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Abstract To improve the efficiency and productivity of mod-
ern manufacturing, the requirements for enterprises are
discussed. The new emerged technologies such as cloud com-
puting and internet of things are analyzed and the bottlenecks
faced by enterprises in manufacturing big data analytics are
investigated. Scientific workflow technology as a method to
solve the problems is introduced and an architecture of
scientific workflow management system based on cloud
manufacturing service platform is proposed. The functions
of each layer in the architecture are described in detail and
implemented with an existing workflow system as a case
study. The workflow scheduling algorithm is the key issue
of management system, and the related work is reviewed.
This paper takes the general problems of existing algorithms
as the motivation to propose a novel scheduling algorithm
called MP (max percentages) algorithm. The simulation re-
sults indicate that the proposed algorithm has performed better
than the other five classic algorithms with respect to both the
total completion time and load balancing level.
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1 Introduction

Improving the efficiency and productivity is a great challenge
to manufacturing industry in the current economic globaliza-
tion. The optimization of manufacturing processes plays an
important role in enhancing the competitiveness of enter-
prises. However, that requires deeper analysis of various data
and a large number of computing experiments in the entire
life-cycle of a product. Fortunately, we are embracing the
big data environment that provides us the foundation of data
analysis and the possibility to discover the optimal strategy.
Under the “Internet of Things” (IoT) ideology, we adopt smart
sensors technologies such as RFID technologies and wireless
sensor network technologies to collect useful data ubiquitous-
ly [1]. Cloud computing which aims at providing the comput-
er storage and computation as services to help the enterprises
solve the problem of limited local resources during the process
of big data analytics [2]. But many enterprises are still suffer-
ing the deficiency of the capabilities of efficient storage, man-
agement and utilization of big data, and the techniques of
advanced computing and experiment management. They can-
not excavate useful information from big data and take full
advantage of existing tools or resources to improve the effi-
ciency of scientific discoveries. Therefore, a tool or platform
that intends to exploit the cloud or other distributed service
recourses, handle massive amounts of data, and manage the
complex procedures of different data analytics is required.
The analysis and utilization of manufacturing big data
mentioned above requires a lot of complex experiments and
a data processing application may consist of multiple compu-
tation steps and dependencies within them. In one application,
it may need the same one or more computation steps in anoth-
er application. Scientific workflow is very suitable and con-
venient to model such process and express the entire data
processing steps and dependencies for the users [3]. A
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scientific workflow is similar to the general workflow, which
organizes a set of tasks in an order according to their depen-
dent relations, but it is data-oriented not control-oriented
which means it pays more attention to the intensive operations
on data sets, and the dependencies emphatically describe the
flow of data streams [4]. The technology of scientific
workflow has been successfully introduced in the scientific
fields such as bioinformatics, genetics, astrophysics, and geo-
physics which provide an environment to aid the scientific
discovery process through the combination of available tools
for scientific data management, analysis, simulation, and vi-
sualization [5]. Obviously Scientific Workflow Management
System (SWIMS) is a tool to execute workflows and manage
data sets. In modern scientific environment, scientific
workflow becomes data-intensive, which can enable the par-
allel execution to process large-scale data onto distributed re-
sources [3]. Besides, cloud computing which easily provides
the distribute hardware and software resources as visual ser-
vices for scientific researches and engineering applications
can also be combined with the scientific workflows [2].
Within cloud environments, we can encapsulate resources
and complex collecting, filtering, computing, visualizations,
and other processing steps into different services to be orches-
trated as a model of scientific workflows to be managed to
process the manufacturing big data [6].

Our previous work [7] has studied the manufacturing in-
formation modes and technologies and proposed a cloud
manufacturing service platform which integrates the technol-
ogies such as cloud computing and internet of things to ar-
range the manufacturing resources and provides user services.
That paper focuses on solving the uncovered problems when
the manufacturing industry transfers from the traditional
product-oriented type to service-oriented type but not care
much about the data processing management. In this paper,
a scientific workflow management system based on our pre-
vious cloud platform is introduced as an efficient tool to for-
malize and structure complex and distributed scientific pro-
cesses to enable and accelerate scientific discoveries for the
future manufacturing [8]. The scientific workflow manage-
ment system can invoke the cloud resource services and com-
bine the new and distributed programming paradigms. Then
we also propose a prototype system architecture of it.

