12] D. Dasgupta, F.A. Gonzalez, An immunogenetic approach to
intrusion detection, Division of Computer Science, University
of Memphis, Technical Report CS-01-001, 2001.

[13] D. Dasgupta, N.S. Majumdar, Anomaly detection in
multidimensional data using negative selection algorithm,
Proceedings of the IEEE Conference on Evolutionary
Computation, Hawaii, May 2002, pp. 1039–1044.

[14] D. Dasgupta, F. Nino, A comparison of negative and positive
selection algorithms in novel pattern detection, Proceedings
of the IEEE International Conference on Systems, Man, and
Cybernetics, Vol. 1, Nashville, TN, 2000, pp. 125–130.

[15] M.J. Desforges, P.J. Jacob, J.E. Cooper, Applications of
probability density estimation to the detection of abnormal
conditions in engineering, Proceedings of the Institute of
Mechanical Engineers, Vol. 212, 1998, pp. 687–703.

[16] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classi-cation,
Wiley, NY, USA, 2001.

[17] M. Elad, Y. Hel-Or, R. Keshet, Rejection based classi-er
for face detection, Pattern Recognition Lett. 23 (2002)
1459–1471.



2496 M. Markou, S. Singh / Signal Processing 83 (2003) 2481–2497

[18] R.A. Fisher, L.H.C. Tippett, Limiting forms of the frequency
distribution of the largest and smallest member of a sample,
Proc. Camb. Philos. Soc. 24 (1928) 180–190.

[19] P. Foggia, C. Sansone, F. Tortorella, M. Vento, Multi-
classi-cation: reject criteria for the Bayesian combiner,
Pattern Recognition 32 (1999) 1435–1447.

[20] S. Forrest, A.S. Perelson, L. Allen, R. Cherukuri, Self-non-self
discrimination in a computer, Proceedings of the IEEE
Symposium on Research in Security and Privacy, Oakland,
CA, USA, May 1994, pp. 202–212.

[21] G. Fumera, F. Roli, G. Giacinto, Reject option with multiple
thresholds, Pattern Recognition 33 (2000) 2099–2101.

[22] R.S. Guh, F. Zorriassatine, J.D.T. Tannock, On-line control
chart pattern detection and discrimination—a neural network
approach, Arti-cial Intell. Eng. 13 (1999) 413–425.

[23] S.E. Guttormsson, R.J. Marks II, M.A. El-Sharkawi, Elliptical
novelty grouping for on-line short-turn detection of excited
running rotors, IEEE Trans. Energy Conversion 14(1) (March
1999).

[24] L.K. Hansen, C. Liisberg, P. Salamon, The error-reject
tradeo?, Open Systems Inform. Dynamics 4 (1997) 159–184.

[25] L.K. Hansen, S. Sigurdsson, T. Kolenda, F.A. Nielson, U.
Kjems, J. Larsen, Modelling text with generalizable Gaussian
mixtures, Proceedings of IEEE ICASSP ’2000, Vol. 6,
Istanbul, Turkey, 2000, pp. 3494–3497.

[26] M.E. Hellman, The nearest neighbour classi-cation with a
reject option, IEEE Trans. Systems Sci. Cybernet. 6 (3) (July
1970) 179–185.

[27] S.J. Hickinbotham, J. Austin, Neural networks for novelty
detection in airframe strain data, Proceedings of IEEE IJCNN,
Como, Italy, 2000.

[28] N. Japkowicz, C. Myers, M. Gluck, A novelty detection
approach to classi-cation, Proceedings of the 14th IJCAI
Conference, Montreal, 1995, pp. 518–523.

[29] M.F. Jiang, S.S. Tseng, C.M. Su, Two-phase clustering
algorithm for outliers detection, Pattern Recognition Lett. 22
(2001) 691–700.

