A Fuzzy Petri Net-Based Expert System and Its Application to Damage Assessment of Bridges

Jonathan Lee, Member, IEEE, Kevin F. R. Liu, and Weiling Chiang

Abstract—In this paper, a fuzzy Petri net approach to modeling fuzzy rule-based reasoning is proposed to bring together the possibilistic entailment and the fuzzy reasoning to handle uncertain and imprecise information. The three key components in our fuzzy rule-based reasoning—fuzzy propositions, truth-qualified fuzzy rules, and truth-qualified fuzzy facts—can be formulated as fuzzy places, uncertain transitions, and uncertain fuzzy tokens, respectively. Four types of uncertain transitions—firing, aggregation, duplication, and aggregation-duplication transitions—are introduced to fulfill the mechanism of fuzzy rule-based reasoning. A framework of integrated expert systems based on our fuzzy Petri net, called fuzzy Petri net-based expert system (FPNES), is implemented in Java. Major features of FPNES include knowledge representation through the use of hierarchical fuzzy Petri nets, a reasoning mechanism based on fuzzy Petri nets, and transformation of modularized fuzzy rule bases into hierarchical fuzzy Petri nets. An application to the damage assessment of the Da-Shi bridge in Taiwan is used as an illustrative example of FPNES.

Index Terms—Damage assessment, fuzzy Petri net-based expert systems, fuzzy truth value, hierarchical fuzzy Petri nets, possibilistic entailment.

I. INTRODUCTION

It is widely recognized that the trend of integrating expert systems with other technologies will continue to the next generation of expert systems [17], [24], [27], [32], [33]. A number of researchers have reported progress toward the integration of expert systems with Petri nets. Petri nets with a powerful modeling and analysis ability are capable of providing a basis for variant purposes, such as knowledge representation [38], [47], reasoning mechanisms [3], [46], knowledge acquisition [6], and knowledge verification [50], [58]. There are several rationales behind which to base a computational paradigm for expert systems on Petri net theory.

• Petri nets achieve the structuring of knowledge within rule bases, which can express the relationships among rules and help experts construct and modify rule bases [12].
• The Petri net’s graphic nature provides the visualization of the dynamic behavior of rule-based reasoning.

Manuscript received January 16, 1998; revised November 8, 1998. This work was supported in part by the National Science Council, Taiwan, R.O.C., under Grants NSC 86-2213-E-008-008 and NSC 86-2211-E-008-015. This paper was recommended by Associate Editor A. Kandel. J. Lee is with the Department of Computer Science and Information Engineering, National Central University, Chungli, Taiwan 32054, R.O.C. (e-mail: yjlee@se01.csie.ncu.edu.tw). K. F. R. Liu and W. Chiang are with the Department of Civil Engineering, National Central University, Chungli, Taiwan 32054, R.O.C. Publisher Item Identifier S 1083-4419(99)03535-9.
concurrency cannot be executed as a Petri net since only one path is shown.

In this paper, a fuzzy Petri nets approach to modeling fuzzy rule-based reasoning is proposed to bring together the possibilistic entailment and the fuzzy reasoning in order to handle uncertain and imprecise information. The three key components in our fuzzy rule-based reasoning (fuzzy propositions, truth-qualified fuzzy rules, and truth-qualified fuzzy facts) can be formulated as fuzzy places, uncertain transitions, and uncertain fuzzy tokens, respectively. Four types of uncertain transitions (inference, aggregation, duplication, and aggregation-duplication transitions) are introduced to fulfill the mechanism of fuzzy rule-based reasoning.

A framework of integrated expert systems based on our fuzzy Petri net, called fuzzy Petri net-based expert system (FPNES), is implemented in Java with a client–server architecture. Major features of FPNES include knowledge representation through the use of hierarchical fuzzy Petri nets, a reasoning mechanism based on fuzzy Petri nets, and transformation of modularized fuzzy rule bases into hierarchical fuzzy Petri nets. An application to the damage assessment of the Da-Shi bridge in Taiwan is used as an illustrative example of FPNES.

The organization of this paper is as follows. Background work on our fuzzy rule-based reasoning is described in the next section. In Section III, a fuzzy Petri nets approach to modeling fuzzy rule-based reasoning is introduced. In Section IV, a framework of FPNES is proposed. In Section V, an application of FPNES to the damage assessment of the Da-Shi bridge in Taiwan is used as an illustration. Related work is described in Section VI. Last, a summary of our approach and its potential benefits are given in the Section VII.

II. BACKGROUND WORK ON FUZZY RULE-BASED REASONING

The distinction between imprecise and uncertain information can be best explained by the canonical form representation (i.e., a quadruple of attribute, object, value, confidence) proposed by Dubois and Prade [10], [43]. Imprecision implies the absence of a sharp boundary of the value component of the quadruple, whereas uncertainty is related to the confidence component of the quadruple, which is an indication of our reliance on the information. To perform reasoning for both imprecise and uncertain information, two important issues need to be addressed.

- Any improvement of the confidence level for a piece of information can only be achieved at the expense of the specificity of the information, and vice versa [51], [56].
- The matching between a fact and the premise of a rule is not exact, but only partial [2], [56].

We have roughly classified the existing approaches in dealing with both imprecise and uncertain information into three categories based on their treatments for the two issues [30], [31].

1) An uncertainty-qualified fuzzy proposition is translated into a proposition whose confidence level is certain but with less specific information, while partial matching is used to modify the intended meaning of conclusions. This approach was advocated by Yager [51] and Zadeh [56], Zadeh proposed three uncertainty qualifications for fuzzy propositions: probability, possibility, and truth qualifiers; Yager focused on the certainty qualifier.

2) The degree of partial matching is used to influence the confidence level of conclusions, which was adopted by researchers such as Martin-Clouaire et al. [35], Ogawa et al. [40], and Umano [49]. Ogawa et al. combined certainty factors and fuzzy sets to represent uncertain and imprecise information in an expert system, SPERIL-2. Martin-Clouaire et al. attached possibility and necessity degrees to fuzzy propositions. Umano employed the fuzzy truth value for the uncertainty qualifier of fuzzy propositions.

3) No partial matching is allowed in Godo et al. [16] and Ishizuka et al. [21]. Ishizuka et al. extended Dempster–Shafer’s evidence theory to a fuzzy set in the expert system SPERIL-1. Godo et al. used the fuzzy truth value as an uncertainty qualifier of fuzzy propositions.

Note that the first kind of research results in a completely certain conclusion whose intended meaning has been changed. On the other hand, the second one produces a new confidence level for a conclusion without modifying its intended meaning. The third one can be viewed as a special case of the second one. It is obvious that these inference strategies are somewhat limited due to the fact that either the intended meaning is required to be unchanged or the confidence level has to be completely certain.

We have proposed the use of truth-qualified fuzzy propositions as the representation of imprecise and uncertain information for its capability to express the possibility of the degree of truth [30], [31]. The inference rule for the truth-qualified fuzzy propositions has been developed based on our proposed possibilistic entailment. It is not only a generalization of Zadeh’s generalized modus ponens [56] but also an uncertain reasoning for classical propositions with necessity and possibility pairs.

A. Possibilistic Entailment

A possibilistic reasoning has been proposed for classical propositions r_i weighted by the lower bounds N_{r_i} of necessity measures and the upper bounds Π_{r_i} of possibility measures [i.e., $N(r_i) \geq N_{r_i}$ and $\Pi(r_i) \leq \Pi_{r_i}$] [30], [31], which is expressed as shown in (1) at the bottom of the next page, where r_i ($i = 1 \sim n$) and q are classical propositions and $N_{\Pi r_i}$, N_q, and $N(r_i \wedge r_j \wedge \cdots \wedge r_k) \Rightarrow q$ are the lower bounds of necessity measures. $\Pi_{\Pi r_i}$, Π_q, and $\Pi(r_i \wedge r_j \wedge \cdots \wedge r_k) \Rightarrow q$ are the upper bounds of possibility measures.

