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Abstract— Mechatronic systems operating in industrial 

environments are subject to a variety of threats because of harsh 

conditions. Industrial systems usually use Commercial Off-The 

Shelf (COTS) equipment which are not robust and safe against 

hostile conditions and therefore require fault tolerance 

considerations. This paper presents a novel and efficient method 

for online detection of control flow errors, called Software-based 

Control Flow Checking (SCFC). It is implemented purely in 

software and does not manipulate the hardware architecture of 

the system. Redundant instructions and signatures are embedded 

into the program at compile time and are utilized for control flow 

checking at run time. The signatures of the basic blocks are 

derived from the program graph. It is shown in the paper that 

SCFC method can increase single detection capability to 14.7% 

and the fault coverage to 6.12% averagely in comparison with 

other methods without any increase in memory and performance 

overheads. In the paper, besides experimental evaluations, 

analytical evaluations are also carried out, based on probability 

principles. The detection ability of each method used is thus 

computed. These computations verify the experimental results 

and show that SCFC can detect more errors than other methods 

suggested in literature. Considering the memory limitations in 

some (such as space) applications and the trend towards the 

requirement for faster execution of programs, we suggest a novel 

metric; called fitness parameter which incorporates these. It is a 

better measure than the previously proposed ones since it 

considers the fault coverage, the memory overhead and the 

execution time (performance overhead) of each method 

simultaneously, as well as the detection capability.  

 
Index Terms— Commercial Off-The-Shelf, control flow 

checking, fitness parameter, fault injection, analytical evaluation, 

software-based error detection.  

I. INTRODUCTION 

 

N the selections of the electronic equipment to be used in 

industrial environments there are two options: to go for 

specially designed, high reliability but costly or the 

Commercial Off-The Shelf (COTS) equipment. Utilizing 
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robust equipment can be prohibitively costly; therefore, the 

use of COTS equipment is the appropriate option in most 

applications [1-13].  

It has been experimentally shown that about 33 to 77 

percent of the transient faults cause control flow errors (CFE) 

and the remaining are converted into data errors [14]. It can 

therefore be concluded that by the use of new techniques 

based on control flow checking, instead of the traditional 

techniques of transient fault detection in the application layer, 

the additional costs of detecting the faults that will finally be 

ineffective can be avoided. The system efficiency and its cost 

can thus be reduced [14-17]. 

For detecting transient faults some techniques are suggested 

in literature that would fall into two general classes, hardware 

or software redundancy. The methods based on hardware 

redundancy have a better fault coverage but impose higher 

costs and overheads on the system and therefore may not meet 

the requirements of some general purpose applications. 

Software-based techniques have less fault coverage and larger 

delay; however, they mean lower cost and overhead on the 

system and can be utilized in different types of COTS systems 

due to their flexibility. Another point to be considered in 

comparison with hardware-based methods is that in software-

based methods, there is no dependency on hardware or no 

need for its reconfiguration [15-17]. 

For control flow checking, the general approach adopted is 

that the source code is divided into some basic blocks and the 

code running inside the blocks and the branches between them 

is checked (for example by a watchdog processor). Each basic 

block consists of some instructions that are located among 

jump instructions. Errors that should be analyzed in these 

methods are classified into three general categories: 

� Illegal jumps intra basic blocks 

� Illegal jumps inter basic blocks 

� Illegal jumps from a basic block to the unused space of 

the memory 

These illegal jumps lead to control flow errors that can be 

grouped into the following categories: 

 

Type 1: an error caused by an illegal jump from the end of 

a basic block to the beginning of another basic 

block, 

Type 2: an error caused by a legal but incorrect jump from 

the end of a basic block to the beginning of 

another basic block, 

Type 3: an error caused by a jump from the end of a basic 

Software-based Control Flow Checking against 

Transient Faults in Industrial Environments 

Seyyed Amir Asghari, Hassan Taheri, Hossein Pedram, and Okyay Kaynak, Fellow, IEEE 

I 



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 2 

block to any point of another basic block, 

Type 4: an error caused by a jump from any point of a 

basic block to any point of another basic block,  

Type 5: an error caused by a jump from any point intra a 

basic block to a point intra the same block, 

Type 6: Errors caused by a jump from any point intra a 

basic block to a space inter basic blocks (this type 

is equivalent to illegal jumps from a basic block 

to the unused space of the memory. In other 

words, unused space refers to the space inter basic 

blocks).  

