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In this paper, a genetic algorithm (GA) based on discrete wavelet transformation (DWT) is proposed to
overcome the drawback of the time-consuming for the fractal encoder. First, for each range block, two
wavelet coefficients are used to find the fittest Dihedral block of the domain block. The similar match
is done only with the fittest block to save seven eighths redundant MSE computations. Second, embed-
ding the DWT into the GA, a GA based on DWT is built to fast evolutionary speed further and maintain
good retrieved quality. Experiments show that, under the same number of MSE computations, the PSNR
of the proposed GA method is reduced 0.29 to 0.47 dB in comparison with the SGA method. Moreover, at
the encoding time, the proposed GA method is 100 times faster than the full search method, while the
penalty of retrieved image quality is relatively acceptable.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction incorporates the adjusted quad-tree scheme into the no-search
Fractal image compression (FIC) is a time-consuming encode
algorithm. The original idea was proposed by Barnsley and Demko
in 1985 [1] and the practical FIC algorithm was not implemented
until 1992 by Jacquin [2]. The reason of the FIC spends overlong
time on encode is that, based on the self-similarity property of real
life images and Partitioned Iterated Function System (PIFS) [3,4],
each range block must searching for the best matched block from
the large domain pool. A large number of the redundant similar
computations will slow down the encoding speed of the FIC. There-
fore, the main research direction for FIC is focused on how to
reduce the encoding time under the premise of maintaining
retrieve image quality.

In the past, many encoding algorithms were presented to
speedup the fractal encoder. In 2004, Truong et al. [5] proposed a
fast fractal image compression using spatial correlation. The
method limits the search space for the current range block on
the neighborhoods of the matched domain blocks of the neighbor-
ing range blocks by utilizing the spatial correlations between
neighboring blocks in both the domain pool and the range pool.
Compared to full search method, the method achieves a 2.6 times
speedup ratio. In the same year, Furao’s no search method [6]
scheme to improve coding fidelity significantly. In 2005, Duh
et al. [7] classifies the blocks into three classes by using DCT. The
classifier limits the similar match can be done only when the range
block and domain block belong to the same class. Hence, the
method can achieve 3 times speedup ratio in comparison to full
search method. Wang et al. [8] in 2009 combine quad-tree frame-
work, neighbor search, and asymptotic strategy to implement a
fast coding method. Then Wang et al. [9] in 2010 proposed further
a no-search fractal image coding method based on a fitting plane to
improve the Furao’s no search method. Compared to Furao’s no
search method, the compression ratio, the quality and encoding
time are all improved greatly. As discussed above, the Fractal
coding techniques can be roughly categorized into classification
[7,10–14], quad-tree [6,8,15,16], no search [6,9,16], and spatial
correlation techniques [5,14,17,18], etc.

Recently, there are evolutionary algorithms [17,19–23] used to
solve the problem of the encoding of the FIC, in which genetic algo-
rithm (GA) is the one of the most interested methods to the
researchers. Traditionally, there are two chromosome formations
are used to carry out the evolution of the GA algorithm. The first
chromosome formation is composed of the x-coordinate and y-
coordinate of the domain block in an image and Dihedral index.
Such GA method can reduce indeed the computational load sub-
stantially, because each chromosome represents a Dihedral trans-
formation block of the domain block and only the transformed
block is taking to do the similar match with the range block. But
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Table 1
The 8 transformations in the Dihedral group.
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Fig. 1. The diagram of eight transformations in the Dihedral group.
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the disadvantage is that the landscape of the search space is too
complicated to find the good matched solution. Hence, the
improvement of the retrieved quality is limited. The second chro-
mosome formation is formed by x-coordinate and y-coordinate of
the domain block in an image. The landscape of the search space
of the GA method is smooth and easy to find the near optimal solu-
tion. Such chromosome formation indeed can achieve good
retrieved quality. But the drawback is each chromosome stands
for a domain block, each range block must do the similar match
with all the eight Dihedral transformation blocks of the domain
block. A large number of MSE computations will slow down the
speed of the encoder. Therefore, the trade-off between the
retrieved image quality and encoding speed exists in the two chro-
mosome formations.

