
Physica A 433 (2015) 92–99

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Randommatrix theory and portfolio optimization in
Moroccan stock exchange
Marwane El Alaoui ∗
Department of Management — Faculty of Legal, Economic and Social Sciences — Agdal, Mohammed V University of Rabat, Avenue des
Nations-Unies, B.P. 721 Agdal — Rabat, Morocco

h i g h l i g h t s

• We studied the cross-correlation among stocks of Casablanca Stock Exchange portfolio.
• We used Marčenko–Pastur distribution to analyze eigenvalues.
• We analyzed distribution of eigenvectors components.
• We used the inverse participation ratio to measure the deviation degree of eigenvectors.
• We found that more than 11% of eigenvalues might contain the pertinent information.
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a b s t r a c t

In this work, we use random matrix theory to analyze eigenvalues and see if there is a
presence of pertinent information by using Marčenko–Pastur distribution. Thus, we study
cross-correlation among stocks of Casablanca Stock Exchange. Moreover, we clean corre-
lation matrix from noisy elements to see if the gap between predicted risk and realized
risk would be reduced. We also analyze eigenvectors components distributions and their
degree of deviations by computing the inverse participation ratio. This analysis is a way to
understand the correlation structure among stocks of Casablanca Stock Exchange portfolio.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Due to financial globalization,markets becomemore andmore connected and dynamic. So, investors should usemethods
that allow them to maximize their expected returns in these markets. There exist numerous methods for this end, the most
known is Markowitz’s model [1]. It estimates risk and expected returns based on the standard deviation and the expected
value of returns. Other methods have aroused to manage and optimize portfolios. Correlation seems to be an important
element to study portfolio management; we should have a way to understand interactions among matrices of returns.
Numerousmethodswere proposed to study cross-correlation among series [2–6]. Besides, cross-correlationwas also studied
among several financial series [6–13].

In this paper, we are interested on another interesting method called Random Matrix Theory (RMT) to study cross-
correlations among stocks of one portfolio. This method was used in nuclear physics by Wigner [14]. It was also used by
Dyson and Mehta [15] to explain the energy levels of complex nuclei [16].

RMT has been used to analyze correlation in the finance area and specially to improve portfolio management. By using
RMT, Pafka and Kondor [17] found that the effect of noise in correlationmatrices determined from financial series can indeed
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be large that the filtering based on randommatrix theory is particularly powerful in this respect. Laloux et al. [18,19] found
that the empirical correlation matrix leads to a dramatic underestimation of the real risk, by overinvesting in artificially
low-risk eigenvectors. They found that less than 6% of the eigenvectors, which are responsible of 26% of the total volatility,
appear to carry some information. Pafka and Kondor [20] found that ‘‘realized’’ risk is a good proxy for ‘‘true’’ risk in all cases
of practical importance and that ‘‘predicted’’ risk is always below, whereas ‘‘realized’’ risk is above the ‘‘true’’ risk. Using a
simulation-based approach they show that for parameter values typically encountered in practice the effect of noise on the
risk of the optimal portfolio may not necessarily be as large as one might expect. Wang et al. [21] investigated the statistical
properties of cross-correlations in the US stockmarket. They found that the DCCA coefficient method has similar results and
properties with Pearson’s Correlation Coefficient, such as the properties of the largest eigenvalue and the corresponding
eigenvector. Daly et al. [22] found that RMT-based filtering can, in the most cases, improve the realized risk of minimum
risk portfolios. Plerou et al. [16] analyzed cross-correlations between price fluctuations of different stocks using methods
of random matrix theory (RMT). They concluded that the deviating eigenvectors are useful for the construction of optimal
portfolios that have a stable ratio of risk to return.

In this paper, we use RandomMatrix Theory to study cross-correlation among stocks of Casablanca Stock Exchange. We
clean the correlation matrix to observe if the difference between predicted risk and realized risk will be reduced. We also
analyze eigenvectors through their distributions and by computing the inverse participation ratio. This paper is organized
as follows, in Section 2 we present a brief description of data. Then, we expose in Section 3 the theoretical background of
RMT. In Section 4, we show the main empirical results and finally we conclude.

2. Data

The data used include 62 securities listed in the Casablanca Stock Exchange.1 We chose the period from the 1st January
2008 to the 3rd January 2014, we have then 1492 daily closing prices and 1491 logarithmic returns.

We designate by pt the closing price of the index on day t . In the present paper, the method applied to the natural
logarithmic returns of the index is defined by:

rt = ln

pt+1

pt


. (1)

Then, we compute mean return and standard deviation of each of these securities before establishing the portfolio
selection process.

3. Theoretical background

In order to quantify correlations, we first calculate the price change (‘‘return’’) of stock i = 1, . . . ,N over a time scale1t ,
Gi (t) ≡ ln Si (t + 1t) − ln Si (t) ,

where Si (t) denotes the price of stock i. Since different stocks have varying levels of volatility (standard deviation), we define
a normalized return

gi (t) ≡
Gi (t) − ⟨Gi⟩

σi
,

where σi ≡


⟨G2

i ⟩ − ⟨Gi⟩
2 is the standard deviation of Gi, and ⟨. . .⟩ denotes a time average over the period studied.We then

compute the equal-time cross-correlation matrix C with elements
Cij ≡ ⟨gi(t)gj(t)⟩.