It should be noted that in industrial applications, whatever 

approach is used, whether it is, software or hardware-based, it 

should be able to handle the errors mentioned above as much 

as possible and, in doing so,  impose as little memory 

overhead and as little increase in execution time as possible. 

The latter is commonly referred to as performance overhead in 

literature and in what follows we will also refer to it as such. 

We propose a novel fitness factor in this paper that can 

compare different approaches, based on their fault coverage, 

memory and performance overheads. It is to be noted that 

there exists a tradeoff between these parameters, depending on 

the number of redundant instructions inserted for checking the 

control flow of the program. However it is important to 

appreciate that these parameters are all important and the 

method adopted should consider all of them as much as 

possible.  

The method presented in this paper is effective and 

applicable in all industrial processes in which a controller is 

used which may be an embedded system  or built on a PLC, a 

PC, a microcomputer and as such. With the technological 

developments of recent years, the embedded systems are seen 

more commonly and in the following parts of the paper the 

reference will be to such systems. 

In the second section of this paper, the related works on 

hardware and software control flow checking methods are 

reviewed. The third section introduces the proposed method. 

The experimental and analytical results of different methods 

are given in the forth section of the paper.  

II. REVIEW OF THE LITERATURE  

Computer systems (especially embedded real time systems) 

are subject to transient faults due to gamma-rays, x-rays, 

protons, neutrons and energetic photons. These parameters 

induce ionization which increases immediate and delayed 

voltages in devices. These in turn cause transient behaviors in 

circuits and systems that can disrupt the operation and 

functionality of the system. The occurrence of transient faults 

in computer systems during the running of the program 

resulted in a well-known concern in microelectronic systems 

since these faults may lead to considerable disruptions and 

damages. For example, undesired modifications of storage 

memory cells may occur.  

Control flow error detection is one of the effective 

techniques for achieving reliability. In order to detect such 

errors, many methods have been proposed since 1980s that 

can be divided into two categories as hardware and software-

based techniques.  

 
 

Fig. 1. The structure of a system with watchdog processor 

 

 One of the classical hardware methods for control flow 

checking is the use of a watchdog processor. Watchdog 

processor is a processing element can detect control flow 

errors by monitoring the processor behavior on the 

communication bus. Fig. 1 shows a structure in which a 

watchdog processor is used for control flow checking [16-19]. 

In the first phase, information gathered through monitoring the 

processor and the bus is given to the watchdog and then in the 

next phase (while the program is running), the watchdog as a 

co-processor can monitor the flow of the program. Fault 

detection process is completed when the collected 

information, such as memory access mechanism, control flow, 

control signals, and logical results, is compared with the 

information gathered in the first phase.  

In software-based methods, the general procedure of 

operation is similar to the hardware-based methods. The main 

difference is that in software methods, the control flow 

checking is performed by the main processor; instead of any 

additional hardware [14-17]. The basis of CFC (Control Flow 

Checking) methods is comparing the control graph of the 

running program with the one predicted at the beginning of the 

program. Software based methods are usually performed by 

code and data (signature) insertion which can be done at the 

procedure level or the statement level [20-25].  Some 

machine-level instructions may also be added to the program. 

Moreover, the running program of the processor is divided 

into some basic blocks that are branch-free and a signature is 

assigned to or derived from each block. During the running of 

the program, control flow is checked by these signatures until 

the correct points of program blocks are entered and exited. 

Figure 2 shows the program partitioning into basic blocks and 

the partitioning instructions. The program is shown by a direct 

graph in which each node shows an instruction of the machine 

and the edges are the control flow [14-17]. In Fig. 2(a), the 

instruction 2 is a branch instruction and so is a divider 

between basic blocks. The instruction 4 that is the destination 

of a branch is also used for partitioning between blocks. In this 

way and as it can be seen in Fig. 2(b), the main program is 

divided into three basic blocks. 