[30] S.P. King, D.M. King, P. Anuzis, K. Astley, L. Tarassenko,
P. Hayton, S. Utete, The use of novelty detection techniques
for monitoring high-integrity plant, Proceedings of the 2002
International Conference on Control Applications, Vol. 1,
Cancun, Mexico, 2002, pp. 221–226.

[31] E.M. Knorr, R.T. Ng, V. Tucakov, Distance-based outliers:
algorithms and applications, VLDB J. 8 (3–4) (2000)
237–253.

[32] M. Lauer, A mixture approach to novelty detection using
training data with outliers, in: L. De Raedt, P. Flach (Eds.),
Proceedings of the 12th European Conference on Machine
Learning, Springer, Freiburg, Germany, 2001, pp. 300–311.

[33] J. Laurikkala, M. Juhola, E. Kentala, Informal identi-cation of
outliers in medical data, Intelligent Data Analysis in Medicine
and Pharmacology (IDAMAP-2000), Berlin, August 2000.

[34] C. Manikopoulos, S. Papavassiliou, Network intrusion and
fault detection: a statistical anomaly approach, IEEE Comm.
Mag. 40 (October 2002).

[35] G. Manson, Identifying damage sensitive, environment
insensitive features for damage detection, Proceedings of the
IES Conference, Swansea, UK, 2002.

[36] G. Manson, G. Pierce, K. Worden, On the long-term stability
of normal condition for damage detection in a composite
panel, Proceedings of the 4th International Conference on
Damage Assessment of Structures, Cardi?, UK, June 2001.

[37] G. Manson, G. Pierce, K. Worden, T. Monnier, P. Guy,
K. Atherton, Long term stability of normal condition data
for novelty detection, Proceedings of the 7th International
Symposium on Smart Structures and Materials, California,
USA, 2000.

[38] A. Nairac, T. Corbett-Clark, R. Ripley, N. Townsend, L.
Tarassenko, Choosing an appropriate model for novelty
detection, Proceedings of the 5th IEEE International
Conference on Arti-cial Neural Networks, Cambridge, 1997,
pp. 227–232.

[39] A. Nairac, N. Townsend, R. Carr, S. King, P. Cowley, L.
Tarassenko, A system for the analysis of jet engine vibration
data, Integrated Comput. Aided Eng. 6 (1999) 53–65.

[40] T. Odin, D. Addison, Novelty detection using neural network
technology, Proceedings of the COMADEN Conference,
Houston, TX, 2000.

[41] L. Parra, G. Deco, S. Miesbach, Statistical independence
and novelty detection with information preserving non-linear
maps, Neural Comput. 8 (2) (1995) 260–269.

[42] N.J. Pizzi, R.A. Vivanco, R.L. Somorjai, EvIdent: a functional
magnetic resonance image analysis system, Artif. Intell. Med.
21 (2001) 263–269.

[43] S.J. Roberts, Novelty detection using extreme value statistics,
IEE Proc. Vision, Image Signal Process. 146 (3) (1999)
124–129.

[44] S.J. Roberts, Extreme value statistics for novelty detection
in biomedical signal processing, Proceedings of the 1st
International Conference on Advances in Medical Signal and
Information Processing, 2002, pp. 166–172.

[45] S. Roberts, L. Tarassenko, A probabilistic resource allocating
network for novelty detection, Neural Comput. 6 (1994)
270–284.

[46] R. Ruotolo, C. Surace, A statistical approach to damage
detection through vibration monitoring, Proceedings of the
5th Pan American Congress of Applied Mechanics, Puerto,
Rico, 1997.

[47] R. Saunders, J.S. Gero, The importance of being emergent,
Proceedings of the Arti-cial Intelligence in Design, 2000.

[48] G. Scarth, M. McIntyre, B. Wowk, R. Somorjai, Detection
of novelty in functional images using fuzzy clustering,
Proceedings of the 3rd Meeting ISMRM, Nice, France, 1995,
p. 238.