Workflow scheduling algorithms are crucial to the efficien-
cy of workflow management systems. Many scientific
workflow management systems which have been employed
in some research projects own their specific scheduling algo-
rithms [9, 10]. Although each algorithm can present a good
performance, it just appears in its own suitable situation. And
some algorithms can evidently shorten the completion time of
scientific workflows, but cannot balance the load well. Some
algorithms perform well both in the completion time and load
balance, however the average scheduling time of those algo-
rithms are intolerable. It is necessary to find a scheduling
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algorithm to overcome the shortcomings above and have a
good comprehensive performance. Given this motivation, a
better scheduling algorithm called MP algorithm is designed,
which can meet various requirements in most of the types of
scientific workflows. And the MP algorithm can far outper-
form other existing ones particularly in some task unbalance
situations. This algorithm takes all the information about
workflows and heterogeneous resources into consideration
to ensure the load balance, and uses Min-Min and Sufferage
algorithms for reference to make the total completion time
short.

The rest of this paper is structured as follows. In the next
section, we introduce the cloud manufacturing service plat-
form. In the section 3, the related works of existing workflow
management system are outlined and we propose a prototype
system architecture. Section 4 gives an overview of schedul-
ing algorithms, then establishes the problem description
models and makes some necessary definitions. In Section 5,
our MP scientific workflow algorithm is discussed.
Experimental details and simulation results are described in
Section 6. Finally, Section 7 closes the paper with directions
for further work.

2 Cloud manufacturing service platform

Cloud manufacturing is a new computing and service-oriented
manufacturing mode based on the existing advanced
manufacturing models such as networked manufacturing
(NM) [11], application service provider (ASP) [12]. With the
help of new information technologies of cloud computing,
cloud security, and IoT, various manufacturing resources and
abilities can be automatically sensed, managed, and encapsu-
lated into different cloud services for sharing. And users can
search and invoke the specific cloud services to meet their
needs. Xun [13] discussed some of the essential features of
cloud computing and pointed out that it will be one of the
major enablers for the manufacturing industry that can trans-
form its business models, help it align product innovation with
business strategy, and create intelligent factory networks that
encourage effective collaboration. Tao et al. [14] summarized
the applications of IoT and cloud computing in manufacturing
field among three usage scenarios: in the workshop, enter-
prise; and enterprises and proposed a cloud computing- and
IoT-based cloud manufacturing (CMfg) service system. And
they also studied the method of optimal allocation of comput-
ing resources in cloud manufacturing systems [15]. In [7], a
cloud manufacturing service platform composed of 12 layers
is proposed. It has the characteristics of the cloud manufactur-
ing mode and the paper gives a full function description of
each layer. The platform focuses on realizing the intelligent
embedded access of underlying physical manufacturing re-
sources as well as service encapsulation of manufacturing
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resources and abilities. Layers of implementing the above
functions are discussed in detail while the layers about the
big data processing and resources scheduling are not involved
much. Although the concept of workflow management is
mentioned in the cloud manufacturing system, it still falls
within the field of business workflow. The platform suffers
from the deficiency of using scientific workflow to analyze
the manufacturing big data.

3 Scientific workflow management systems

Scientific workflow which is concerned with the automation
of procedures usually makes a collection of scientific tasks
streamlined to enable and accelerate scientific discoveries
[8].The most significant advantage of using scientific
workflow is that it can provide easy access to many compli-
cated computing technologies without knowing the underly-
ing knowledge. It presents every analytical step in a visual
way, and we can reuse part or all of a workflow with little
effort. Scientific workflow management systems define, man-
age, and execute the workflows in various computing envi-
ronments. With the development of sensor technologies, com-
municating between machines and collecting data has become
easy in manufacturing [16], so how to use and manage the big
data to support better decisions is an enormous challenge for
the manufacturing information system. In this section, some
related work and a typical architecture of scientific workflow
management system are discussed.

3.1 Various SWIfMSs

Scientific workflow management systems have been studied
for many years and several SWfMSs are now used intensively
by various research communities [3]. Kepler [17] is an open-
source SWIMS which is developed by UC Berkeley and San
Diego Supercomputer Center (SDSC) and has been widely
used in many scientific domains such as astronomy and biol-
ogy. Kepler as shown in Fig. 1 provides an intuitive graphical
user interface to design and present workflows in the work
area called canvas, and scientists can just simply drag and
drop the specific modules into the canvas to create their own
executable scientific workflows which make scientists or
others with little background in computer science can under-
stand the execution of a workflow easily[18]. Taverna is also
an open-source SWIMS that is mainly used in biology and
bioinformatics. It adopts a textual language SCUFL (Simple
Conceptual Unified Flow Language) [19] to define and pres-
ent the workflows which can be easily used locally or remote-
ly. Galaxy is different with Kepler and Taverna, which is a
web-based SWfWS and especially for genomic research.
Besides the above, Pesasus [20], ASKALON [21], Java Cog
Kit [22], P-GRADE [23], Grid Flow [24], K-WF [25] are all

fairly mature SWfMSs and they all have their own suitable
situations and workflow management methods.