Due to the special environment in space (the existence of 

high radiation in this environment and its destructive effects 

on electronic equipment) and the pressing need of high 

reliability in this environment, numerous works have appeared 
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in literature for enhancing the reliability of space equipment 

[26-32]. One of the works in this field is Relationship 

Signature CFC (RSCFC) [20] in which the program is divided 

into some basic blocks. In the first stage, the relationship 

between blocks is extracted and then based on the kind of the 

relationship, a signature is assigned to each block in which the 

existing relationships are coded in it. The faults in the control 

flow of the program are detected by ANDing the runtime 

signatures with the information at the beginning and end of the 

blocks.  In comparison to the previous works, this method has 

more fault coverage and a better efficiency and it also 

consumes less memory [21]. 
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Fig. 2. Program dividing into some basic blocks 

 

In Control Flow Checking by Software Signature (CFCSS) 

[21] method, a signature of s and a signature of d are assigned 

to each basic block. A global variable of G is also added to the 

program which consists of a running block signature amount. 

During the running of the program, whenever the program 

enters into a new basic block, G is updated to a new amount 

[17, 21].  

The Enhanced Control Flow Checking using Assertion 

(ECCA) [22], that is another control flow checking method, is 

implemented in high level of Register Transfer Level (RTL). 

In high level implementation, ECCA adds a prime number, 

two instructions and an ID, to each basic block. 

III. THE PROPOSED METHOD 

In the previous section, some of the control flow error 

detection techniques based on software and hardware were 

reviewed. SCFC method is a software-based one which 

benefits from the merits of these kinds of techniques. Like 

other methods in this field, SCFC divides the program into 

some basic blocks and assigns a signature for each block. 

Figure 3 shows a control flow error between two basic 

blocks that causes an illegal jump from the middle of the block 

1 to the block number 2. At the end of the basic block 2, this 

error is detected and the program control is transferred to the 

function (Exception Handler or CFE Manager) that can correct 

this error.  
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Fig. 3. Detection and correction of control flow errors in processors 

 

SCFC assigns a signature to each basic block like other 

methods of this field. This signature is Si variable that shows 

the successor and the destination blocks of the present block. 

SCFC inserts four instructions in each basic block. The first 

instruction is control that checks the entrance flow at the 

beginning of each basic block. The goal of control is to detect 

illegal jumps to the beginning of basic blocks. The ID variable 

(an identification assigned to each basic block that identifies 

the order of every basic block running in control flow graph) 

that is updated at the end of all basic blocks and initialized to 

zero, is compared with the destination of the block number 

that is saved in each block and any inconsistency means that 

the destination of this jump is not the current block or that the 

ID variable is not updated in the last block and the flow is 

transferred from the intra of the last block to the present block. 

In both cases, a control flow error is occurred. 

The second redundant instruction is called check and its task 

is to confirm that the destination is assigned correctly and the 

current running block is one of the successors of the source 

basic block. For monitoring the correctness of the availability, 

Equation 1 is utilized: 

                      error = S [ID];                      (1)    
S is Si variable that is updated during the program running. If 

ID
th

 bit that shows the present basic block number equals 1 at 
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the middle of each basic block, the destination has been 

assigned correctly. Otherwise, error signal, which is the sign 

of an error, is activated and the program is stopped. Check 

instruction is inserted in the middle of a basic block to detect 

control flow error in case of an illegal jump occurrence to the 

intra of a basic block. In this, illegal jumps from the beginning 

and intra of the last basic block to the intra of the next basic 

block can be detected. 

The third instruction is called update and updates S at 

runtime. For updating control flow signature, Equation 2 is 

designed: 

           S = Si                                  (2) 
Therefore variable S is updated in the middle of each basic 

block in preparation for going to the next destination. It should 

be noted that S is set to 000…1 for the first time to be able to 

go to the first basic block. Any other jump is therefore not 

allowed. This redundant instruction is inserted in the intra of a 

basic block to detect illegal jumps inter the block. By inserting 

the present block signature in the signature variable, the next 

legal successors that should be run, are assigned. 

The last instruction is called exit that is run at the end of 

each basic block and updates the ID variable to the number 

that shows the present basic block. 