To infer N_q and Π_q, we have proposed an approach called possibilistic entailment, inspired by Nilsson’s probabilistic entailment [39]. After performing the possibilistic entailment, we can derive the conclusions

$$N_q = \min\{\max\{N_{r_1}, N_{r_2}, \cdots, N_{r_n}\} \Rightarrow q, 1 - \Pi_{\Pi r_i}\}$$

$$\Pi_q = \max\{\min\{\Pi_{r_1}, \Pi_{r_2}, \cdots, \Pi_{r_n}\} \Rightarrow q, N_h\}$$

where $N_h = \min\{N_{r_1}, N_{r_2}, \cdots, N_{r_n}\}$ and $\Pi_h = \min\{\Pi_{r_1}, \Pi_{r_2}, \cdots, \Pi_{r_n}\}$. In the case that $\Pi_h < 1$ and

\[\Pi_{(r_1 \land r_2 \land \cdots \land r_n) \rightarrow q} < 1 \] (called partially inconsistent [8], [29]) do not exist simultaneously, conclusions then become \(N_q = \max\{N_{r_1 \land r_2 \land \cdots \land r_n}, N_{\neg q}\} \) and \(\Pi_q = \Pi_{(r_1 \land r_2 \land \cdots \land r_n) \rightarrow q} \) (see [30] and [31] for details).

When several rules having a same conclusion are fired, these inferred conclusions with different confidence levels, for example \((q, (N_q, \Pi_q)) \) \((i = 1 \sim n)\), should be aggregated as a conclusion \((q, (N_{q+1}, \Pi_{q+1}))\). This aggregation can be viewed as a disjunction; we then obtain \(N_{q+1} = \max\{N_q^1, N_q^2, \cdots, N_q^n\} \) and \(\Pi_{q+1} = \max\{\Pi_q^1, \Pi_q^2, \cdots, \Pi_q^n\}\).

B. Rule-Based Systems with Uncertainty and Fuzziness

The truth-qualified fuzzy propositions are chosen as the representation of imprecise and uncertain information for its capability to express the possibility of the degree of truth [1], [11], [55]. There are three steps involved in the inference mechanism for truth-qualified fuzzy propositions.

- The fuzzy rules and fuzzy facts with fuzzy truth values are transformed into a set of uncertain classical propositions with necessity and possibility measures.
- The possibility entailment is performed on the set of uncertain classical propositions.
- We reverse the process in the first step to synthesize all the classical sets obtained in the second step into a fuzzy set and to compose necessity and possibility pairs to form a fuzzy truth value.

1) Representation

To represent uncertain imprecise information, we have chosen a fuzzy proposition with a fuzzy valuation [30], [31], denoted as \((\tilde{r}, \tau)\), where \(\tilde{r}\) is a fuzzy proposition of the form “\(X\) is \(F\)” [51] (i.e., \(X\) is a linguistic variable [57] and \(F\) is a fuzzy set in a universe of discourse \(U\) and \(\tau\) is a fuzzy valuation. It should be noted that for every formula \((\tilde{r}, \tau)\) (called a truth-qualified fuzzy proposition), we assume \(\tau \geq \tau(\tilde{r}, \tau)\) [i.e., \(\tau(\tilde{r}, \tau)\) is the real fuzzy truth value derived from \(\tilde{r}\) and a possibility distribution \(\tau\)], which means \(\mu_{\tau}(\tilde{r})\) is the upper bound of the possibility that \(\tilde{r}\) is true to a degree \(t\). The fuzzy set is to represent the intended meaning of imprecise information, while the fuzzy truth value serves as the representation of uncertainty for its capability to express the possibility of the degree of truth.

To develop inference rules for truth-qualified fuzzy propositions, we treat a truth-qualified fuzzy proposition \((\tilde{r}, \tau)\) as a set of weighted classical propositions \(\{(\tilde{r}_\lambda, (N_{\tilde{r}_\lambda}, \Pi_{\tilde{r}_\lambda}))\}, \lambda \in (0, 1]\}\), where \(N_{\tilde{r}_\lambda}\) denotes the lower bound of the necessity measure that \(\tilde{r}_\lambda\) is true, whereas \(\Pi_{\tilde{r}_\lambda}\) denotes the upper bound of the possibility measure that \(\tilde{r}_\lambda\) is true. As defined, \(N_{\tilde{r}_\lambda} = 1 - \max_{\lambda}(\mu_{\tau}(t))\) and \(\Pi_{\tilde{r}_\lambda} = \max_{\lambda}(\mu_{\tau}(t))\).

The membership function of \(\tilde{F}\) can be reconstructed in terms of the set of the characteristic functions \(\mu_{F_\lambda}\) of its \(\lambda\)-level sets \(\tilde{F}_\lambda\), i.e.,

\[
\mu_F(u) = \sup\{\lambda \cdot \mu_{F_\lambda}(u) | \lambda \in (0, 1]\} \quad u \in U.
\]

Reconstruction of \(\tau\) from the set of \((N_{\tilde{r}_\lambda}, \Pi_{\tilde{r}_\lambda})\) pairs is through the use of the principle of minimum specificity [9]

\[
\mu_{\tau}(t) = \inf\{\mu_{\tau(\lambda)}(t) | \lambda \in (0, 1]\} \quad t \in [0, 1]
\]

where

\[
\mu_{\tau(\lambda)}(t) = \begin{cases} \Pi_{\tilde{r}_\lambda}, & \text{if } t \geq \lambda \\ 1 - N_{\tilde{r}_\lambda}, & \text{if } t < \lambda. \end{cases}
\]

2) Inference

An inference rule for truth-qualified fuzzy propositions is expressed as follows:

\[
(\tilde{r}_1 \land \tilde{r}_2 \land \cdots \land \tilde{r}_n) \rightarrow \tilde{q}, \quad \tau_1
\]

\[
\tilde{r}_1, \quad \tau_2
\]

\[
\tilde{r}_2, \quad \tau_3
\]

\[
\vdots
\]

\[
\tilde{r}_n, \quad \tau_{n+1}
\]

\[
\tilde{q}, \quad \tau_{n+2}
\]

where \(\tilde{r}_i, \tilde{r}_i^j(i = 1 \sim n), \tilde{q}\), and \(\tilde{q}\) are fuzzy propositions and are characterized by “\(X_i\) is \(F_i\),” “\(X_i\) is \(F_i^j\),” “\(Y\) is \(G\),” and “\(Y\) is \(G^j\),” respectively; and \(\tau_j(j = 1 \sim n + 2)\) are fuzzy valuations for truth values and are defined by \(\mu_{\tau_j}(t)\). \(\tilde{F}_i\) and \(\tilde{F}_i^j\) are the subsets of \(U_i\), while \(G\) and \(G^j\) are the subsets of \(V\).

There are three major steps for deriving \(\tilde{q}\) and \(\tau_{n+2}\) of (5).

Step 1—Transformation: The truth-qualified fuzzy propositions in (5) can be transformed into a set of classical propositions with necessity and possibility pairs as shown in (6) at the bottom of the next page, where \(N_{(\tilde{r}_1 \land \tilde{r}_2 \land \cdots \land \tilde{r}_n) \rightarrow \tilde{q}_\lambda} = 1 - \max_{\lambda}(\mu_{\tau}(t))\) \(t \in [0, 1]\), \(N_{\tilde{r}_\lambda} = 1 - \max_{\lambda}(\mu_{\tau}(t))\) \(t \in [0, 1]\), and \(\Pi_{\tilde{r}_\lambda} = \max_{\lambda}(\mu_{\tau}(t))\) \(t \in [0, 1]\).