In this paper, we propose a GA based on DWT to overcome the
trade-off problem. First, a FIC using DWT is addressed to eliminate
redundant MSE computations. For each range block, the method
uses two wavelet coefficients to find the fittest Dihedral block from
the eight Dihedral blocks of the domain block. The range block
does the similar match only with the fittest Dihedral block. The
other seven Dihedral blocks are discarded. Thus seven eighths
redundant MSE computations will be ignored to achieve the goals
of accelerating the fractal encoder and maintaining the retrieved
image quality. Second, embedding the DWT technique into the
GA, a GA based on DWT is implemented. The evolution speed of
the proposed GA method will be faster than that of the traditional
GA method since the length of the chromosome is shorter. This is
because the fittest Dihedral block of the domain block has been
determined and thus not required in the chromosome. Finally,
the proposed GA method also attempts to compare with the other
genetic method to demonstrate the performance of the proposed
GA method.

In the next section, the theoretical basis of fractal image com-
pression is outlined. The FIC using DWT is given in Section 3.
Embedding the DWT into the GA, the proposed GA method is intro-
duced in Section 4. In Section 5, the experimental results of com-
paring the proposed GA method with the full search and the
other GA methods are provided. A conclusion is stated in Section 6.
2. Fractal image encoding

The fundamental idea of the fractal image compression is com-
ing from the PIFS. For a original gray level image f of size m �m, let
the range pool R be the set of (m/n)2 non-overlapping blocks of size
n � n in the image f. For obeying the Contractive Mapping Fixed-
Point Theorem, the domain block must exceed 1 times than the
range block in size. Let the contraction ratio of the fractal coding
be 2. Hence, the domain pool D is the set of (m � 2n + 1)2 overlap-
ping blocks of size 2n � 2n in the image f. Based on the local self-
similarity property in a nature image, each range block v from
the R searches for the most similar block in the domain pool D to
construct the fractal affine transformation. The parameters repre-
senting the fractal affine transformation will form the fractal com-
pression code of v.

To encode an image, the domain block of the size 2n � 2n must
be sub-sampled to n � n such that its size is the same as v and
denotes as u. In addition to the position of the domain block, the
fractal affine transformation includes the Dihedral index d of the
domain block. Hence, all the eight Dihedral transformation blocks
uk:k = 0, 1, . . . ,7 of the u must do the similarity match with v to find
the optimal one. The eight Dihedral transformation blocks are gen-
erated by the eight transformations Tk:k = 0, 1, . . . ,7, respectively,
which expressed by the matrices in Table 1, in which the origin
of u is assumed to locate at the center of the block. An illustration
of the eight Dihedral transformations is depicted in Fig. 1 [20]. T0
takes the origin block u. Hence u0 = u. T1 and T2 are the flip of u with
respect to horizontal and vertical lines, respectively. T3 is the flip of
u with respect to both horizontal and vertical lines. T4, T5, T6, and T7

are the flip of the u0, u1, u2, and u3 along the main diagonal line,
respectively.

The fractal affine transformation also includes the contrast scal-
ing p and the brightness offset q of the transformed blocks. Thus
the fractal affine transformation u of u(x,y) can be expressed as

u
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where the sub-matrix a11 a12

a21 a22

� �
represents the one of eight Dihe-

dral transformations in Table 1 and (tx, ty) is the coordinate of the
domain block in the domain pool. For each domain block in the
domain pool, the eight MSE computations between its eight Dihe-
dral transformation blocks and v are done to find the index d of
the best matched transformation block such that

d ¼ arg min kpk � uk þ qk � vk : k ¼ 0;1;2; � � � ;7f g:

Here, pk and qk can be computed directly by

pk ¼
½Nhuk;vi � huk; 1

*

ihv ; 1
*

i�

½Nhuk;uki � huk; 1
*

i2�
; qk ¼

1
N
½hv ; 1

*

i � pkhuk; 1
*

i�;

where N is the number of pixels of the range block and
1
*

¼ 1 1 � � � 1½ �T .
As u runs over all the (m � 2n + 1)2 blocks in the domain pool,

the best domain block is obtained. The parameters, including the
coordinate (tx, ty), the Dihedral index d, contrast scaling p, and
brightness offset q, constitute the fractal compression code of v.
Finally, as v runs over all (m/n)2 blocks in the range pool, the
encoding process is completed. Such method is referred to as the
full search method. There are (m � 2n + 1)2 domain blocks and
(m/n)2 range blocks, and together with the eight Dihedral
transformation, the amount of MSE computation is therefore
(m � 2n + 1)2 � 8 � (m/n)2. For the case of 256 � 256 image with
8 � 8 coding unit, the amount of MSE computations is
(256 � 15)2 � 8 � (1024)2 = 475, 799, 552.



Table 2
The variation of magnitude and sign of LHn and HLn of an image block after eight
Dihedral transformations.

Origin image T0 T1 T2 T3 T4 T5 T6 T7

LHn A A A �A �A B �B B �B
HLn B B �B B �B A A �A �A
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To decode, the compression codes of (m/n)2 range blocks make
up the affine transformations. According to Contractive Mapping
Fixed-Point Theorem and Collage Theorem [24], we select an arbi-
trary initial image and perform the affine transformations recur-
sively. The process will not stop until some criterion is met.

3. The fractal encode algorithm using discrete wavelet
transformation

In this section, a fractal image compression (FIC) using discrete
wavelet transformation (DWT) is introduced. For each range block,
two discrete wavelet coefficients are used to determine which
Dihedral block among the eight Dihedral blocks of the domain
block is fittest. The range block does the similar matching only
with the fittest Dihedral block to achieve the number of one eighth
MSE computations in comparison with the full search method.

Essentially, the DWT of an image is a two-dimension DWT.
Fig. 2 shows the n-level DWT decomposition of an image block,
in which the size of the image block is 2n � 2n and LLn, LHn, HLn,
and HHn are real number. LLn is called direct coefficient and is
the average value of all the pixel of the image block. It reveals
the low frequency information of the image block. LHn, HLn, and
HHn are called detail coefficients, which depict the contour infor-
mation of the horizontal edge, the vertical edge, and the diagonal
edge of the image block, respectively. Especially, the magnitudes
of LHn and HLn reflect respectively the intensity variation between
the upper half and lower half and the intensity variation between
the left half and right half for the image block. The signs of them
show respectively the variation of the brightness from bright to
dark at vertical and horizontal directions. If LHn > 0, the brightness
at the upper is higher than the one at the lower. On the contrary, if
LHn < 0, the brightness at the upper is smaller than the one at the
lower. Similarly, If HLn > 0, the brightness at the left half is higher
than the one at the right half. Opposite, if HLn < 0, the brightness at
the left half is smaller than the one at the right half. Moreover,
Table 2 shows the variation of magnitudes and signs of LHn and
HLn for an image block through eight Dihedral transformations.
At the second column, the LHn and HLn of the original image block
are A and B, respectively. The fifth column shows the coefficients
LHn and HLn of the transformed block obtained by T2 transforma-
tion on the original image block, which are – A and B, respectively.
Compared the LHn and HLn of the two image blocks, their absolute
magnitudes are the same and only the sign of the LHn is opposite.
The table indicates that when an image block is carried out the
Fig. 2. The n-level decomposition of an image block of size 2n � 2n.
Dihedral transformation, the LHn and HLn of the transformed block
with respect to the original image block only changed their sign
and/or exchanged their magnitude.