3.2 The architecture of scientific workflow management
systems

An excellent SWIMS must meet the following requirements:
friendly user interaction, software reuse, supporting parallel
computing, heterogeneous and distributed resources manage-
ment, fault tolerance, collaborative sharing, and other neces-
sary features. Liu et al. [3] gave a five-layer architecture of
SW{MSs, e.g., presentation layer, user services layer, WEP
(Workflow Execution Plan) generation layer, WEP execution
layer, and infrastructure layer. Lin et al. [8] proposed a refer-
ence architecture of SWfMSs which composes four layers,
namely, presentation layer, workflow management layer, task
management layer, and operational layer. Zhaoet al. [6] de-
vised a cloud scientific workflow platform for big data, and
the framework includes client layer, service layer, middleware
layer, and infrastructure layer. We reference the related work
discussed above, and propose a prototype architecture of sci-
entific workflow management system based on the cloud
manufacturing service platform (as shown in Fig. 2), but it
can also be extended to other research areas. We also divide
the system into four layers which are application layer, service
layer, management layer, and infrastructure layer. In the pic-
ture, we list only some of the main features of each layer. The
first three layers can be seen as the integration and improve-
ment of the last five layers of the previous cloud manufactur-
ing service platform, and the fourth layer includes a brief
expression of cloud computing services of the previous
platform.

Our workflow management system is oriented to scientific
institution projects and personal researches. In the application
layer, they can construct their workflows and submit their
requirements to the system by textual or graphic user inter-
faces. Modular programming provides the flexibility and re-
usability of local resource components and cloud service com-
ponents. Then the workflows will be translated into
predefined mathematical models that can be easily dealt with
in the next layer. In the future manufacturing, we can custom-
ize several workflows such as production health assessment or
other signal processing applications. Besides, the application
layer also provides many presentation and visualization func-
tions for the computing results.

The execution of scientific workflows is done in the service
layer and it is also responsible for the monitoring and fault
tolerance of scientific workflows to guarantee the workflow
management system to function well. The service layer re-
ceives the requirements from the upper layer and scheduling
strategies form the lower layer. The separation of workflow
execution from the task acquisition and scheduling can im-
prove the stability and scalability of the management system.
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Fig. 1 The workbench of Kepler
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The management layer is the bridge of physical resources
and workflow execution. The key part of the management
layer is the scientific workflow scheduling module that de-
cides which scheduling algorithm to be taken and provides
the specific scheduling strategies to perform. It plays a major
role in paralleling data processing and optimizing the task
procedures. Before it makes a scheduling plan, it should ob-
tain the applications and resources information about the

system information services as the basis. During the schedul-
ing there also may involve data movements which need an
efficient data management module. Besides, provenance man-
agement can record the derivation history of data productions
to track the experiment processes and validate the experiment
results.

The infrastructure layer expands the forgoing services plat-
form which was designed totally based on the cloud
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Fig. 2 The functional architecture of scientific workflow management system
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environment by adding the local resources. The utilization of
local resources can provide more service selections and save
the service costs. Each computing environment includes com-
puting, storage, network, and other resources. Smart sensors
installed in the manufacture instruments extract the various
signals such as temperature and pressure, and transform the
signals by communication protocols, such as MTConnect [26]
and OPC (Object Linking and Embedding (OLE) for Process
Control). Then manufacturing big data is collected and stored
in this layer. Before we use those computing or storage re-
sources, we virtualize all the heterogeneous resources and
encapsulate them into separate services, then provide inter-
faces to link the physical resources with the executor module
in the service layer. All information about virtual resources we
collect is to help formulate the scheduling strategies and the
interfaces realize the interoperation between programs and
physical resources.

3.3 Architecture implement

To implement a scientific workflow management designed as
the architecture talked above, we can construct it all by our-
selves from the bottom to the top, or we can make a secondary
development on an existing system. Kepler as shown above is
a promising workflow system to meet all requirements to en-
able the manufacturing big data analytics. Kepler adopts the
actor-oriented programming, and each actor can provide an
independent function, such as remote data access, Web ser-
vices invocation. An actor can be atomic or composite which
are collections or sets of atomic and/or composite actors bun-
dled together to perform more complex operations. Kepler has
a powerful function library which is composed of more than
530 actors. Besides, we can design the custom actor to achieve
the desired functions by composing exist actors or Java pro-
gramming language. Also, Kepler provides a special type of
entities, called a director, to manage the execution of linked
actors [27]. It can be synchronous, parallel, or other ways.
Nowadays, many studies focus on the combination of
Kepler and data parallel computing in big data environment,
and Kepler has added the Mapreduce actor to integrate the
Hadoop framework to facilitate data-intensive applications
[28]. Spark [29], as the next generation of big data processing
and analysis tool, has carried out some attempts on the Kepler
platform. What” more, it is very convenient to share the
workflows which designed by one or several scientists with
others around the world.