Check and update instructions are placed in the middle of each 

basic block and in this way some of the errors caused by 

illegal internal jumps in a specific basic block are detected. 

After the detection an error, error signal equals 0 and the 

program will stop. 
It should be mentioned that the assigned signature of each 

basic block in this method, has N bits. N shows the number of 

basic blocks in the program control flow graph. Bits related to 

successor nodes of the present block equal 1 in N bit of the 

signature. Figure 4 shows a sample program code, control 

flow graph and the signatures of each block. The sample 

program considered has 5 basic blocks; therefore, the 

signature of control flow graph related to each block has 5 

nodes and bits. For example, successor nodes of the second 

basic block of the graph are the blocks 3 and 4 and therefore 

the signature of this basic block is 01100. 

Figure 4(a) shows control flow graph of a sample program 

and the derived signatures of each block derived signatures. 

Figure 4(b) shows the structure of a basic block and its 

redundant instructions. Basic blocks interconnections of a 

sample program are shown in the control flow graph of Fig. 

4(a). As shown in this figure, the signature of each basic block 

is derived from its successor blocks. Figure 4(b) shows the 

interior structure of each basic block after inserting the 

redundant instructions.  

Figure 5 shows more basic block structure changes shown 

in Fig. 4. 
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Fig. 5.  Basic block structure changes

 

All of the single errors caused by incorrect jumps can be 

found by inserting redundant instructions. The proof of this 

claim is explained in the following: 

A. Illegal jump from node vi to node vj  

When an illegal jump occurs from block vi to the block vj. 
In these cases, when check instruction is run in vj block, since 

ID variable is not updated in block vj, error signal becomes 

zero and this error is detected. For example, imagine in Fig. 4, 

there is an unwanted jump from the end of the first basic block 

to the middle of the second block. In this case, since ID 

variable at the end of the first block is not updated, its amount 

remains zero. When operation is reached to check and update 

instructions of the second basic block, the first bit (zero bit 

position) of variable S, that now has Signature of Basic Block 

1 (equal to 0), is assigned to error signal. The error signal 

receives the amount of 0 and the error is detected. In this case: 

S = Signature of Basic Block 1 = 00010, 

S [zero bit position] = 0,  

error = S [zero bit position] = 0  

B. Illegal jump from node vi to itself  

When an illegal jump occurs from one instruction before 

check and updates to the instructions after them. In this 

case, since S has not been updated during program running, 

error is detected in check instruction of the next block. For 

example, imagine an unwanted jump occurs from the 

beginning of the first block to the middle or end of the same 

block. In this case, the update instruction has not been run so S 

takes its initial amount that is 00001. At the end of the first 

block, ID amount is updated to 1 and the program enters the 

second basic block. In the second basic block and in check 

instruction, the first bit of S is updated to 1 and the occurred 

error will be detected: 

S = Sinitial = 00001, err = S [ID] = 0 

IV. EXPERIMENTAL RESULTS 

In this section, the environment used for tests is described 

and the experimental results are given. 

A. Test environment 

For analyzing the proposed method, the infrastructure 

shown in Fig. 6 is utilized which contains the following 

elements as main parts [33]: 

 

• Background Debug Mode (BDM) module. This 

component is a programming tool that can be used for 

debugging and fault injection. It is a tool which 

Motorola Corporation placed it in their microprocessors 

and microcontrollers.   

• PhyCORE-MPC555 (a product of a PHYTECH 

technology holding company) evaluation board 
• A personal computer 

 

An additional technique that is used for fault injection is the 

manual manipulation of the jumps of the program as follows: 
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• Direct fault injection into processor registers by the use 

of BDM module in bit flip model (the conversion of 0 

to 1 and vice versa); 

• Applying jump instructions to the program (JMP, JL, 

JG, JNE, JLE, JGE, CALL and RET); 

• Changing jump instructions. 

 
 

Fig. 6. Fault injection mechanism structure by the use of BDM [33]. 