For the two image blocks f1 and f2, their LHn and HLn are LHn1

and HLn1 and LHn2 and HLn2, respectively. The two image blocks
are the similar if the signs of their LHn and HLn are the same and
the absolute magnitudes of their LHn and HLn are very near, i.e.,
sign(LHn1) = sign(LHn2), sign(HLn1) = sign(HLn2), |LHn1| � |LHn2|,
and |HLn1| � |HLn2|. In other words, under such a condition, the
two image blocks have the same edge direction and the same var-
ied direction of the brightness. Therefore for the given range block
r and domain block d, we must find a best Dihedral transformation
Tk;0 6 k 6 7 such that Tk(d) is the best match of r. In this case, the
LHn and HLn of both Tk(d) and r conform the relationship stated
above. The Tk(d) is most similar to r and the Tk will be the optimal
Dihedral transformation between them. Table 3 lists the optimal
Dihedral transformation relationship between the range block r
and domain block d by using LHn and HLn, in which LHnr and HLnr
are the LHn and HLn of the r, respectively, and LHnd and HLnd are
the LHn and HLn of the d, respectively. For example, if the LHnr and
HLnr of the r have the relation shown on row 4 of Table 3, i.e.,
LHnr < 0, HLnr > 0, and |LHnr| > |HLnr|, the r has obviously horizon-
tal edge and the brightness at the lower and the left half is higher
than the brightness at the upper and the right half, respectively. A d
is taken to match with the r and the relation of LHnd and HLnd is
described by column 6 of Table 3, i.e., LHnd > 0, HLnd > 0, and
|LHnd| < |HLnd|. The d has obviously vertical edge and the bright-
ness at the upper and the left half is higher than the brightness
at the lower and the right half, respectively. According to the indi-
cation of Table 3, the d is taken T5 transformation. Table 2 shows
that when the block d is transformed using T5, the LHnd and HLnd
of the transformed block T5(d) are equal to the �HLnd and LHnd of
d, respectively, in which the transformed block T5(d) has the condi-
tion of LHnd < 0, HLnd > 0, and |LHnd| > |HLnd|. The transformed
block T5(d) will also have obviously horizontal edge and the bright-
ness at the lower and the left half is higher than the brightness at
the upper and the right half, respectively. Hence for all eight Dihe-
dral transformation blocks of the d, the transformed block T5(d) is
the most similar to the r at the visual viewpoint. The r does the
similar match only with the optimal transformed block T5(d). The
others seven transformed blocks Tk(d), k = 0, 1, 2, 3, 4, 6, 7 will be
discarded. Thus, compared to the full search method, the proposed
method needs only one eighth MSE computations and the resulting
retrieved image quality is almost the same as that of full search
method.

The detailed steps of the FIC using DWT are stated as follows:

1. Calculate LHnr and HLnr of all the range blocks and LHnd
and HLnd of all the domain blocks.

2. j = 0.
3. i = 0.
4. Select the optimal Dihedral transformation Tk between rj

and di from the Table 3. Take Tk transformation to di accord-
ing to the Table 2 to obtain the optimal transformed block
Tk(di).

5. Perform the similar match of rj and Tk(di). If the MSE value of
the domain block di is smaller than that of the preceding opti-
mal domain blocks, record its parameters as fractal code of rj.



Table 3
The optimal Dihedral transformation relationship between the range block and domain block by using LHn and HLn.

Range Domain

LHnd > 0 LHnd > 0 LHnd < 0 LHnd < 0 LHnd > 0 LHnd < 0 LHnd > 0 LHnd < 0
HLnd > 0 HLnd < 0 HLnd > 0 HLnd < 0 HLnd > 0 HLnd > 0 HLnd < 0 HLnd < 0
|LHnd| > |HLnd| |LHnd| > |HLnd| |LHnd| > |HLnd| |LHnd| > |HLnd| |LHnd| < |HLnd| |LHnd| < |HLnd| |LHnd| < |HLnd| |LHnd| < |HLnd|