For Kepler has a friendly GUI and the abilities of big data
processing, Web services invocation, and remote resource ac-
cess, we use the Kepler as the basis of our system, and what
we need do to make it be suitable for the manufacturing anal-
ysis environment is to develop the specific Kepler workflow
suit which includes the actors to deal with the professional
manufacturing big data analysis issues by ourselves. And we

also need to present and implement the professional analysis
algorithms in the workflow way. The Kepler' project has told
us the methods of building the custom actors. As a case study,
the product performance degradation assessment and predic-
tion are crucial to the management of production costs, lead
time, and optimal machine utilization [30], and Fig. 3 illus-
trates the requirements for Kepler development. The Feature
Extraction A and Feature Extraction_P are two actors respon-
sible for the performance degradation assessment and predic-
tion respectively, and can be parallelized. They all receive the
same sensor data, but extract the different features. The spe-
cific methods used in the actors should be chosen or devel-
oped by ourselves.

4 Scheduling problem description

Scheduling of scientific workflows decides the executive ar-
rangement of tasks which will be mapped on heterogeneous
and distributed resources. And the perfect strategy can make
tasks allocated to the suitable resources and check the best
execution sequence of parallel tasks. Generally we just re-
search and consider the deterministic abstract workflows, for
which the dependencies of tasks, the sizes of each task, the
sizes of the output files of each task, the computing capabili-
ties and communication rates of resources are known in ad-
vance, but we do not care about the physical locations of
resources [2]. What we input to the algorithm is only the
abstract mathematic model. During the process of scheduling,
we represent a workflow as a Directed Acyclic Graph (DAG)
[31], whose nodes represent tasks and edges represent the
dependent relations among the tasks [32]. As the problem of
DAG scheduling belongs to a class of NP-complete problem,
scientists have proposed various heuristics and meta-
heuristics algorithms without strict mathematical justification.
Some schedules [9, 33-35] also include the aspects of the
execution cost and QoS of resources in utility cloud environ-
ments where users should pay for what they obtain. In this
section, we will present some of the mature best-effort based
algorithms which are usually used on enterprise private clouds
which are built for companies themselves to make the best to
deal with data protection and services or public clouds which
focus on sharing the resources, promoting scientific re-
searches, and freely opening to the public not commercial
interests.

The core idea of Min-Min heuristics algorithm is that it
prefers to execute the minimum one of parallel tasks on the
resource which cost the minimum time [36, 37]. It can usually
minimize the total completion time of workflow, but it cannot

! Kepler project: https://kepler-project.org/
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Fig. 3 A workflow for product
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assessment and prediction in
Kepler

guarantee the load balance when some of the resources have a
considerable advantage in computing capability over other
ones. The Max-Min [38] workflow scheduling algorithm is
similar to the Min-Min algorithm, but it schedules large tasks
first. Compared with the Min-Min algorithm, the Max-Min
can show a well load balancing level and minimize the total
completion time in most types of scientific workflows.
Nevertheless when the number of long tasks is much more
than that of the short tasks, the Min-Min algorithm is the better
choice to generate the scheduling strategy. The Sufferage [39]
heuristic algorithm focuses on the max time lose on heteroge-
neous resources. It defines the difference between the expect-
ed completion time on the best resource and the second best
resource as the sufferage value, and gives the task with the
biggest sufferage value the highest priority to execute among
all available tasks. It can outperform Min-Min and Max-Min
when there are large variations between resources, but [40]
has proven that the sufferage is not suitable for data-
intensive applications where many files may be reused
many times. The DCP (Dynamic Critical Path) algorithm
defines the critical path and priority tasks in the path.
The algorithm will cost more time than other algorithms
above when they have scheduled all the tasks. And when
the algorithm is firstly introduced in [32], it is employed
to dealing with homogeneous processors not for hetero-
geneous resources like cloud environment. GA (Genetic
Algorithm) [41, 42] belongs to meta-heuristic algorithms,
and it uses a larger space search to find the optimal
solution. In most cases, GA can give us a high-quality
solution and outperform than other algorithms. However,
it pays for the advantage with a large time cost. What is
worse, sometimes the algorithm may fall into the local
optimal solution when the fitness function in the phase
of selection is not well chosen.
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4.1 Task abstract description