Step 2—Inference: Computing \(\tilde{q}\). \(\tilde{q}\) is computed through the use of compositional rule of inference, that is

\[
\tilde{q}_\lambda = \left(\tilde{F}_1 \land \tilde{F}_2 \land \cdots \land \tilde{F}_n\right) \lambda \circ \left(\left(\tilde{F}_1 \land \tilde{F}_2 \land \cdots \land \tilde{F}_n\right) \lambda \rightarrow \tilde{G}\right) \lambda
\]

where \(\circ\) is a composition operator and \(\rightarrow\) denotes an implication operator. In our approach, “Sup-min” [54] and Gödel are chosen as the composition operator and the implication operator, respectively.
Computing N_{q_i} and Π_{q_i}. With the help of the principle of minimum specificity [9], (6) can be transformed into a set of classical propositions with necessity and possibility pairs as shown in (8) at the bottom of the page, where $\pi(u_1, u_2, \ldots, u_n, v)$ denotes a possibility distribution over $U_1 \times U_2 \times \cdots \times U_n \times V$, derived by means of the principle of minimum specificity $\pi(u_1, u_2, \ldots, u_n, v) = \text{Inf}\{\pi_\lambda(u_1, u_2, \ldots, u_n, v)|\lambda \in (0, 1)\}$, as shown in (9) at the bottom of the page.

The possibilistic reasoning in Section II-A is then applied to (8) to obtain the upper bound of the possibility measure and the lower bound of the necessity measure of q_i,

$$N_{q_i} = \min \left\{ \left\{ N(q_1 \wedge q_2 \wedge \cdots \wedge q_n) \rightarrow q_i \right\} \right\}$$

$$\Pi_{q_i} = \Pi \left(q_1 \wedge q_2 \wedge \cdots \wedge q_n \rightarrow q_i \right)$$

where

$$N_{\hat{q}_i} \wedge \hat{q}_2 \wedge \cdots \wedge \hat{q}_n = \min \left[N_{\hat{q}_1}, N_{\hat{q}_2}, \ldots, N_{\hat{q}_n} \right]$$

and

$$\Pi_{\hat{q}_1} \wedge \hat{q}_2 \wedge \cdots \wedge \hat{q}_n = \min \left[\Pi_{\hat{q}_1}, \Pi_{\hat{q}_2}, \ldots, \Pi_{\hat{q}_n} \right].$$

Step 3—Composition: Based on (2), the construction of the membership function of \tilde{G}_i is performed by the following equation: $\mu_{\tilde{G}_i}(v) = \text{Sup}\{\lambda \cdot \mu_G(v)|\lambda \in (0, 1)\}$. Meanwhile, the construction of τ_{n+2} is calculated by (3), that is, $\mu_{\tau_{n+2}}(t) = \text{Inf}\{\mu_{\tau_{n+2}}(\lambda)(t)|\lambda \in (0, 1)\}$, where

$$\mu_{\tau_{n+2}}(t) = \begin{cases} \Pi_{q_i}, & \text{if } t \geq \lambda \\ 1 - N_{q_i}, & \text{if } t < \lambda. \end{cases}$$

3) Aggregation of Conclusions: Several inferred conclusions having a same linguistic variable should be aggregated. For example, there are τ_i inferred conclusions having a same linguistic variable, represented as

$$\tilde{q}_1, \tilde{q}_2, \ldots, \tilde{q}_m$$

where $\tilde{q}_i (i = 1 \sim m + 1)$ are fuzzy conclusions having the form of “Y is G_i.” There are three major steps for deriving \tilde{q}'_{m+1} and τ_{m+1}.

Step 1—Transformation: The inferred conclusions in (11) can be transformed into a set of classical propositions

$$\pi_\lambda(u_1, u_2, \ldots, u_n, v) = \begin{cases} \Pi_{\pi\hat{q}_1 \wedge \pi\hat{q}_2 \wedge \cdots \wedge \pi\hat{q}_n} (u_1, u_2, \ldots, u_n, v) \in ((\tilde{F}_1 \wedge \tilde{F}_2 \wedge \cdots \wedge \tilde{F}_n) - \tilde{G}_\lambda) \\ 1 - N_{\pi\hat{q}_1 \wedge \pi\hat{q}_2 \wedge \cdots \wedge \pi\hat{q}_n} (u_1, u_2, \ldots, u_n, v) \notin ((\tilde{F}_1 \wedge \tilde{F}_2 \wedge \cdots \wedge \tilde{F}_n) - \tilde{G}_\lambda) \end{cases}$$
with necessity and possibility pairs as follows:

$$
\begin{align*}
\tilde{q}_{11}^\lambda, & \quad (N_{\tilde{q}_{11}^\lambda}, \Pi_{\tilde{q}_{11}^\lambda}) \\
\tilde{q}_{12}^\lambda, & \quad (N_{\tilde{q}_{12}^\lambda}, \Pi_{\tilde{q}_{12}^\lambda}) \\
& \vdots \\
\tilde{q}_{1m}^\lambda, & \quad (N_{\tilde{q}_{1m}^\lambda}, \Pi_{\tilde{q}_{1m}^\lambda}) \\
\tilde{q}_{i}^{(m+1)^\lambda}, & \quad (N_{\tilde{q}_{i}^{(m+1)^\lambda}}, \Pi_{\tilde{q}_{i}^{(m+1)^\lambda}})
\end{align*}
$$

where $$\lambda \in (0, 1]$$.

\(N_{\tilde{q}_{i}^{(m+1)^\lambda}} = 1 - \max \{ \mu_{C_{i}}(t) \} \in [0, \lambda] \), and

$$
\Pi_{\tilde{q}_{i}^{(m+1)^\lambda}} = \max \{ \mu_{C_{i}}(t) \} \in [\lambda, 1] \quad (i = 1 \sim m).
$$

Step 2—Aggregation: Computing \(C_{i}^{(m+1)^\lambda} \) is computed through the use of \(T\)-norm.

Computing \(N_{\tilde{q}_{i}^{(m+1)^\lambda}} \) and \(\Pi_{\tilde{q}_{i}^{(m+1)^\lambda}} \) With the help of the principle of minimum specificity [9], (12) can be transformed into a set of classical propositions with necessity and possibility pairs

$$
\begin{align*}
\tilde{q}_{11}^{(m+1)^\lambda}, & \quad (N_{\tilde{q}_{11}^{(m+1)^\lambda}}, \Pi_{\tilde{q}_{11}^{(m+1)^\lambda}}) \\
\tilde{q}_{12}^{(m+1)^\lambda}, & \quad (N_{\tilde{q}_{12}^{(m+1)^\lambda}}, \Pi_{\tilde{q}_{12}^{(m+1)^\lambda}}) \\
& \vdots \\
\tilde{q}_{1m}^{(m+1)^\lambda}, & \quad (N_{\tilde{q}_{1m}^{(m+1)^\lambda}}, \Pi_{\tilde{q}_{1m}^{(m+1)^\lambda}}) \\
\tilde{q}_{i}^{(m+1)^\lambda}, & \quad (N_{\tilde{q}_{i}^{(m+1)^\lambda}}, \Pi_{\tilde{q}_{i}^{(m+1)^\lambda}})
\end{align*}
$$

III. FUZZY PETRI NETS

Petri nets are a graphical and mathematical modeling tool applicable to many systems. In this section, fuzzy Petri nets are defined for modeling fuzzy systems and used as knowledge representation for fuzzy rules [30].