LHnr > 0 T0 T1 T2 T3 T4 T6 T5 T7

HLnr > 0
|LHnr| > |HLnr|

LHnr > 0 T1 T0 T3 T2 T6 T4 T7 T5

HLnr < 0
|LHnr| > |HLnr|

LHnr < 0 T2 T3 T0 T1 T5 T7 T4 T6

HLnr > 0
|LHnr| > |HLnr|

LHnr < 0 T3 T2 T1 T0 T7 T5 T6 T4

HLnr < 0
|LHnr| > |HLnr|

LHnr > 0 T4 T5 T6 T7 T0 T2 T1 T3

HLnr > 0
|LHnr| < |HLnr|

LHnr < 0 T5 T4 T7 T6 T2 T0 T3 T1

HLnr > 0
|LHnr| < |HLnr|

LHnr > 0 T6 T7 T4 T5 T1 T3 T0 T2

HLnr < 0
|LHnr| < |HLnr|

LHnr < 0 T7 T6 T5 T4 T3 T1 T2 T0

HLnr < 0
|LHnr| < |HLnr|
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6. Increment i by one. If i is smaller than (m � 2n + 1)2, go to
step 4.

7. Increment j by one. If j is smaller than (m/n)2, go to step 3.
Otherwise stop.

In Step 4, rj and di represent jth range block and ith domain
block, respectively. Tk(di) is the transformed block obtained by tak-
ing Tk transformation to di. In Step 6 and 7, the quantities
(m � 2n + 1)2 and (m/n)2 are the size of domain pool and range
pool, respectively, described in Section 2. Since rang block per-
forms the similar match only with the optimal Dihedral trans-
formed block, the number of the MSE computations of the
method is reduced to (m � 2n + 1)2 � (m/n)2.

4. Genetic algorithm based on DWT for fractal image
compression

In Section 3, by using two discrete wavelet coefficients LHn and
HLn, the FIC using DWT method in comparison to the full search
method can reduce seven eighths number of the MSE computa-
tions. In this section, the two discrete wavelet coefficients LHn
and HLn are embedded into the GA to speedup the fractal encoder
further. The GA based on DWT will overcome the disadvantages of
the traditional GA method described in Section 1 to settle the
trade-off problem between retrieved quality and encoding speed.

In the proposed GA method, the chromosome is formed using
the x-coordinate and y-coordinate of the domain block in the
image. The reason is that, for each range block, the optimal Dihe-
dral transformed block of the domain block represented by the
chromosome can be determined directly from Table 3 according
to their LHn and HLn. Since the optimal Dihedral transformation
is obtained from the DWT coefficients, it is not necessary to include
the Dihedral index in the GA chromosome. The short chromosome
represents a smooth search space and easy to find a good solution.
Furthermore, although the chromosome stands for a domain block,
but its optimal Dihedral transformed block can be determined
from Table 3 in advance. Hence only the optimal Dihedral trans-
formed block for the chromosome is taken to do the similar match
with the range block. The other seven Dihedral blocks will be
ignored. Integrating with the statements above, the GA based on
DWT method can improve indeed the trade-off problem between
retrieved quality and encoding speed for the traditional GA
method. The setup of the proposed GA method is summarized as
follows:

(1) Chromosome formation: As stated in above, the chromo-
some ci, i = 1, 2 , . . . ,M are constituted by x-coordinate and
y-coordinate of the domain block in an image. Here, M is
the size of the population.

(2) Fitness function: The similarity between the range block r
and the domain block d is measured by their MSE. Since
the smaller the MSE, the higher the similarity, the fitness
value is defined as the inverse of MSE.

(3) Selection mechanism: Selection mechanism selects two par-
ents from the mating pool to execute the crossover opera-
tion. In our proposed method, the ranking selection is
adopted to select the good chromosomes to evolve and avoid
precocity of the population.

(4) Crossover operation: Each pair of parents selected from the
mating pool undergoes the crossover operation to generate
the temporal offspring. The goal is to exploit the better can-
didate solution at the neighborhood of the parents. In our
proposed method, the uniform crossover is used.

(5) Mutation operation: The mutation operations are performed
on the temporal offspring to generate the chromosomes for
the next generation. The goal is to carry out the global explora-
tion in the whole search space in order to avoid pre-maturity.