By construction, the elements Cij are restricted to the domain −1 ≤ Cij ≤ 1, where Cij = 1 corresponds to perfect relations,
Cij = −1 corresponds to perfect anti-correlations, and Cij = 0 corresponds to uncorrelated pairs of stocks.

The difficulties in analyzing the significance and meaning of the empirical cross-correlation coefficients Cij are due to
several reasons, which include the following:
(i) Market conditions change with time and the cross-correlations that exist between any pair of stocks may not be

stationary.
(ii) The finite length of time series available to estimate cross-correlations introduces ‘‘measurement noise’’.

If we have N returns with the same length equal to L, then, the empirical cross-correlation matrix C could be computed by
Cij. In our case, we have N = 62 and L = 1491. By diagonalizing matrix C, we obtain

Cuk = λkuk.

In matrix notation, the correlation matrix can be expressed as

C =
1
L
GGT

1 http://www.casablanca-bourse.com/.
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where G is an N × L matrix with elements {gim ≡ gi (m1t) ; i = 1, . . . ,N;m = 0, . . . , L − 1}, and GT denotes transpose of
G. Therefore, we consider a random correlation matrix

R =
1
L
AAT ,

where A is an N × L matrix containing N time series of L random elements aim with zero mean and unit variance that are
mutually uncorrelated.

Statistical properties of random matrices such as R are known [23,24]. Particularly, in the limit N → ∞, L → ∞ such
that Q ≡ L/N(> 1) is fixed, the probability density function Prm(λ) of eigenvalues λ of the random correlation matrix R is
given by

Prm (λ) =
Q

2πσ 2

√
(λ+ − λ) (λ − λ−)

λ
.

For λ within the bounds λ− ≤ λi ≤ λ+, where λ− and λ+ are the minimum and maximum eigenvalues of R, respectively,
given by

λ± = σ 2


1 +

1
Q

± 2


1
Q


where σ 2 is equal to the mean of eigenvalues of the correlation matrix [25].
– Distribution of eigenvector components

The distribution of the components {uk(l)|l = 1, 2, . . . ,N} of an eigenvector uk of a random correlation matrix R should
obey the standard normal distribution with zero mean and unit variance [16],

PR (u) =
1

√
2π

exp


−
u2

2


.

– Inverse participation ratio
In order to quantify the number of components that participates significantly in each eigenvector, we use the inverse

participation ratio [26,27,16]. It also reflects the deviation degree of the distribution of eigenvectors from RMT results. It
distinguishes between one eigenvector with approximately equal components and another with a small number of large
components.

The IPR of the eigenvector uk is defined as

Ik ≡

N
l=1

[uk
l ]

4,

where uk
l , l = 1, . . . , 1000 are the components of eigenvector uk. The physical meaning of Ik can be illustrated by two

limiting cases:

(i) a vector with identical components uk
l ≡ 1/

√
N has Ik = 1/N , whereas

(ii) a vector with one component uk
l = 1 and the remainder zero has Ik = 1.

Thus, the IPR quantifies the reciprocal of the number of eigenvector components that contribute significantly [26,28–33].
If deviations at edges of the eigenvalue spectrum are considerably larger than the mean of IPR ⟨I⟩, it suggests that the

vectors are localized (localization theory) [28–33].
In the context of localization theory, one frequently finds ‘‘random band matrices’’ [28–32].

4. Empirical results

In this section, we start by analyzing the empirical distribution and the theoretical distribution of Marčenko–Pastur of
eigenvalues (see Fig. 1).We observe that there are deviations from the interval of eigenvalues [λ−, λ+] predicted by Random
Matrix Theory. Then, these deviating values might contain pertinent informations in the market and they are not noisy
elements.

It is found that theoretical eigenvalues bound (maximum and minimum) are λmax = 1.4497 and λmin = 0.6337. We
have 62 (N) equities and 1491 (L) daily returns for each equity. Then, the value of Q is equal to L

N = 24.0484.
By analyzing results, we observed that seven eigenvalues deviate from the RMT interval of predictions. These deviations

represent 11.29% of the total of eigenvalues. Laloux et al. [18] found that there is less than 6% of eigenvalues that might
contain the pertinent information. In our case, the percentage is very important and then, only 88.71% of eigenvalues deals
with randommatrix theory distribution. Moreover, the maximum of empirical value of eigenvalues (λ1 = 4.2456) exceeds
what is predicted by randommatrix theory λmax = 1.4497.

Consequently, it is important to analyze these pertinent informations to exploit them because they could be very useful
for portfolio management.
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Fig. 1. Theoretical (Marčenko–Pastur) and empirical distributions of eigenvalues.