A. Petri Nets

A Petri net is a directed, weighted, bipartite graph consisting of two kinds of nodes, called places \((p_i)\) and transitions \((t_j)\), where arcs are either from a place to a transition or from a transition to a place [42]. Murata has formally defined Petri nets as a five-tuple [37]: \(\text{PN} = (P, T, F, W, M_0)\), where \(P = \{p_1, p_2, \ldots, p_n\}\) is a finite set of places, \(T = \{t_1, t_2, \ldots, t_m\}\) is a finite set of transitions, \(F \subseteq (P \times T) \cup (T \times P)\) is a set of arcs, \(W: F \rightarrow \{1, 2, 3, \ldots\}\) is a weight function, and \(M_0: P \rightarrow \{0, 1, 2, 3, \ldots\}\) is the initial marking.

A marking \(M\) is an \(m\)-vector, \(\langle M(p_1), \ldots, M(p_n) \rangle\), where \(M(p_i)\) denotes the number of the tokens in place \(p_i\). The incidence matrix \(A = [a_{ij}]\) is an \(n \times m\) matrix of integers, and its typical entry is defined by \(a_{ij} = a_{ij}^+ - a_{ij}^-\), where \(a_{ij}^+\) is the weight of the arc from a transition \(t_i\) to its output place \(p_j\) and \(a_{ij}^-\) is the weight of the arc to a transition \(t_i\) from its input place \(p_j\). The reachability set \(R(M_0)\) of a Petri net is defined as the set of all possible markings reachable from \(M_0\). A place having two or more output transitions is referred to as a conflict. Two transitions are said to be concurrent if they are causally independent. The evolution of markings, used to simulate the dynamic behavior of a system, is based on the firing rule, such as: a transition \(t\) is enabled if each input place \(t\) is marked with at least \(w(p, t)\) tokens, where \(w(p, t)\) is the weight of the arc from \(p\) to \(t\); an enabled transition may or may not be enabled. A firing of an enabled transition \(t\) removes \(w(p, t)\) tokens from each input place \(p\) of \(t\) and adds \(w(t, p)\) tokens to each output place \(p\) of \(t\). Some notations are introduced as follows: \(\bullet_{t_j}\) denotes the input places of \(t_j\), \(\bullet_{t_j}\) denotes the output places of \(t_j\), \(\bullet_{t_j}\) denotes the input transitions of \(p_i\), and \(\bullet_{t_j}\) denotes the output transitions of \(p_i\).

B. Fuzzy Petri Nets

A typical interpretation of Petri nets is to view a place as a condition, a transition as the causal relationship of conditions, and a token in a place as a fact used to claim the truth of the condition associated with the place. However, fuzzy systems include the following situations.

- The conditions are fuzzy.
- The causal relationships of fuzzy conditions are uncertain.
- The values of facts are fuzzy, and may partially match the value of the associated fuzzy condition.
- The confidence about the truths of the facts is uncertain.

To take the above situations into account, we formally define our version of fuzzy Petri nets below.

Definition 1—Fuzzy Petri Nets: A fuzzy Petri net \(FPN\) is defined as a five-tuple

\(FPN = (\text{FP}, \text{UT}, F, W, M_0)\).
is a finite set of fuzzy places, where \(p_i \) represents a fuzzy condition and \(\tilde{P}_i \) is a fuzzy subset of \(U_i \) that represents the fuzzy set of the condition. \(UT = \{(t_1, \tau_1), (t_2, \tau_2), \cdots, (t_n, \tau_n)\} \) is a finite set of uncertain transitions, where \(t_j \) represents the causal relationship of fuzzy conditions and \(\tau_j \) is a fuzzy truth value to represent the uncertainty about the causal relationship of fuzzy conditions. \(F \subseteq (FP \times UT) \cup (UT \times FP) \) is a set of arcs. \(W : F \rightarrow \{1, 2, 3, \cdots\} \) is a weight function. \(M_0 = (M(p_1), M(p_2), \cdots, M(p_n)) \) is the initial marking, where \(M(p_i) \) is the number of tokens in \(p_i \).

The fuzzy truth value serves as the representation of uncertainty for its capability to express the possibility of the degree of truth. In Definition 1, we assume that \(\mu_{\tau_i}(t) (t \in [0, 1]) \) of each \(\tau_i \) \((i = 1 \sim m + n)\) means the upper bound of the possibility measure that for which degree of truth is \(t \).

Each token is associated with a pair of fuzzy sets (\(\tilde{F}_i, \tau_i \)) (called an uncertain fuzzy token). Fuzzy places with uncertain fuzzy tokens can be interpreted as uncertain fuzzy facts related to the fuzzy conditions modeled by the fuzzy places. An example is illustrated in Fig. 1(a): three fuzzy conditions are modeled as three fuzzy places; their uncertain causal relationship is modeled as an uncertain transition. Two truth-qualified fuzzy facts concerning the preconditions are modeled as two uncertain fuzzy tokens.

To simulate the dynamic behavior of a fuzzy system, a marking in a fuzzy Petri net is changed according to the firing rule: a firing of an enabled uncertain transition \(t_j \) removes the uncertain fuzzy token from each input place \(p_k \) of \(t_j \) and adds a new token to each output place \(p_k \) of \(t_j \). The fuzzy set and fuzzy truth value attached to the new token will be computed based on the mechanism in fuzzy reasoning. Fig. 1 illustrates the evolution of markings by the firing rule.

C. Analysis of Fuzzy Petri Nets

This section describes how fuzzy Petri nets can be analyzed. Two major Petri net analysis methods, the coverability tree and state equation, are used to analyze fuzzy Petri nets.

1) The Coverability Tree: The coverability tree represents the reachability set of a fuzzy Petri net. Given a fuzzy Petri net, a tree representation of the markings can be constructed [37]. In this tree, a symbol \(\omega \) is used to represent “infinity,” nodes represent markings reachable from \(M_0 \), and each arc represents an uncertain transition firing that transforms one marking to another. Some of the behavioral properties that can be studied by using the coverability tree are boundedness, safeness, and deadlock in uncertain transitions. For a bounded fuzzy Petri net, the coverability tree is called the reachability tree. Fig. 1(c) illustrates the reachability tree of a fuzzy Petri net.

2) State Equation: The state equation that governs the dynamic behavior of concurrent fuzzy systems modeled by fuzzy Petri nets is represented by \(AX = \Delta M \), where \(\Delta M = M_n - M_0 \). \(A \) is the incidence matrix, and \(x \) is an \(n \times 1 \) column vector called the firing count vector. The \(i \)-th entry of \(x \) denoted the number of times that uncertain transition \(t_i \) must fire to transform \(M_0 \) to \(M_n \). The state equation is used to solve the reachability problem, that is, the problem of finding if \(M_n \in R(M_0) \) for a given \(M_n \). If \(M_n \) is reachable from \(M_0 \), then the state equation has a solution in nonnegative integers. If the state equation has no solution, then \(M_n \) is not reachable from \(M_0 \).

D. Fuzzy Rule-Based Reasoning and Fuzzy Petri Nets

It is widely recognized that fuzzy Petri nets is a promising modeling mechanism for formulating fuzzy rule-based reasoning [3], [7], [23], [25], [34], [45], [46], [52]. The three key components in fuzzy rule-based reasoning—fuzzy propositions, fuzzy rules, and fuzzy facts—can be formulated as places, transitions, and tokens, respectively. However, there is still one main issue that needs to be addressed: conflict. In fuzzy rule-based reasoning, several fuzzy rules having a same antecedent will be fired if a fuzzy fact matches the antecedent of those rules. In Petri nets, these fuzzy rules and the fuzzy fact are modeled as several transitions departing from a place and a token in the place, respectively. However, only one of these transitions will be fired since they are in conflict. As is illustrated in Fig. 2, two fuzzy conclusions will be inferred, if fact 1 partially matches rules 1 and 2. But, only one transition will be fired since transitions \(t_1 \) and \(t_2 \) are in conflict.
To overcome this problem, a subclass of Petri nets—marked graphs—is used in this paper since each place in a marked graph has exactly one input transition and exactly one output transition, i.e., $|\bullet p_j| = |p_j \bullet| = 1$. Furthermore, among models that can represent concurrent activities, marked graphs are the most amenable to analysis [37]. The mapping between fuzzy rule-based reasoning and fuzzy Petri nets is fully described below.