(6) Stopping criterion: The stopping criterion is when a pre-set
number of iterations L is reached, the GA evolution will be
stopped.



Table 4
The comparison of PSNR and the number of the MSE computations between the FIC
using DWT and full search methods.

Image Method No. of MSE computations PSNR (dB)

Lena Full search 475,799,552 28.91
FIC using DWT 59,474,944 28.55

Pepper Full search 475,799,552 29.84
FIC using DWT 59,474,944 29.47

F16 Full search 475,799,552 25.21
FIC using DWT 59,474,944 24.70

Baboon Full search 475,799,552 20.15
FIC using DWT 59,474,944 20.04

0.20 0.60 1.00 1.40 1.80 2.20 2.60 3.00 3.40

Proposed GA method Schema GA method

MSE computations 610×

25.8
26

26.2
26.4
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dB

Fig. 3. The comparison of the PSNR versus the number of MSE computations for
Lena.
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(7) Elitism: The elitism preserves good chromosomes generated
in each of the GA iteration and directly sends them into the
next generation. The number of the selected good chromo-
somes is determined according to the user’s requirement.

According to the above operational strategies, a GA based on
DWT for FIC method is proposed. The detailed steps are given as
follows.

Initially, set the population size M, the crossover mask, cross-
over rate, mutation mask, mutation rate, the number of iteration L.

1. Calculate LHnr and HLnr of all the range blocks and LHnd and
HLnd of all the domain blocks.

2. j = 0.
3. Generate the initial chromosomes ci, i = 1, 2 , . . . ,M

randomly.
4. For all the chromosomes, select the optimal Dihedral trans-

formation Tk between rj and ci from the Table 3. Take Tk

transformation to ci according to the Table 2 to obtain the
optimal transformed block Tk(ci). Perform the similar match
of rj and Tk(ci).

5. Rank the chromosomes according to their fitness values.
6. If a pre-set number of iterations L is reached, record the frac-

tal code of rj and go to step 10. Otherwise, go to next step.
7. Select the parent chromosomes according to the select

mechanism.
8. Perform the uniform crossover to generate the temporary

offspring.
9. Perform the mutation operation on the temporary offspring

to generate the chromosomes of the next generation. Go to
step 4.

10. Let j add one. If j is equal to (m/n)2, then stop, otherwise go to
step 3.

Similar to the algorithm given in Section 3, the quantity (m/n)2

is the number of the range block. Let Tk(ci) be the optimal trans-
formed block obtained by taking Tk transformation on the block
corresponding to the chromosome ci. In each of the GA iteration,
range block rj does the similar match with the optimal transformed
blocks of M chromosomes. Hence, under the condition of the elit-
ism not considered, the number of the MSE computations for the
proposed GA method is equal to (m/n)2 �M � L in total. Further-
more, if the elitism is considered, the number of the MSE compu-
tations can be reduced further.

5. Experimental results

The performances of the proposed methods are simulated and
verified. The tested images are Lena, Pepper, F16, and Baboon, each
of which is of size 256 � 256. The size of range and domain blocks
for fractal coder is 8 � 8 and 16 � 16, respectively. The software
simulation is implemented using Borland C++ Builder (BCB) v6.0
running on a Pentium 2.0 GHz Windows XP PC. The difference of
image quality between the original image f(i, j) and the retrieved
image g(i, j) is measured by Peak Signal to Noise Ratio (PSNR)
defined as

PSNR ¼ 10� log
2552

MSE

 !
;

where MSE ¼ 1
m2

Pm�1
i;j¼0ðf ði; jÞ � gði; jÞÞ2 and m is the image size.

5.1. The comparison of FIC using DWT to full search method

The simulations of the FIC using DWT and full search methods
are performed to compare their efficiency. For the FIC using
DWT, the Haar wavelet is used. The range block and domain block
are decomposed using DWT up to 3 levels and 4 levels, respec-
tively, since their sizes are 8 � 8 and 16 � 16. Hence, in the Table 3,
the LHnr and HLnr of range block shown in the first column are
LH3r and HL3r, respectively, and the LHnd and HLnd of the domain
block shown in the first row are LH4d and HL4d, respectively.