Fault injection operation is applied to three benchmark 

programs, Bubble Sort (BS), Quick Sort (QS) and 40×40 

Matrixes Multiplication (MM) and about 5000 faults are 

injected to them. Since in the method of direct fault injection 

onto processor registers by the use of BDM, processor 

registers can be directly manipulated, it is considered to be a 

good solution with much higher speed and capability that is 

close to reality. For example, in this method, PC (Program 

Counter) register and SR (Status Register) can be directly 

manipulated. On the other hand as it is shown in [33], 

exception occurrence probability is very high by manipulating 

registers. Therefore, besides this method another fault 

injection approach is also used that has three kinds: 

• Random jump deletion in the program, in which some 

branches of the program are deleted randomly; 

• Random jump changing, in which some branches of the 

program or their operands changes randomly; 

• Random jump insertion, in which some branches are 

inserted at different parts of the program. 

By the mentioned fault injection methods, the control flow 

errors will be produced and the efficiency of different methods 

can be compared with each other. The faults are injected to the 

assembly code of benchmarks and at random places of it. On 

the other hand, by using BDM method, registers and program 

counter of the program are changed and control flow errors 

occur in the program. Therefore, the efficiency of different 

methods can be evaluated.     

 Five versions are considered for each benchmark for fault 

injection: 

• The original code (the code of the benchmark); 

• Adding CFCSS method to the original code; 

• Adding ECSS method to the original code; 

• Adding RSCFC method to the original code; 

• Adding SCFC method to the original code. 

For each version, the program is compiled and its assembly 

code is generated. Then one method of fault injection is 

randomly selected that changes the program or its registers. 

Finally the faulty code is compiled and executed. This process 

is repeated 5000 times for each of the mentioned versions.  

The injected faults can result in five different cases 

according to the effect they produce in the running of the 

program: 

• CR (Correct Result): the fault does not change the 

final result of the program 

• OS (Operating System): the fault is detected by 

operating system and its exceptions 

• WR (Wrong Result): the fault changes the final 

result of the program and produces a wrong output 

• TO (Time Out): the fault changes the program 

execution time and it does not end in a specified 

amount of time 

• SD (Single Detection): the fault is detected by the 

instructions that are used for control flow checking 

The occurrence percentages of these cases are shown in 

Table 1. It should be noted that the fault coverage of each 

method is equal to its Single Detection (SD) percentage since 

the first four cases can be detected without the use of any 

control flow error detection method. In other words, Single 

Detection (SD) percentage that is shown in the last column of 

Table 1 indicates the error detection capability of the proposed 

method embedded into the stated benchmark. Since three 

numbers are given for 3 different benchmarks, we can derive 

an overall number that describes the single detection 

capability of the methods considered by taking the averages of 

these 3 numbers. For example for the proposed SCFC method 

the average is:  

43.55% + 48.56% + 49.70 % = 47.27 % 

For the other methods, the corresponding figures are 

31.81%, 33.84% and 32.10% respectively. Therefore, single 

detection capability is increased by 14.7% on average in the 

SCFC method, in comparison with the other methods.  

Figures 7, 8 and 9 compare the fault coverage, the memory 

and the performance overhead of CFCSS, ECCA and RSCFC 

methods with the proposed technique of this paper, the word 

average indicating the average of the figures when the 

methods are embedded into three benchmarks; BS, MM and 

QS. 

SCFC memory and performance overheads are calculated 

as follows: 

MethodNormalofTimeExecutionorStorageMemory

MethodHardenedofTimeExecutionorStorageMemory  

In this equation, Hardened Method refers to the program 

running by the use of the proposed method. In this running, 

software redundancy caused by adding signatures to the basic 

blocks is considered as overhead (for example, in the proposed 

method, after dividing the program into basic blocks and 

adding unique signatures to the basic blocks, the program size 

is 1.43 times larger as compared to the other methods). 

Normal Method refers to running the program without 

considering any error detection mechanism. In other words, 

the proposed method is not utilized in this running. 

For performance overhead, this action is repeated with the 

execution time factor. As it can be seen in Fig. 7, SCFC 

method in comparison with ECCA, RSCFC, and CFCSS 

methods increases the fault coverage in average to 6.12%. 