- **Fuzzy Places**: Fuzzy places correspond to fuzzy propositions. The fuzzy sets, attached to the fuzzy places, represent the values of fuzzy propositions. Fuzzy input and fuzzy output places of a truth-qualified transition are used to represent the antecedent and conclusion parts of a truth-qualified fuzzy rule, respectively.

- **Uncertain Fuzzy Tokens**: An uncertain fuzzy token represents a truth-qualified fuzzy fact. The fuzzy sets and fuzzy truth values are attached to uncertain fuzzy tokens to represent the values and our confidence level about the observed facts, respectively.

- **Uncertain Transitions**: Uncertain transitions are classified into four types: inference, aggregation, duplication, and aggregation-duplication transitions. The inference transitions represent the truth-qualified fuzzy rules, the aggregation transitions are designed to aggregate the conclusion parts of rules that have the same linguistic variables, the duplication transitions are used to duplicate uncertain fuzzy tokens to avoid the conflict problem, and the aggregation-duplication transitions link the fuzzy propositions with the same linguistic variables. These are formally defined below.

 Type 1—Inference Transition (t^I): An inference transition serves as a modeling of a truth-qualified fuzzy rule. A truth-qualified fuzzy rule having multiple antecedents is represented as

 $$ (\tilde{r}_1 \land \tilde{r}_2 \land \cdots \land \tilde{r}_n) \rightarrow \tilde{q}, \tau_1 $$

 where \tilde{r}_i and \tilde{q} are of the forms of “X_i is \tilde{F}_i” and “Y is \tilde{G}_i,” respectively.

 In Fig. 3, after firing the inference transition t^I_{1}, the tokens will be removed from the input places of \tilde{F}_i, a new token will be deposited into the output place of \tilde{F}_i, and the fuzzy set and the fuzzy truth value attached to the new token are derived by three steps (see Section II-B2).

 1) **Transformation**: The fuzzy facts and fuzzy rules with fuzzy truth values are transformed into a set of uncertain classical propositions with necessity and possibility measures by means of λ-cut.

 2) **Inference**: The possibilistic entailment is performed on the set of uncertain classical propositions.

 3) **Composition**: We reverse the process in the first step to synthesize all the λ-level sets obtained in the second step into a fuzzy set and to compose necessity and possibility pairs to form a fuzzy truth value.

 Type 2—Aggregation Transition (t^A): An aggregation transition is used to aggregate the conclusions of several truth-qualified fuzzy rules that have a same linguistic variable and to link the antecedent of a truth-qualified fuzzy rule that also has the same linguistic variable. For example, there are m truth-qualified fuzzy rules having a same linguistic variable in the conclusions, denoted as

 $$ (\tilde{r}_1 \rightarrow \tilde{q}_{11}, \tau_1), (\tilde{r}_2 \rightarrow \tilde{q}_{12}, \tau_2), \cdots, (\tilde{r}_m \rightarrow \tilde{q}_{1m}, \tau_m) $$

 where \tilde{q}_{1i} is “Y is \tilde{G}_{1i}.”

 In Fig. 4, after firing the aggregation transition t^A_{m+1}, the tokens in the input places of \tilde{F}_i will be removed, a new token will be deposited into the output place of \tilde{F}_i, and the fuzzy set and the fuzzy truth value attached to the new token are derived by three steps (see Section II-B3).

 1) **Transformation**: The fuzzy facts with fuzzy truth values are transformed into a set of uncertain classical propositions with necessity and possibility measures by means of λ-cut.

 2) **Aggregation**: The aggregation is performed on the set of uncertain classical propositions.

 3) **Composition**: We reverse the process in the first step to synthesize all the λ-level sets obtained in the second step.
into a fuzzy set and to compose necessity and possibility pairs to form a fuzzy truth value.

It should be noted that \(t_i \) is dead if one of its input places never received a token. To avoid deadlock in aggregation transitions, we assume that for each source place \(p \), a token will be inserted into \(p \), and that the fuzzy set \(\hat{F}_i \) and the fuzzy truth value \(\tau_i \) attached to the token are assigned to be their universe of discourse if no fact matches the fuzzy proposition in the place \(p \). That is, \(\hat{F}_i = U_i \) and \(\tau_i = T \) are assigned.

Type 3—Duplication Transition (\(t^d_i \)):

The purpose of duplication transitions is to avoid the conflict by duplicating the token. For example, there are \(m \) truth-qualified fuzzy rules having a same linguistic variable in the antecedents, denoted as

\[
(\bar{r}_{11} \rightarrow \tilde{q}_{11}, \tau_{11}), (\bar{r}_{12} \rightarrow \tilde{q}_{12}, \tau_{12}), \ldots, (\bar{r}_{1n} \rightarrow \tilde{q}_{1n}, \tau_{1n})
\]

where \(r_{ij} \) means “\(X_i \) is \(F_{ij} \).” They are linked by a duplication transition shown in Fig. 5. After firing the duplication transition \(t^d_i \), the tokens in the input place of \(t^d_i \) will be removed, new tokens will be added into the output places of \(t^d_i \), and the fuzzy sets and the fuzzy truth values attached to the new tokens are not changed.

Type 4—Aggregation-duplication Transition (\(t^{ad}_i \)):

An aggregation-duplication transition is a combination of an aggregation transition and a duplication transition (see Fig. 6). It is used to link all fuzzy propositions that have a same linguistic variable. For example, there are \(m \) truth-qualified fuzzy rules having a same linguistic variable in the conclusions and \(l \) truth-qualified fuzzy rules having the same linguistic variable in the antecedents, denoted as

\[
(\bar{r}_{11} \rightarrow \tilde{q}_{11}, \tau_{11}), (\bar{r}_{12} \rightarrow \tilde{q}_{12}, \tau_{12}), \ldots, (\bar{r}_{1m} \rightarrow \tilde{q}_{1m}, \tau_{1m})
\]

\[
(\bar{r}_{l1} \rightarrow \tilde{s}_{l1}, \tau_{l1}), (\bar{r}_{l2} \rightarrow \tilde{s}_{l2}, \tau_{l2}), \ldots, (\bar{r}_{lm} \rightarrow \tilde{s}_{lm}, \tau_{lm})
\]

where \(\tilde{q}_{1i} \) is of the form of “\(Y_1 \) is \(G_{1i} \).” They are linked by an aggregation-duplication transition shown in Fig. 7.

After firing the aggregation-duplication transition \(t^{ad}_i \), the tokens in the input places of \(t^{ad}_i \) will be removed and new tokens will be deposited into the output places of \(t^{ad}_i \). The
fuzzy sets and the fuzzy truth values attached to the new tokens are derived by three steps (see Section II-B3).

1) Transformation: The fuzzy facts with fuzzy truth values are transformed into a set of uncertain classical propositions with necessity and possibility measures by means of λ-cut.

2) Aggregation: The aggregation is performed on the set of uncertain classical propositions.

3) Composition: We reverse the process in the first step to synthesize all the λ-level sets obtained in the second step into a fuzzy set and to compose necessity and possibility pairs to form a fuzzy truth value.

IV. FUZZY PETRI NET-BASED EXPERT SYSTEM

A framework of integrated expert systems based on our fuzzy Petri net, called fuzzy Petri net-based expert system, is described in this section. Major features of FPNES include knowledge representation through the use of hierarchical
fuzzy Petri nets, a reasoning mechanism based on fuzzy Petri nets, and transformation of modularized fuzzy rule bases into hierarchical fuzzy Petri nets.