Fig. 2. Predicted risk and realized risk using the correlation matrix and the cleaned correlation matrix.

4.1. Cleaning correlation matrix

In order to see the effect of noisy elements belonging to random matrix theory, we clean matrix correlation from these
elements. For this reason, we divide the series into two equal sub-periods for the 62 equities. The first sub-period presents
the ‘‘predicted risk’’ and the second one presents the ‘‘realized risk’’.

First, we separate eigenvalues that are noisy and those that are non-noisy elements. These last are situated out of the
bound of RMT predictions. Then, we hold deviating elements from [λ−, λ+] and we replace the others by their average to
maintain the same matrix trace. We will have identity matrix of these elements. At this moment, we could construct the
new correlation matrix cleaned from noisy elements [18].
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Fig. 3. Distribution of eigenvector components for the largest eigenvalue (λ1).

Fig. 4. Distribution of eigenvector components of an eigenvalue (λ2) deviating from the interval predictions of RMT.

In Fig. 2, we find that the gap, existing between the predicted risk and the realized risk, is reduced slightly when the
correlation matrix is cleaned.

Therefore, the cleaning procedure of matrix correlation from noisy elements improves marginally the quality of
prediction by reducing a little the difference between predicted efficient frontier and realized one.

4.2. Distribution of eigenvector components

To analyze the distribution of eigenvectors, we compare distribution of eigenvector components that are included in the
bounds of RMT predictions [λ−, λ+] with those that are outside.

In Fig. 3, the normal distribution of the largest eigenvector components (λ1) presents a negative mean that is different
to zero. Then, there is an asymmetric distribution in the left.
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Fig. 5. Distribution of eigenvector components of an eigenvalue (λ12) deviating from the interval predictions of RMT.

We show in Fig. 4 eigenvector components distribution of an eigenvalue (λ2) deviating from the RMT interval of
predictions. We see that the distribution is slightly asymmetric in the right and data are not well fitted.

For the case of eigenvector components distribution of eigenvalue λ12 (Fig. 5) that deviate from predictions interval
of RMT, we see that the distribution is clustered in the center. Some observations are not well fitted by the normal law
distribution as it is observed in the left. Moreover, the values of P(u) are seemed to be high.

However, the distribution of eigenvector components of an eigenvalue (λ50) that is included in the interval predictions
of RMT seems to be well adjusted to the normal distribution (see Fig. 6). Thus, the distribution is centered in zero and it has
a relatively constant standard deviation.

Fig. 6. Distribution of eigenvector components of an eigenvalue (λ50) that is included in the interval predictions of RMT.

Comparatively to the other results corresponding to deviated eigenvalues from RMT interval of predictions, the values
of P(u) are not so high and the normal distribution fitting is best for eigenvector components of λ50 than λ1, λ2 and λ12.
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Fig. 7. Inverse participation ratio and eigenvalues.

Fig. 8. Inverse participation ratio and their rank.

Besides, we remark that asymmetry is more sharp for λ1 than that of λ50. By considering the fact that λ1 may represent
the market, we could say that the market reacts more to the negative variations than to the positive ones.

4.3. Inverse participation ratio

We use the inverse participation ratio to examine elements that participate significantly in each eigenvector. This ratio
measures their degree of deviations.

By analyzing Fig. 7,we observe a significant deviation of inverse participation ratio (IPR) for the first eigenvalues. Thus, the
deviation of the largest value relatively to the smallest one is more than 5 times. This means that eigenvectors are localized.
The red line shows the level of noise that is equal to the average of IPR. In our case, we put the average of IPR as ⟨I⟩ ≈ 3/N .

When IPR Ik values are estimated to be so high relatively to theirmean ⟨I⟩, it implies that only some companies contribute
in the eigenvectors.

We see in Fig. 8 that IPR values still close to the level of noise except the important deviations observed for the first
elements.
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5. Conclusion

To conclude, we could say that RMT allows us to analyze in detail the correlation structure of a portfolio of equities. In this
effect, Marčenko–Pastur distribution presented the theoretical interval of RMT predictions to observewhich eigenvalues are
deviating by plotting their empirical distribution. These deviating eigenvalues might contain important information about
market and they represents about 11% of the studied eigenvalues of Casablanca Stock Exchange stocks.

By observing the largest eigenvector components distribution, we see that there is a sharp asymmetry in the left, which
means that the market reacts more to bad events than good events. Portfolio managers should consider this when they
construct their portfolios.

In addition, the cleaning procedure of correlation matrix reduced slightly the gap between predicted and realized risks.
This procedure could be helpful for practitioners by reducing their errors of predictions.

Moreover, the analysis of eigenvectors components distributions of eigenvalues showed that normal distribution fitting
is not very suitable for elements that are outside of the range of RMT predictions, which confirms that they are not noisy
elements.

Finally, the inverse participation ratio gives more precision about deviation degree of eigenvalues elements in order to
understand better the correlation structure of the portfolio.
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