Meanwhile it has less memory overhead and its performance 

overhead can compete with other methods (Fig. 8 and 9).  As 

it was mentioned in the previous sections, fault coverage is as 

important as memory and performance overheads of a system. 
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An appropriate method should be able to balance these 

parameters with each other and does not consider only one of 

them. For this purpose, a new parameter, called Evaluation 

Factor (EF), is introduced in this paper. It considers overheads 

and fault coverage of each method as shown in Equation 3:  

 

OverheadePerformancOverheadMemory

CoverageFault
FactorEvaluation

×

=

  

(3)  

 

The averages of the evaluation factors of the different 

methods when embedded into the 3 benchmark programs are 

shown in Table 2. As it can be predicted, SCFC is better than 

previously mentioned methods considering fault coverage, 

performance and memory overheads.  

As shown in figures and tables and based on the 

experiments, the proposed method of this paper outperforms 

others in fault coverage and overheads. Due to the ability of 

SCFC in intra block control flow error checking, it can detect 

more errors than other techniques. It also takes less 

instructions and variables than other methods for control flow 

error detection. In the following, the fault coverage of 

different methods is studied analytically. 

 
TABLE 1: FAULT INJECTION RESULTS IN ORIGINAL PROGRAM, CFCSS, ECCA, 

RSCFC AND SCFC METHODS (CR: CORRECT RESULT, OS: OPERATING 

SYSTEM, WR: WRONG RESULT, TO: TIME OUT, AND SD: SINGLE DETECTION) 

Benchmarks CR OS WR TO SD 

BS 19.54% 35.68% 37.33% 7.45% 0% 

MM 11.76% 38.84% 39.82% 5.58% 0% 

QS 20.29% 37.65% 36.72% 5.34% 0% 

BS-CFCSS 45.65% 6.88% 11.80% 2.87% 32.80% 

MM-CFCSS 44.50% 12.87% 13.14% 3.06% 26.34% 

QS-CFCSS 38.13% 11.20% 9.40% 4.96% 36.31% 

BS-ECCA 38.05% 13.00% 10.25% 4.10% 34.60% 

MM-ECCA 42.70% 11.09% 11.20% 5.87% 29.14% 

QS –ECCA 40.70% 6.66% 10.54% 4.30% 37.80% 

BS-RSCFC 42.30% 11.10% 11.6% 2.50% 32.50% 

MM-RSCFC 40.96% 12.34% 9.7% 2.50% 34.50% 

QS –RSCFC 39.09% 13.65% 11.2% 6.56% 29.50% 

BS-SCFC 42.23% 6.90% 3.33% 3.99% 43.55% 

MM- SCFC 37.20% 6.70% 5.20% 2.34% 48.56% 

QS – SCFC 36.20% 6.20% 4.60% 3.30% 49.70% 

 

 

TABLE 2: AVERAGE VALUE OF EVALUATION FACTORS FOR DIFFERENT 

METHODS 

Techniques 
Averages of 

Evaluation Factors 

CFCSS 39.09 

ECCA 44.32 

RSCFC 35.47 

SCFC 47.76 
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Fig. 7: Total fault coverage comparison 
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Fig. 8: Memory overhead comparison 
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Fig. 9: Performance overhead comparison 

B. Analytical computation of fault coverage 

In above the effectiveness of the proposed method, is 

demonstrated by experimental results. In this section, an 

analytical computation for the fault coverage of the proposed 

method is presented. The equations show that how much the 

probability of illegal jumps occurrence that is known as 

control flow error is by considering the number of instructions 

and basic blocks. Moreover, by considering the capability of 

the presented techniques in detecting different control flow 

errors, it is assigned that which of these probabilities is 

detected by the presented technique. By considering the 

number of instructions and the basic blocks, equations are 

derived that indicate the probability of the occurrence of 

illegal jumps, i.e. the control flow error. 