A. Knowledge Representation: Hierarchical Fuzzy Petri Nets

Our fuzzy Petri nets are used as the knowledge representation to formulate fuzzy propositions, truth-qualified fuzzy rules, truth-qualified fuzzy facts as fuzzy places, uncertain transitions, and uncertain fuzzy tokens, respectively. Four types of uncertain transitions—inferring, aggregation, duplication, and aggregation-duplication transitions—are introduced to fulfill the mechanism of a fuzzy rule-based reasoning.

To overcome the complexity arising from large sizes of rule bases and fuzzy Petri nets, two important features, modularized rule bases and hierarchical fuzzy Petri nets, are adopted in FPNES. Modularization to partition rule bases into smaller parts is a well-known method useful for organizing rules. Each module may have importing linguistic variables and exporting linguistic variables with respect to some specific modules. As illustrated in Fig. 8, in module 1, the importing linguistic variables X_2 and X_4 with respect to the main module (M_0) receive facts from the main module, and the exporting linguistic variable X_5 with respect to the main module exports facts to the main module after receiving facts.

In a hierarchical fuzzy Petri net, each hierarchy contains a fuzzy Petri net, which may or may not contain other hierarchies. The connections between hierarchies are achieved by defining importing and exporting fuzzy places. That is, an exporting fuzzy place with respect to a hierarchy is defined as a fuzzy place that is connected to the hierarchy by an arc from the fuzzy place to the hierarchy; meanwhile, an importing fuzzy place with respect to a hierarchy is defined as a fuzzy place connected to the hierarchy by an arc from the hierarchy to the fuzzy place. In a graphical representation, a hierarchy is drawn as a double-lined square to connect the importing or exporting fuzzy places. A hierarchical fuzzy Petri net that contains a main hierarchy H_0 and hierarchy H_1 is illustrated in Fig. 9(a). The status of the fuzzy place P_1 in Fig. 9(a) is shown in Fig. 9(b). In this figure, the fuzzy Petri net in the middle window is the main hierarchy at the top level of the hierarchical structure, and the fuzzy Petri net in the bottom window is hierarchy H_1 at the second level. In H_0, fuzzy places P_2 and P_4 are the exporting fuzzy place with respect to hierarchy H_1, and fuzzy place P_5 is the importing fuzzy place with respect to hierarchy H_1. In the hierarchy H_1, fuzzy places P_1 and P_3 are the importing fuzzy places with respect to H_0, and fuzzy place P_5 is the exporting fuzzy place with respect to H_0. When a token is inserted into the fuzzy place P_2 in H_0, it will be transited into hierarchy H_1 and added to place P_1 in hierarchy H_1. Similarly, once a token enters into place P_4 in H_0, it will be sent to hierarchy H_1 and reach the fuzzy place P_3 in H_1. After firing transitions t_1, t_2, and t_3 in hierarchy H_1, the token arrives at the fuzzy place P_5 in H_1 and then enters the fuzzy place P_5 in H_0.

Hierarchical incidence matrices are introduced to solve the complexity problem arising from the large size of fuzzy Petri nets. A hierarchical incidence matrix is defined as an algebraic form of a hierarchical fuzzy Petri net. For example, the hierarchical incidence matrices of the main hierarchy H_0 and hierarchy H_1 in Fig. 9(a) are presented in Fig. 10(a) and (b), respectively. The symbol $-1/P_1$ at (H_1, P_2) shows that there is an arc from the fuzzy place P_2 in H_0 to the fuzzy place P_1 in hierarchy H_1, and the symbol $1/P_5$ at (H_1, P_5) means that there is an arc from the fuzzy place P_5 in H_1 to the fuzzy place P_5 in hierarchy H_0. By defining this symbol, the connections between hierarchies are identified in an algebraic form.

There are two main benefits of having a hierarchical structure in our system: 1) the notion of hierarchy makes the handling of complex systems easy through decomposition and 2) a hierarchical Petri net facilitates the reusability, namely, each hierarchy can be considered as a reuse unit.

B. Reasoning Mechanism

To improve the efficiency of a fuzzy rule-based reasoning, it is crucial that fuzzy facts (input or inferred) find the matched fuzzy rules efficiently, rather than scanning all of the fuzzy rules. Fuzzy Petri nets offer an opportunity to achieve this goal by using transitions and arcs to connect fuzzy rules as a net-based structure [15]. A data-driven reasoning algorithm is developed by defining an extended fuzzy marking, denoted by FM^E. Each hierarchy has an extended fuzzy marking. The elements of FM^E, denoted by $FM^E(p_i)$, are called extended fuzzy places, which are defined...
Fig. 9. (a) A hierarchical fuzzy Petri net and (b) place status for P_1 in H_0.

Fig. 10. Hierarchical incidence matrices for the hierarchical fuzzy Petri net in Fig. 9(a): (a) for the main hierarchy and (b) for the hierarchy H_1.

as $FM^E(p_i) = [p_i, \bar{F}, \tau, p_i \bullet \{(p_i) \cup \{p_i\}, \{p_i\} \bullet \}$. From an extended fuzzy place $FM^E(p_i)$, we know:

1) the fuzzy set and the fuzzy truth value are attached to the token in p_i (i.e., \bar{F} and τ);
2) the other tokens need to fire $p_i \bullet$ (i.e., $\{(p_i) \cup \{p_i\}, \{p_i\} \bullet \}$);
3) the kind of computation to carry out after the firing (i.e., the type of $p_i \bullet$);
4) where to go for the new tokens after the firing (i.e., $(p_i) \bullet$).

For details about the reasoning algorithm, see Appendix A.

C. Transforming Modularized Fuzzy Rule Bases into Hierarchical Fuzzy Petri Nets

To bridge the gap between fuzzy rule-based expert systems and fuzzy Petri nets, it is important to have a mechanism to automatically transform modularized fuzzy rule bases into hierarchical fuzzy Petri nets. In our approach, two algorithms are involved in the transformation. One is to transform modularized fuzzy rule bases into a hierarchical incidence matrix. The other is to transform the hierarchical incidence matrix into a hierarchical fuzzy Petri net (see Appendix B).

D. An Overview of FPNES Tool

FPNES is implemented in Java with a client–server architecture, encompassing four main parts: fuzzy Petri net system (FPNS), user interface, transformation engine, and knowledge bases (see Fig. 11). Java is adopted as the programming language for the FPNES tool for its capability of running on multiple platforms and on the Internet.

FPNS is a modeling and analysis tool for fuzzy Petri nets and serves as an inference engine and explanation facility in FPNES. FPNS mainly contains the simulator and analyzer for fuzzy Petri nets. It provides the basic constructs for hierarchical fuzzy Petri nets (e.g., hierarchies, fuzzy places, uncertain transitions, arcs, and uncertain fuzzy tokens). After judging the firing conditions, the simulator will compute the fuzzy sets and move tokens. The analyzer performs the tasks of analyzing the properties of fuzzy Petri nets, such as incidence matrix, reachability trees, and state equations.

Users can edit modularized fuzzy Petri rule bases in the client site, including the assignments of linguistic variables, truth-qualified fuzzy rules, the relationship of modules, and modularized structures of input facts. When users finish editing the modularized rule bases and the corresponding facts,
and decide to run them, the data are then sent to the transformation engine and transformed to a hierarchical fuzzy Petri net in FPNS. After FPNS processes the hierarchical fuzzy Petri net with the aid of our reasoning algorithm, it sends the results back to the users. The results are presented in a hierarchical fashion to provide a flexible explanation facility (see Fig. 18).

V. APPLICATION TO DAMAGE ASSESSMENT OF BRIDGES

In recent years, many countries have been aware of bridge problems and initiated the development of bridge management systems (BMS’s) to assist their decision makers in establishing efficient repair and maintenance programs [19]. A key to success in BMS’s relies heavily on the reliability of the technique adopted for damage assessment. Damage assessment for a bridge is defined as the process for evaluating the damage state of the bridge based on visual inspection and empirical testing on it.