[49] S. Singh, M. Markou, An approach to novelty detection
applied to the classi-cation of image regions, IEEE Trans.
Knowledge Data Eng., 2003, in press.

[50] C. Spence, L. Parra, P. Sajda, Detection, synthesis and
compression in mammographic image analysis with a
hierarchical image probability model, IEEE Workshop
on Mathematical Methods in Biomedical Image Analysis,
MMBIA 2001, Kauai, HI, 2001, pp. 3–10.

[51] C.D. Stefano, C. Sansone, M. Vento, To reject or not to reject:
that is the question—an answer in case of neural classi-ers,
IEEE Trans. Systems, Man Cybernet. Part C 30 (1) (2000)
84–94.



M. Markou, S. Singh / Signal Processing 83 (2003) 2481–2497 2497

[52] A.O. Tarakanov, V.A. Skormin, Pattern recognition by
immunocomputing, Proceedings of the 2002 Congress on
Evolutionary Computation, CEC ’02., Vol. 1, Honolulu, HI,
2002, pp. 938–943.

[53] L. Tarassenko, Novelty detection for the identi-cation
of masses in mammograms, Proceedings of the 4th IEE
International Conference on Arti-cial Neural Networks, Vol.
4, Cambridge, UK, 1995, pp. 442–447.

[54] L. Tarassenko, A. Nairac, N. Townsend, P. Cowley,
Novelty detection in jet engines, IEE Colloquium on
Condition Monitoring, Imagery, External Structures and
Health, Birmingham, UK, 1999, pp. 41–45.

[55] D.M.J. Tax, R.P.W. Duin, Outlier detection using classi-er
instability, in: Advances in Pattern Recognition, the Joint
IAPR International Workshops, Sydney, Australia, 1998, pp.
593–601.

[56] D.M.J. Tax, R.P.W. Duin, Data description in subspaces,
International Conference on Pattern Recognition, Vol. 2,
Barcelona, 2000.

[57] A. Webb, Statistical Pattern Recognition, Arnold, Paris, 1999.
[58] F. Wei, M. Miller, S.J. Stolfo, L. Wenke, P.K. Chan,

Using arti-cial anomalies to detect unknown and known
network intrusions, Proceedings of the IEEE International
Conference on Data Mining, ICDM 2001, San Jose, CA, 2001,
pp. 123–130.

[59] K. Yamanishi, J. Takeuchi, G. Williams, On-line
unsupervised outlier detection using -nite mixtures with
discounting learning algorithms, Proceedings of the 6th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Boston, MA, USA, August 2000,
pp. 320–324.

[60] Y. Yang, X. Liu, A re-examination of text categorization
methods, Proceedings of the ACM SIGIR Conference on
Research and Development in Information Retrieval, 1999,
pp. 42–49.

[61] Y. Yang, T. Pierce, J. Carbonell, A study on retrospective
and on-line event detection, Proceedings of the ACM SIGIR
Conference on Research and Development in Information
Retrieval, Melbourne, Australia, 1998, pp. 28–36.

[62] Y. Yang, J. Zhang, J. Carbonell, C. Jin, Topic-conditioned
novelty detection International Conference on Knowledge
Discovery and Data Mining, July 2002.

[63] D.Y. Yeung, C. Chow, Parzen window network intrusion
detectors, Proceedings of the International Conference on
Pattern Recognition, Quebec, Canada, 2002.

[64] D.Y. Yeung, Y. Ding, Host-based intrusion detection using
dynamic and static behavioral models, Pattern Recognition
36 (2002) 229–243.


	Novelty detection: a review---part 1: statistical approaches
	Introduction
	Statistical approaches
	Parametric approaches
	Probabilistic/GMM approaches
	Hidden Markov models (HMM)
	Hypothesis testing

	Non-parametric approaches
	kNN based approaches
	Parzen density estimation
	String matching approaches
	Clustering approaches


	Conclusion
	References