Table 4 shows the comparison results between the FIC using
DWT and full search methods at the PSNR and the number of the
MSE computations. For the computational load of all the four
tested images, the numbers of the MSE computations of the FIC
using DWT and full search methods are 59,474,944 and
475,799,552, respectively. As discussed in Section 3, the FIC using
DWT method indeed needs only one eighth number of the MSE
computations. At the PSNR, the PSNR of the FIC using DWT and full
search methods for the Lena is 28.55 dB and 28.91 dB, respectively.
The difference of the retrieved image quality between the two
methods is only 0.36 dB. Moreover, for the Pepper, F16, and
Baboon, the decays of the retrieved image are also only 0.37 dB,
0.51 dB, and 0.11 dB, respectively. The quality of the retrieved
image of the FIC using DWT is almost the same as that of the full
search method.
5.2. The performance of the GA based on DWT for FIC

The Schema GA (SGA) method in [15] is used to compare with
our GA method to demonstrate the performance improvement of
our GA method. In the proposed GA method, the chromosome is
composed of the x-coordinate and y-coordinate of an image. The
crossover probability is 0.6 and the mutation probability is 0.05.
In SGA method, the chromosome is formed by the x-coordinate
and y-coordinate of an image and Dihedral index. The crossover
probability is 0.6. The mutation probability Pm,b of the superior clan
and the mutation probability Pm,w of the inferior clan are 0.05. The
GA parameters for the two methods are the same except the chro-
mosome formation. The number of the chromosome for the two
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methods is set to be 300. Furthermore, the data are obtained by
performing 10 runs and averaging the results to achieve proper
statistic comparison.

Fig. 3 shows the relation of the retrieved image quality versus
the number of MSE computations for the Lena. The data points
from left to right in Fig. 3 are acquired by executing the number
of the iteration of the GA from 1 to 20 in order. The figure shows
that, under each of the number of the fixed iteration of GA, the
number of the MSE computations for the two methods are very
closed, because their GA parameters are the same. In the begin-
ning, the PSNRs of the proposed GA and SGA methods are
26.38 dB and 25.83 dB, respectively. After the 4th iteration, the
PSNR of our method is beyond 27 dB already. The result exhibits
one important feature of the proposed GA method, i.e., we can
obtain acceptable retrieved image quality using only a small num-
ber of GA iterations. Finally, at the 20th iteration, the PSNRs of the
proposed GA and SGA methods are 27.78 dB and 27.49 dB, respec-
tively. As simulated, the proposed GA method, compared to SGA
method, reduces about 0.29 to 0.47 dB decay at retrieved image
under the same number of the MSE computations.
Table 5
The performance of GA based on DWT, Duh’s method, Schema GA, FIC using DWT and ful

Compression method Full search FIC using DWT

No. of iterations – –
Category number
PSNR (dB) 28.91 28.55
Decayed PSNR (dB) – 0.36
Time (s) 2735.58 425.08
Speedup ratio 1.00 6.44
No. of MSE computations 475,799,552 59,474,944
Reduced ratio 1.00 8.00
The retrieved image quality versus the encoding time is
depicted in Fig. 4. Similarly to Fig. 3, the data points from left to
right in Fig. 4 represents the number of the iterations of GA evolu-
tion from 1 to 20. The curve of proposed GA method compared to
the curve of SGA method is shifted slightly toward the right, since
the proposed GA method must expend a little time on the wavelet
decomposition to find LHn and HLn of all the blocks. Further to
observe, although the encoding time of the proposed GA method
executing 1 iteration is almost equal to that of the SGA method
executing 3 iterations, their retrieved image qualities are almost
the same. As the encoding time increases, the difference in the
retrieved image quality is enlarged gradually. The retrieved quality
of proposed GA method is still better than that of the SGA method
at the same encoding time.