The following states are considered for analyzing 

impermissible jumps that lead to control flow errors: 

1. The illegal jump from one basic block to another: In 
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this case, the error that occurs in PC register leads to an 

unwanted jump from a basic block to another incorrect 

basic block. Therefore, the probability of a case when 

program flow is in i
th

 basic block and due to an error 

occurrence is transferred to j
th

 basic block, should be 

calculated. This probability is calculated in Equation 4:  

(4) 

       Ptype-1 = PBasic Blocki * PBasic Block i —› Basic Block j * (1 - Pprogram crash)                                                                        
 

2. An illegal jump from one basic block to the 

partition block:  In this case, the error that occurs in 

PC register leads to an illegal jump from a basic block 

to a memory space out of the basic blocks. These 

places are called Partition Block (PB). Therefore the 

probability of a case in which the program flow is in i
th

 

basic block and is transferred to PB basic block due to 

an error occurrence, should be calculated. This 

calculation is shown in Equation 5: 

(5) 

       Ptype-2 = PBasic Block i * PBasic Block i —› Partition Block * (1 - Pprogram crash)                                                                        
 

3. The jump from a basic to itself:  In this case, the error 

that occurs in PC register leads to an illegal jump from 

a basic block to a place inside the same basic block. 

Therefore, the probability of the case in which the 

program flow is in i
th

 basic block and is transferred to 

another place in the same i
th

 basic block due an error 

occurrence should be calculated. This probability is 

shown in Equation 6: 

(6) 

       Ptype-3 = PBasic Block i * PBasic Block i —› Basic Block i * (1 - Pprogram crash)                                                                         
 

If the error of the third type (the jump from a basic block 

to the same basic block) is analyzed in more detail, two 

states can be extracted for illegal jump inside a basic block. 

One state is when jumps occur from the upper part to the 

lower part of the basic block and vice versa. Another state is 

when jumps occur from the upper part to the upper part and 

from the lower part to the lower part. For calculating the 

probability of the first state of the third type error, Equation 

7 and for the second state, Equation 8 can be used: 

(7) 
Ptype-3-1 = PBasic Block i * (PBasic Block iu —› Basic Block iD + PBasic Block iD —› Basic 

Block iu) * (1 - Pprogram crash)                                                                
 

(8) 
Ptype-3-2 = PBasic Block i * (PBasic Block iu —› Basic Block iu + PBasic Block id —› Basic 

Block id) * (1 - Pprogram crash) 

 

Adding all of the above stated states in one statement, 

Equation 9 is obtained: 

(9) 

PBasic Block i—›Basic Block i=PBasic Block iu —›Basic Block iu+PBasic Block id—› Basic Block 

id + PBasic Block iu —›Basic Block id +  PBasic Block id —› Basic Blockiu 

 

Considering a Bernoulli random variable z that shows the 

jump direction, the following can be written 

PBasic Block iu —› Basic Block iu (x, y) = P (PBasic Block iu —› Basic Block iu | z=1) 

P (z=1) + P (PBasic Block iu —› Basic Block iu | z=0) P (z=0) 

P (z = 0) = P (z=1) = 1/2 
For staying in the upper part of the basic block, the 

following conditions should be met: 

P (PBasic Block iu —› Basic Block iu | z=1) = P (L(x) <= y) 
P (PBasic Block iu —› Basic Block iu | z=0) = P (L(x) <= SBasic Block/2 - y) 
In above, SBB variable shows the average size of a basic 

block based on bytes and is computed by multiplying the 

average length of program instructions and the average 

number of instructions of each basic block. The y random 

variable has uniform distribution and indicates the distance (in 

bytes) of the place where the fault occurs from the beginning 

of the basic block [2].  

SEU errors in the program counter lead to control flow 

errors. Consider a random variable x between 0 to 31 for the 

erroneous bit number in the program counter and define L(x) 

with the value 2
x
 as the variable that indicates the number of 

impermissible jumps by and changing x
th

 bit in the program 

counter [2]. 

For computing jump probability of each basic block to 

another basic block, Equation 10 is utilized (in this equation, 

IAN is the average number of instruction bytes): 

(10) 

PBasic Block i —› Basic Block j (x) = 1/NBasic Block * 1/2 * 1/NPartition Block 

∑∑∑
−

===

1i

1j

N

1i

N

0k

BlockPartitionBlockBasic

P (IAN.k + j.SPartition Block+ (j-1)SBasic Block 

< L(x) < IAN.k + j.SPartition Block+ j.SBasic Block) + 1/NBasic Block * 1/2 

* 1/NPartition Block ∑∑∑
−

===

iN

1j

N

1i

N

0k

BlockPartitionBloackPartitionBlockBasic

P(SBasic Block – 

IAN.k + j.SPartition Block + (j-1) SBasic Block < L(x) < SBasic Block – 

IAN.k + j.SPartition Block + j. SBasic Block) 