As the description above, scientific workflows are represented
as DAGs, and the nodes of DAGs compose the set of tasks, T
= {t]1<i<N (T)} where N (7) is the number of tasks. The
directions of edges decide the dependencies between the tasks.
The tasks at the beginning of edges are the parent tasks, and
the end tasks of edges are called child tasks. So there is a
natural constraint that the child tasks cannot start its execution
until the system finishes its parent tasks. Ifa task does not have
any predecessors, we call it an entry task. Correspondingly,
we call a task without successors an exit task [43, 44]. The
values of each node and edge are the length and size of the
output of each task respectively. These are two important pa-
rameters to affect the scheduling results. An example of DAG
is shown in Fig. 4, the specific units of these parameters will
be discussed in section 6.
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Fig. 4 A typical workflow presented in DAG
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4.2 Resource abstract description

Compared with the practical cloud environments, we
make several simplifying assumptions. We just consider
the computing resources and assume other works before
scheduling have been done. The main target of our
scheduling algorithm is to map tasks on their suitable
computing resources to obtain superb execution perfor-
mance. Let R={r|1<j<N(R)} represents the set of com-
puting resources, where N(R) is the number of resources.
For each resource, we introduce two attributes: process-
ing capability (PC;) and bandwidth (BW;) which means
the transfer capability. And we constrain that a resource
can only execute one task at a time.

4.3 Definition

Before the introduction of the proposed algorithm, we define
some variables to help understand as follows:

Definition 1 the execution time EXT (%; ;)
EXT (#;, r;) is the total cost time of task #
when it is executed on resource 7;, which can
be computed by the following equation:

The size of ¢;
EXT(t,,I’j) :T (1)
J

Definition 2 the available time of resource ART (¢, r;)

ART (t;, ;) is defined as the earliest available
time when if task # has been mapped on re-
source r;, the resource 7; is available for task #
without executing other tasks which are
mapped on this resource prior to task ¢ or trans-
ferring output files of the previous task.
the available starting time of task ATT (#;, 7))

ATT (¢, r;) is similar to the ART (¢, r;), but it
means the earliest available time of task #; when
the parent tasks of task ¢ are all executed.
the ready time RT (¢, r;)

RT (¢, ;) represents the time when the task #;
and resource 7; are all available and task #; can
be executed on resource 7; right now. And it can
be computed through the following equation:

Definition 3

Definition 4

RT(1,r,) = max{ART(z, 1), ATT (1)} (2)

Definition 5 the completion time CT (z; 7))
CT (#;, 1)) is defined as the finish time when
task #; has been executed on resource r;. And it

can be computed through following equation:

CT(t;,r;) = EXT(t;,r;) + RT(;,7;) (3)

Table 1 Key code of MP algorithm

1. Traverse all the resources and find out the resource which has the best
processing capability. Then record the value of the best processing
capability as the PC;

2. While 3t € T is not scheduled do

. availT «— get a set of unscheduled ready tasks whose parent tasks have
been completed

. Schedule ( availT)

. Delete the tasks which have been scheduled
. end while

PROCEDURE: Schedule ( availT )

While 3t € availT is not scheduled do

for all t € availT do

(98

© 0 N o b e

10. availR « get available resources for t

11. for all r € availR do

12. calculate EXT (¢, ), RT (¢, ), CT (¢, r), and p (¢, 1)
13. end for

14. end for

15. Ts, Rs «<—arg max p (¢, r) // get the task with maximum p (¢, ») and find
out the task and the resource associated

16. schedule Ts on Rs
17. remove Ts from availT
18. end while

Definition 6  the percentage of task p (¢, r;)
p (&, ry) is the evaluation criteria to select
which resource the task #; should be mapped
on. It can be obtained using the follow equation:

EXT(t;,r;) PC,

p(t,-,l”j): CT(ti,rj) Xﬁ (4)

where the PC is the max one of all PC;, 1<j<N(R).

5 Proposed algorithm
5.1 Algorithm description
Reviewing all the algorithms described above, each of them

has their own suitable situations. The MP algorithm we pro-
posed has a bright future of combining all advantage of all

Table 2 The initial CT

(¢, r) matrix To n
t 3 6
t 4
t; 15 30
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Table 3 The initial p

(¢, r) matrix To r
t 1 0.5
t 1 0.5
t 1 0.5

algorithms. We consider the information of all tasks and re-
sources dynamically to obtain the better load balancing level
and scheduling strategy. The core idea of our algorithm is to
search the resource which is affected most on its service time
if one task was mapped on it, and then we allocate this task to
it. We use the percentages of the completion time of each
available task occupying the total used time of each resource
to measure the effects on resources, and the task which has the
max percentage will be scheduled to be executed. The defini-
tion of available tasks is the same as that of other algorithms
whose parent tasks have been executed and are mutually in-

dependent. The detail of the MP algorithm is given in Table 1.