Fig. 5 shows the decayed PSNR of the retrieved image versus the
number of MSE computations for the four tested images using the
proposed GA method. The decayed PSNR is obtained by using the
full search method as the benchmark for the comparison. The fig-
ure shows that the decay speed is fast at the beginning. As the
number of MSE computations is more than two million, the quality
decay slows down and maintains in an acceptable range. The phe-
nomenon is independent of the type of images.

Table 5 compares the performance difference of GA based on
DWT, Duh’s method [12], Schema GA, FIC using DWT, and full
search methods for Lena of size 256 � 256. For the FIC using
DWT, the encoding time is 425.08 s and the PSNR is 28.55 dB.
The decay of PSNR is only 0.36 dB. Hence its retrieved image qual-
ity is almost the same as that of full search method. As observed,
the speedup ratio is 6.44 in the encoding time while the amount
of MSE computation is reduced 8 times. This is because the pro-
posed method requires some overhead to calculate the wavelet
coefficients and the optimal Dihedral index. For the GA based on
DWT, the encoding time and the PSNR are 27.33 s and 27.78 dB,
respectively, in which the number of iterations of GA is 20. Under
the same number of iterations, the decay of PSNR, compared to
SGA method, is improved 0.29 dB with the penalty of outrunning
2.22 s encoding time. Moreover, in comparison to Duh’s method,
the decay of PSNR also is reduced from 1.32 dB to 11.3 dB under
the roughly same number of the MSE computations. However,
the encoding time is slightly increased due to the overhead of GA
operations. Finally, compared to the full search method, the
speedup ratio and reduced ratio are 100.09 and 142.41, respec-
tively. The loss is 1.13 dB decay at the retrieved image quality. Sim-
ilarly, because the GA based on DWT method requires some
overhead to calculate the wavelet coefficients, the optimal Dihe-
dral index, and the GA evolutionary, the value of speedup ratio is
also smaller than that of the reduced ratio. The reason is the same
as FIC using DWT.

Fig. 6 shows the decoded images under full search, FIC using
DWT, and GA based on DWT methods. The parameters are shown
in Table 5. As the visual effect shown in the figures, under the
speedup ratio of 6.44 times, the retrieved image of the FIC using
l search methods; the tested image is Lena of size 256 � 256.

Schema GA Duh’s method GA based on DWT

20 20
142

27.49 27.59 27.78
1.42 1.32 1.13
25.11 22.25 27.33
108.94 122.95 100.09
3,341,229 3,350,736 3,341,109
142.40 142.00 142.41
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Fig. 6. Retrieved images under full search, FIC using DWT, and GA based on DWT
methods.
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DWT method is the same as that of the full search method. More-
over, embedding the DWT into the GA, the speedup ratio is
increased to 100 times. Nevertheless the retrieved image quality
is still acceptable relatively.

6. Conclusion

In this paper, two fractal encode algorithms have been proposed
to overcome the problem of the time-consuming drawback for the
fractal encoder. First, a FIC using DWT is proposed to ignore unnec-
essary MSE computations produced by Dihedral transformations.
For each range block, two discrete wavelet coefficients: LHn and
HLn were used to determine the fittest Dihedral index of the
domain block. The range block does the similar match only with
the optimal transformed block of the domain block and the other
seven transformed blocks are discarded. Compared to full search
method, the method achieves 6.44 times speedup ratio with the
almost same retrieved image quality. Second, embedding the
DWT technique into the genetic algorithm, a GA based on DWT
is implemented to overcome the trade-off problem between the
quality and speed for the traditional GA. The proposed GA method
has the advantages of the fast speed of evolution and the less num-
ber of MSE computations, since the optimal Dihedral index was
determined to shorten the length of the chromosome effectively.
Compared to SGA method, the proposed GA method reduces about
0.29 to 0.47 dB decay at retrieved image under the same number of
the MSE computations. Moreover, at the encoding speed, the pro-
posed GA method is 100 times faster than the full search method
with the penalty of 1.13 dB decay at the retrieved image quality.
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