 

The jump probability from one basic block to a place 

outside the program is computed by Equation 11: 

(11) 

PBasic Block i —› Basic Block j (x) = 1/NBasic Block * 1/2 * 1/NPartition Block 

∑∑∑
−

===

1i

1j

N

1i

N

0k

BlockPartitionBasicBlock

P (IAN.k + (j-1).SPartition Block+ (j-1)SBasic 

Block < L(x) < IAN.k + j.SPartition Block+ (j-1).SBasic Block) + 1/NBasic 

Block * 1/2 * 1/NPartition Block ∑∑∑
−

===

iN

1j

N

1i

N

0k

BlockPartitionBlockPartitionBlockBasic

P(SBasic 

Block – IAN.k + (j-1).SPasic Block + (j-1) SBasic Block < L(x) < SBasic 

Block – IAN.k + j.SPartition Block + (j-1). SBasic Block) 

 

It is seen that SCFC method should have a better fault 

coverage in comparison with the other methods due to being 

able to detect a percentage of the first kind of Type 3 jump 

(Type 3-1). Table 3 shows the results of applying SCFC 

method on Quick Sort, Matrix Multiplying, and Bubble Sort 

benchmarks in terms of the detection percentage of each kind 

of jump. 
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TABLE 3: RESULTS OF APPLYING SCFC METHOD ON THREE BENCHMARKS  

Benchmarks Ptype-1 (%) P type-2 (%) P type-3*
 (%) 

QS 74.7 15.7 9.6 

MM 72.1 16.7 11.2 

BS 78.6 12.6 8.8 

Average 75.13 15 9.86 

* Ptype 3-1(QS)=4.4, Ptype 3-1(MM)=5.3, Ptype 3-1(BS)=3.3, Ptype 3-1(Average)=4.33 
          Ptype 3-2(QS)=5.2, Ptype 3-2(MM)=5.9, Ptype 3-2(BS)=5.5, Ptype 3-2(Average)=5.53  

 

It can be concluded from the equations given and the figures 

of Table 3, SCFC is able to detect Type1, Type 2 and Type 3-

1 (as shown in the bottom part of Table 3) errors. As it was 

mentioned before, other error detection methods do not have 

Type 3-1 error detection capability. Therefore, it can be 

derived from Table 3 figures that SCFC method has at least 

4.33% more error detection capability than other methods. 

This figure is consistent with the results of experimental 

methods. 

V. CONCLUSION  

This paper presents a new control flow checking method, 

SCFC, which divides the program into some basic blocks and 

inserts redundant instructions and a signature in them. The bit 

number of the signature is equal to the number of basic blocks 

and is derived from the control flow graph of the program and 

based on the successors of each block. SCFC inserts some 

redundant instructions in the middle of basic blocks, so that it 

can detect a percentage of illegal intra block jumps beside 

inter block ones. On the other hand, this method has less 

memory and performance overheads in comparison with the 

other proposed methods in this field. Errors that occur in harsh 

industrial environments, such as in space environments, may 

lead to destructions that can have very costly results such as 

human hazards and the loss of very costly equipment. 

Therefore, increasing reliability in these systems is very 

important.  The method proposed in this paper therefore 

carries a greater importance in comparison with similar works 

in this field. 

In this paper, a new metric called Evaluation Parameter is 

introduced that simultaneously considers fault coverage, 

memory and performance overheads. In this way each method 

can be evaluated efficiently. SCFC is used with three standard 

benchmark programs of this field, i.e., bubble sort, quick sort 

and matrix multiplication. The fault coverage is computed 

experimentally and analytically. The results obtained indicate 

that SCFC has better fault coverage and less memory and 

performance overheads in comparison with the previously 

proposed methods in literature.  One other difference of the 

proposed method from the other software-based methods is 

the utilization of a hardware fault injection tool that decreases 

the fault injection time. Furthermore, the injection 

environment is, in this case, more similar to the real 

environment. For example, SR (Status Register) and PC 

registers can be directly manipulated. 
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