In step 15, there may be one or several tasks have the same
p (t, r) on different resources, we schedule the task on the
resource which couple has the minimum EXT (z, ). If differ-
ent tasks have the same p (¢, ») on one resource, we prior
schedule the task which has the maximum scheduling loss.
The definition of scheduling loss is the same with that in the
Sufferage algorithm which means the completion time differ-
ence on the best resource and the second best resource.

Nowm we will use a specific example to illustrate the steps
of our algorithm. Table 2 shows three available tasks with their
CT (¢, r) on two heterogeneous resources. We suppose all
other external environments are idle, and all RT (¢, r)s are zero.
The PC; is half of the PC,,.

For we have known the CT (¢, ), we can calculate the
p (t, r)s of these tasks on the two resources. The result is
shown in Table 3.

The task #, t,, and #; have the same p (¢, r) on resource ry,
but #; has the maximum scheduling loss (30—-15=15). Then we
schedule task #; on resource ry, and update the CT (z, ) Matrix
shown in Table 4 and p (¢, ) Matrix shown in Table 5.

In the same way, the task #; and # have the same p (¢, r) on
resource 7, but #; has the maximum scheduling loss (18—6=12).
So we schedule task #, on resource 7. Then update the CT (z, r)
Matrix shown in Table 6 and p (¢, ) Matrix shown in Table 7.

For task #, has the bigger p (¢, ) on resource 7|, we schedule
t, on resource 7| and end the algorithm. Figure 5 shows the
scheduling result.

Table 4 The CT (¢, 1)

matrix after scheduling 7o r
task tl

t 18

t 19 8
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Table 5 Thep (¢, )

matrix after scheduling 7o 8
task t
t 3/18 0.5
t 4/19 0.5

5.2 Algorithm analysis

The motivation of Min-Min algorithm is to preferentially ex-
ecute the fastest task on its most suitable resource to reduce the
overall completion time. The Sufferage algorithm sets up a
new concept sufferage value to make the scheduling decision
whose rationale is to cut down the time loss and balance the
use of resources. Form the description above, we can see our
algorithm takes the intrinsic correlation of resources and tasks
into consideration by using the percentages of the completion
time of each available task occupying the total used time of
each resource. Especially we consider the performance of dif-
ferent resources when we calculate the percentages in
Eq. (4).Through this way we can obtain both short overall
completion time and excellent load balance level in most
workflow situations.

And the advantage of MP algorithm is more prominent
when the tasks in parallel are much unbalanced but the num-
bers of short tasks and long tasks are approximately equal.
Other algorithms have serious flaws in these situations. The
Min-Min algorithm prefers the situation that a few short tasks
along with many long tasks in parallel branches, but Max-Min
algorithm prefers the situation that a few long tasks along with
many short tasks in parallel branches. As for Sufferage algo-
rithm, when the size of tasks is much long compared to the
computing capabilities of available resources, the sufferage
values would be small and the algorithm may obtain a dramat-
ic result about the overall performance [40].

Considering the time complexity of algorithms, we sup-
pose there are m resources and n tasks in a DAG. The com-
puting time of MP algorithm can be on the whole divided into
two parts: the time #;0f searching the available tasks and the
time #,0f calculating the percentages that each available tasks
on all the resources. The first part is just a simple task sequen-
tial access problem, and we suppose there are k/(0<k <n) tasks
that have not been scheduled. Its estimation is like:

11 = O(k) (5)

For time #,, it is related to the specific structure of the
DAG and the resources number m. In every iteration, we

Table 6 The CT (¢, r)
matrix after scheduling To 8
task 13

b 19 14
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Table 7 Thep (¢, )
matrix after scheduling To T
task 13

t 4/19 2/7

suppose the available task number is ¢ (0<c<n) and its
estimation can be:

h = o(cz-m) (6)

Suppose that the number of iteration times is I, then the
total processing time t of MP algorithm can be calculated as
follows:

t=1I1(t| + ) = I-[o(k) + o(c*m)] (7)

Through the analysis above, we can see the time complex-
ity presentation of MP algorithm is the same with the Min-
Min algorithm, Max-Min algorithm, and Sufferage algorithm.
In this paper, the resource is abstract concept that it may be a
local Hadoop cluster or a Spark cluster supported by one
cloud computing provider. And the tasks usually are
coarse grained. In a practical DAG task graph, the time
complexity is acceptable.