A. Using FPNES for Damage Assessment

Damage assessment of a bridge is a difficult task due to a lack of complete understanding of the mechanism of bridge deterioration. Bridge structures are too complex to analyze completely, and therefore numerical simulations require a host of simplified assumptions. Nevertheless, an experienced engineer who has closely studied these problems over years could use his heuristic knowledge to achieve the task by linking the observed defects with causes, evaluating the impacts of these causes on bridge safety, assessing the damage level, and proposing recommendations for a bridge. However, there are far too few experts who can correctly inspect and assess deficient bridges. Recently, researchers have begun to investigate the use of expert systems to perform damage assessment, for example, [13], [14], [18], [20], [26], [28], [36], [40], [41], [44], [48], and [53]. Since heuristic knowledge plays an important role in the process of damage assessment, exploiting expert systems to capture the expertise and mimic the reasoning patterns of experts for damage assessment is a promising direction.

The descriptions of heuristic damage-assessment knowledge from bridge engineers usually take the form of natural language that contains intrinsic imprecision and uncertainty. For example, a bridge engineer may make an imprecise statement for assessing a crack observed on a prestressed f-girder, such as “If a shear crack has large extent, wide width and deep depth, severe corrosion accompanied with rust stain occurs in the crack, serious efflorescence comes out of the crack, and water leaches from the crack, then the damage level of this
shear crack is very severe.” Furthermore, sometimes bridge engineers are not completely confident about their imprecise statements since various exceptions may occur due to the complexity in damage assessment. Besides, descriptions on the observed defects by bridge inspectors are often imprecise and uncertain. For example, a statement “We are not that confident that the delamination within a beam is extensive” made by an inspector contains imprecision and uncertainty. Therefore, a reasoning mechanism that can deal with uncertain and imprecise information is expected for damage assessment. In addition, in order to increase the confidence about the assessment results, an explanation facility that can describe how the conclusions are derived is crucial for a computer-aided tool designed especially for damage assessment.

B. Development of Modularized Rule Bases

Damage assessment is based on the notion of functionality. Each component of a bridge structure carries out several functions simultaneously to keep the bridge working. A bridge is considered damaged if some of its components are not functioning correctly. The damage level will depend upon how many functions are impaired.

The inference procedure for damage assessment of a bridge is described as follows (see Fig. 12).

1) A group of inspectors visually investigates each component of a bridge to record the observed defects, such as scaling, cracks, delamination, spalls, honeycomb, efflorescence, corrosions, leaching, etc., and their symptoms.

2) Based on defect symptoms such as defect positions, defect patterns, etc., experienced bridge engineers can identify the possible causes of the defects.

3) The damage level of each defect is evaluated according to the symptoms, which contain quantitative descriptions.

4) The possible causes induce what kinds of functions are eliminated due to the defects.

5) The levels of functional derogation are inferred based on the damage levels of the defects.

6) The assessment of damage can be obtained by aggregating both the functional derogation and its levels.

Fig. 13 shows the factors that are involved in the evaluation of a shear crack in an I-girder. Fig. 15 shows the fuzzy Petri nets after the transformation of the rule bases of shear crack in an I-girder (see Fig. 14 for an example of fuzzy rules). Based on the inference procedure, we construct the modularized rule bases that contain 100 truth-qualified fuzzy rules and 133 recommendations (see Fig. 16).

C. Case Study

The Da-Shi bridge in north Taiwan is used to demonstrate the use of FPNES. It was rebuilt in 1960 as a simply supported and 12-spanned bridge that is of 550 m long and of 7.8 m wide to cross the Da-Han river. This bridge consists of 12 decks, 36 prestressed I-girders, 120 diaphragms, 11 piers, and two abutments. In 1997, this bridge was inspected by the Center of Bridge Engineering Research at National Central University. Through visual inspection, many minor cracks accompanied with efflorescence spread over eight panels within deck 7. The I-girders S9G1, S9G2, S9G3 in span 9 and S10G1, S10G2, S10G3 in span 10 had severe flexure, shear cracks, and some spalls. There were two diaphragms where several spalls were found. The detailed descriptions on these defects can be found in [4].

After executing FPNES for damage assessment of the Da-Shi bridge, the hierarchical fuzzy Petri nets are constructed based on the modularized rule bases, and uncertain fuzzy tokens are transformed into these nets in order to fire transitions and perform the reasoning mechanism (see Fig. 17). The results of damage assessment using FPNES for the Da-Shi bridge are expressed in a hierarchical fashion to serve as an explanation mechanism to facilitate the retrieval of detailed information on damaged components from the top down to
A number of researchers have addressed the use of expert systems for damage assessment for a variety of structures. We examine their studies below.

Ishizuka et al. developed a rule-based expert system (SPERIL-I) to assess damage states of existing buildings [20]. They advocated that the damage states of structures had the nature of fuzziness; therefore, a fuzzy degree of damage state was evaluated for a building based on the accelerometer record and visual inspection after it suffered earthquake excitation. The fuzzy rules with certainty factors were employed jointly in their inexact inference to cope with the continuous nature of the damage state. They also developed a fuzzy extension of Dempster’s rule of combination to aggregate similar conclusions [21]. Ogawa et al. intended to represent damage states by not only fuzzy degrees but also certainty factors in the new system (SPERIL-II). Therefore, they improved the previous inference mechanism to handle fuzzy facts with certainty factors.

A damage-assessment technique for protective structures was proposed by Hadipriono and Ross [18]. The overall damage level of a protective structure was evaluated to a fuzzy degree after visual inspection. Fuzzy rules were constructed based on three damage criteria: functionality, repairability, and the structural integrity of the structure. Different from Zadeh’s fuzzy reasoning, their inference mechanism for fuzzy rules and facts was achieved by the notion of truth functional modification.

Rather than giving a single fuzzy degree, Shiraishi et al. assessed reinforced concrete bridge decks by three items: damage pattern, damage propagation, and damage cause [48]. Although fuzzy sets and certainty facts were included in their inference mechanism, partial matching was not allowed. Meanwhile, they also used fuzzy truth values instead of certainty factors as an uncertainty model to develop another inference mechanism [14]. Recently, they made joint use of genetic algorithms and neural networks to support a knowledge-acquisition method [13].

Besides applying rule-based reasoning, most researchers used numerical computations for damage assessment. Some who implemented their techniques into expert systems are described briefly as follows. Ross et al. used a fuzzy weight average technique to assess reinforced concrete protective lower levels (see Fig. 18). The recommendations embedded in rule bases are also provided on an if-needed basis. As a result, the damage of the superstructure of the Da-Shi bridge is evaluated to be severe with common confidence (i.e., true) since the overall damage of the decks is fairly slight with fair confidence (i.e., fairly true), the overall damage of the I-girders is severe with common confidence, and the overall damage of the diaphragms is very slight with strong confidence (i.e., very true). This result matches the experts’ judgments in the report; moreover, it is more informative than the report itself because the explanation provided in the system and the confidence level associated with the conclusions can be used as a way of justification on whether to take the recommendations into account or not.

VI. RELATED WORK

A number of researchers have addressed the use of expert systems for damage assessment for a variety of structures. We examine their studies below.

Ishizuka et al. developed a rule-based expert system (SPERIL-I) to assess damage states of existing buildings [20]. They advocated that the damage states of structures had the nature of fuzziness; therefore, a fuzzy degree of damage state was evaluated for a building based on the accelerometer record and visual inspection after it suffered earthquake excitation. The fuzzy rules with certainty factors were employed jointly in their inexact inference to cope with the continuous nature of the damage state. They also developed a fuzzy extension of Dempster’s rule of combination to aggregate similar conclusions [21]. Ogawa et al. intended to represent damage states by not only fuzzy degrees but also certainty factors in the new system (SPERIL-II). Therefore, they improved the previous inference mechanism to handle fuzzy facts with certainty factors.