6 Experimental results and discussion
6.1 Experimental environment

We use Java to complete simulation experiments, and
firstly design a random workflow generator to generate
various types of workflows and guarantee the accuracy

Fig. 5 The scheduling result of 20
the case in Section 5.1

18
16
14
12
10

ime

O N b~ O ®

Table 8 Parameters of GA

Parameters Value

Population size Number of task x 2
Crossover probability 0.7

Replacing mutation probability 0.5

Fitness Makespan of workflow
Elitism-Roulette Wheel

100 iterations

Selection scheme
Stopping condition

Initial individuals Randomly generated

and credibility of the experiment results. Before we use
it, we are required to specify (1) number of tasks in the
workflow; (2) range of the lengths of tasks; (3) range of
the sizes of output files of tasks; (4) max out-degree of
every task; (5) number of computing resources in Grid;
(6) range of computing capabilities of resources; (7) the
range of bandwidth of resources. In the simulation, we
utilize the Million Instructions (MI) to measure the
lengths of tasks and the GigaBytes (GB) to measure
the sizes of output files. The length of tasks is set by
the range [10,000, 6,000,000], and the sizes of output
files are within the range [2, 34]. And the max out-
degree of a task is set for 4. The computing capabilities
and Bandwidth are measured in million instructions per
second (MIPS) and million bits per second (Mbps) with
respective ranges [400, 3,000] and [100, 1,024].

6.2 Performance metrics

At present, there are numerous basic performance metrics to
evaluate the application effects of scheduling algorithms. We

7
%

resourcel

resource(
Ot3 Qt2 \|tl
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reference many papers about this area and choose the follow-
ing performance metrics [45].

*  Makespan is the main and common measure in the field of
scientific workflow scheduling, and it is defined by

Makespan = max{CT(t,», rj) }, 1<i<N(T),1<j<N(R)
(8)

where the CT(t, 7;) is the final result of task ¢ after com-
pleting scheduling.
*  Average resource utilization rate (ARUR) is computed by
dividing the total number of resources by the sum of re-
source utilization rates (RUR) of every resource.

N(R)
>R,
ARUR = —/———— 9

Here, RUR; can be calculated using Eq. (10):

time j

RUR; =————
/" Makespan

(10)

Here, time; represents the cost time on resource 7; including
executing the tasks mapped on it and transferring the output
files to the next resources.

a 90000

Times(sec)
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* Load balancing level (LBL) is an important measure of a
scheduling algorithm on workflows and before we give its
definition, we must calculate the mean square deviation of
resource utilization rate as Eq. (11).

3 j_V:  (ARUR-RUR,)*
N(R)

Then the LBL can be given by Eq. (12):

LBL =

(1— ARUR> x 100% (12)

» Comprehensive Performance (CP) is used to measure the
combination property of algorithms about Makespan and
LBL. It can be calculated by Eq. (13). From (13), we can
see that the value is smaller, its comprehensive perfor-
mance is better.

1
P=M —_— 1
C akespan X [BL (13)
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Fig. 6 Diagrams of experiment for performance comparison of six scheduling algorithms. a Makespan for tasks with different number. b ARUR for
tasks with different number. ¢ LBL for tasks with different number. d CP for tasks with different number
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Table 9  Execution time of all algorithms

Algorithm 50 tasks(ms) 100 tasks 200 tasks 300 tasks
(ms) (ms) (ms)

Min-Min 2 7 11 15
Max-Min 2 6 11 15
Sufferage 3 6 16 18

DCP 3 6 12 24

GA 803 6,265 32,458 118,872
MP 3 6 14 19

6.3 Experimental results analysis

In experiment 1, we compare Min-Min algorithm, Max-Min
algorithm, DCP algorithm, Sufferage algorithm, GA and MP
algorithm. The specific experimental environment has been
discussed in part 1 of this section. We randomly generate sci-
entific workflows composed of 50, 100, 200, and 300 tasks,
and apply those algorithms on them to get the comparative
results of Makespan, ARUR, LBL, and CP [46]. Table 8 shows
the values of different parameters of GA. We choose 2 random
resources for simulation which makes the resource competition
fiercer and the comparative experimental results more evident.
Then we use the average value of three repeated experiments.
Figure 6 shows that the MP algorithm performs best of all
algorithms in random experiments. Through the experimental
contrast analysis, the average Makespan value of MP algo-
rithm is preferable to the DCP algorithm, Min-Min algorithm,
Max-Min algorithm, Sufferage algorithm, and GA by 7.1, 7.8,
0.7, 3.3, and 3.7 %, respectively. And the average ARUR value
outperforms by 8.0, 25.1, 0.2, 4.6, and 2.5 %, respectively. As
to the LBL, the load balancing level of Min-Min algorithm is
terrible which may be explained by the too large difference of
random resources in the experiments, but Max-Min algorithm
as well as the MP algorithm performs excellently. The LBL
values of DCP algorithm, Sufferage algorithm, and GA are
slightly lower than our proposed algorithm. On average, the
MP algorithm gets the best comprehensive performance,
which means our algorithm can go for a better schedule not
only on total completion time but resource utilization.

300000

3000000

600000

Fig. 7 Revision of . 4

From the experiment above, we also can see GA can gen-
erate good schedules because it explores the solution in the
global space, but it may fall into the local minima. What is
worse, the scheduling time is growing exponentially with the
solution space. In our simulation, for a workflow of 300 tasks,
the scheduling time of GA is hundreds and even thousands of
times than others. The execution times of all algorithms for
different workflows are shown in Table 9.

In experiment 2, we focus on the situations we talked above
that the tasks in some parallel branches are much heavier than
that of others, but long tasks and short tasks are approximately
evenly distributed. As we have shown in Fig. 3, the distribu-
tion of tasks in this DAG is quite balanced. Table 10 is the
experimental results that applying all algorithms on the
workflow in Fig. 3, and we assume the sizes of output files
of all tasks are 1 GB to simplify the workflow. The computing
capabilities of resources used in this experiment are 400 and
800 MIPS, respectively, and Bandwidths are the same, both
100 Mbps. The results (shown in Table 10) suggest that the
performance of our proposed algorithm is the same with the
Max-Min and GA algorithms, and better than Min-Min,
Sufferage, and DCP algorithm in Makespan. Although its load
balance level is acceptable, it is not better than Sufferage al-
gorithm. Now, we make task #; and #, bigger by expanding 10
times which means the left branches are much heavier than the

Table 11  Performance comparison on the unbalanced workflow of
Table 10  Performance comparison on the balanced workflow of Fig. 4 Fig. 7
Algorithm Makespan(sec) ARUR LBL CP Algorithm Makespan(sec) ARUR LBL CP
Min-Min 3,144.42 0.63 41.84 % 7,514.71 Min-Min 9,081.92 0.57 25.58 % 35,504.26
Max-Min 2,831.92 0.77 66.67 % 4,247.88 Max-Min 8,538.84 0.76 98.06 % 8,707.41
Sufferage 3,120.76 0.73 80.38 % 3,882.60 Sufferage 8,456.92 0.65 46.78 % 18,078.52
DCP 3,144.42 0.63 41.84 % 7,514.71 DCP 8,995.76 0.74 92.84 % 9,689.20
GA 2,831.92 0.77 66.67 % 4,247.88 GA 8,370.76 0.80 94.07 % 8,898.57
MP 2,831.92 0.77 66.67 % 4,247.88 MP 7,913.84 0.82 98.10 % 8,066.94
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right ones as shown in Fig. 7. The number of long tasks is
equal to the number of short tasks, and compared to the com-
puting capabilities of available resources, the #; and ¢, are long
enough that the differences between the complete times on the
two resources are small. The MP algorithm generates up to
average 8.8 % better Makespan, 17.4 % better ARUR, 80.6 %
better LBL, and 33.2 % better CP than other algorithms in
Table 11. The GA algorithm falls into the local optima, and
it cost the longest time to reach its strategy. Combine with the
experiment 1, we can obtain that our algorithm can solve the
serious flaw in scheduling performance of other algorithms
when branches in workflows are heavily unbalanced like
above.

7 Conclusions

In this paper, we summarize the research hotspots nowadays
in modern manufacturing and analyze the requirements for the
processing of manufacturing big data. Then we introduce the
scientific workflow management system which is an efficient
tool to execute and manage big data, and beneficial to the
scientific discoveries. With reference to the related work, a
prototype architecture of scientific workflow management
system applied to the future manufacturing is proposed.

This paper also points that an efficient workflow
scheduling algorithm is important for using heteroge-
neous resources within systems. And a better workflow
scheduling algorithm that can shorten the total comple-
tion time and have a good load balancing level is need-
ed. Then the MP algorithm is proposed which considers
the intrinsic correlation of information about resources
and tasks and utilizes the percentages of resource service
times to emphasize the overall performance. Compared
with the classic DCP, Min-Min, Max-Min, Sufferage,
and GA algorithms based on the common evaluation
criteria, MP algorithm performs best and satisfies the
requirements discussed above.

The research of scientific workflow management sys-
tem is still at the initial stage. Future works in this re-
search can be performed in the following directions.
First, we do not have considered the security problem of
the system, which is a broad direction to follow up in
future research. Second, we just use simple heterogeneous
environments which are assumed to be static. However,
the actual computing environments are more complex and
variable. In the next step, we should carry out more sim-
ulation experiments in complicated and dynamic environ-
ments to evaluate our algorithm.
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