A damage-assessment technique for protective structures was proposed by Hadipriono and Ross [18]. The overall damage level of a protective structure was evaluated to a fuzzy degree after visual inspection. Fuzzy rules were constructed based on three damage criteria: functionality, repairability, and the structural integrity of the structure. Different from Zadeh’s fuzzy reasoning, their inference mechanism for fuzzy rules and facts was achieved by the notion of truth functional modification.

Rather than giving a single fuzzy degree, Shiraishi et al. assessed reinforced concrete bridge decks by three items: damage pattern, damage propagation, and damage cause [48]. Although fuzzy sets and certainty facts were included in their inference mechanism, partial matching was not allowed. Meanwhile, they also used fuzzy truth values instead of certainty factors as an uncertainty model to develop another inference mechanism [14]. Recently, they made joint use of genetic algorithms and neural networks to support a knowledge-acquisition method [13].

Besides applying rule-based reasoning, most researchers used numerical computations for damage assessment. Some who implemented their techniques into expert systems are described briefly as follows. Ross et al. used a fuzzy weight average technique to assess reinforced concrete protective lower levels (see Fig. 18). The recommendations embedded in rule bases are also provided on an if-needed basis. As a result, the damage of the superstructure of the Da-Shi bridge is evaluated to be severe with common confidence (i.e., true) since the overall damage of the decks is fairly slight with fair confidence (i.e., fairly true), the overall damage of the I-girders is severe with common confidence, and the overall damage of the diaphragms is very slight with strong confidence (i.e., very true). This result matches the experts’ judgments in the report; moreover, it is more informative than the report itself because the explanation provided in the system and the confidence level associated with the conclusions can be used as a way of justification on whether to take the recommendations into account or not.

VI. RELATED WORK

A number of researchers have addressed the use of expert systems for damage assessment for a variety of structures. We examine their studies below.

Ishizuka et al. developed a rule-based expert system (SPERIL-I) to assess damage states of existing buildings [20]. They advocated that the damage states of structures had the nature of fuzziness; therefore, a fuzzy degree of damage state was evaluated for a building based on the accelerometer record and visual inspection after it suffered earthquake excitation. The fuzzy rules with certainty factors were employed jointly in their inexact inference to cope with the continuous nature of the damage state. They also developed a fuzzy extension of Dempster’s rule of combination to aggregate similar conclusions [21]. Ogawa et al. intended to represent damage states by not only fuzzy degrees but also certainty factors in the new system (SPERIL-II). Therefore, they improved the previous inference mechanism to handle fuzzy facts with certainty factors.

A damage-assessment technique for protective structures was proposed by Hadipriono and Ross [18]. The overall damage level of a protective structure was evaluated to a fuzzy degree after visual inspection. Fuzzy rules were constructed based on three damage criteria: functionality, repairability, and the structural integrity of the structure. Different from Zadeh’s fuzzy reasoning, their inference mechanism for fuzzy rules and facts was achieved by the notion of truth functional modification.

Rather than giving a single fuzzy degree, Shiraishi et al. assessed reinforced concrete bridge decks by three items: damage pattern, damage propagation, and damage cause [48]. Although fuzzy sets and certainty facts were included in their inference mechanism, partial matching was not allowed. Meanwhile, they also used fuzzy truth values instead of certainty factors as an uncertainty model to develop another inference mechanism [14]. Recently, they made joint use of genetic algorithms and neural networks to support a knowledge-acquisition method [13].

Besides applying rule-based reasoning, most researchers used numerical computations for damage assessment. Some who implemented their techniques into expert systems are described briefly as follows. Ross et al. used a fuzzy weight average technique to assess reinforced concrete protective
structures by providing damage modes and fuzzy degrees [44]. Miyamoto et al. proposed a fuzzy mapping formalism to evaluate the remaining life and soundness degrees for concrete bridges [36]. They further improved their system by substituting neural networks for their fuzzy mapping formalism [28]. Issa et al. established a bridge rating expert system, in which the rating methods considered were inventory rating, operating rating, rating factor rating, and sufficiency rating [22]. A strength rating was based on the evaluation of existing prestressed concrete bridges in accordance with the American Association of State Highway Transportation Officials specification, and inventory rating for all bridges according to the Federal Highway Administration guide for the Structure Inventory and Appraisal of the Nation’s Bridges.

Unlike other researchers, our approach does not impose any restriction on the inference mechanism, that is, the intended meaning is not required to be intact; meanwhile, the confidence level can be partially certain. Furthermore, our approach offers more informative results because the explanation provided in the system and the confidence level of the conclusions can be used as a way of justification on whether to take the recommendations into account or not (see Table I).

VII. CONCLUSION

A fuzzy Petri nets approach to modeling fuzzy rule-based reasoning is proposed to bring together the possibilistic entailment and the fuzzy reasoning to handle uncertain and imprecise information. The three key components in our fuzzy rule-based reasoning—fuzzy propositions, truth-qualified fuzzy rules, and truth-qualified fuzzy facts—can be formulated as fuzzy places, uncertain transitions, and uncertain fuzzy tokens, respectively. Four types of uncertain transitions—inference, aggregation, duplication, and aggregation-duplication transitions—are introduced to fulfill the mechanism of fuzzy rule-based reasoning. We also propose a framework of integrated expert systems based on our fuzzy Petri net, called fuzzy Petri net-based expert system. Major features of FPNES include: knowledge representation through the use of hierarchical fuzzy Petri nets, a reasoning mechanism based on fuzzy Petri nets, and transforming modularized fuzzy rule bases into hierarchical fuzzy Petri nets. An application to the damage assessment of the Da-Shi bridge in Taiwan is used as an illustrative example of FPNES. FPNES offers several benefits.
The efficiency of rule-based reasoning is improved by designing an efficient reasoning algorithm based on fuzzy Petri nets.

The explanation of how to reach conclusions is expressed through the movements of tokens in fuzzy Petri nets.

The hierarchical fuzzy Petri nets make the handling of complex systems easy and facilitate reusability.

Our future work consists of two tasks: 1) to develop a knowledge verification scheme based on our fuzzy Petri nets and 2) to apply the proposed approach to other applications.
APPENDIX A

REASONING ALGORITHM

Our reasoning algorithm is used to manage the evolution of extended fuzzy marking. We describe it as follows:

Algorithm 1—Implementing Fuzzy Petri Nets:

1) Get the initial extended fuzzy marking \(FM_E^0\), which consists of all source fuzzy places.
2) For each \(i\), set a current extended fuzzy marking \(FM_E^i = FM_E^{i-1}\) and the next extended fuzzy marking \(FM_E^{i+1} = \{\}\).
3) Select an element of the current extended fuzzy marking \(FM_E^i(p_j) = [p_j, \hat{F}_j^i, \tau_j, p_j \bullet, \{p_j \bullet\}, \{p_j\}, \{(p_j \bullet)p\}].\)
4) a) If the output transition of \(p_j\) is a duplication transition, then infer the extended fuzzy place \(FM_{E+1}(p_k)\) of each \(p_k \in (p_j \bullet)\) by duplication.
TABLE I
A SUMMARY OF RELATED WORK ON EXPERT SYSTEMS FOR DAMAGE ASSESSMENT

<table>
<thead>
<tr>
<th>Damage Assessment</th>
<th>Knowledge Base</th>
<th>Inference Engine</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage State: A Fuzzy Degree</td>
<td>Visual Inspection</td>
<td>FUZZY RULES & C.F.</td>
<td>F → G, CF</td>
</tr>
<tr>
<td>M. Shibuza et al. (IPSJ, 1986) (R.C. STRUCTURES)</td>
<td>Accelerometer Record</td>
<td>FOLLOW THE ORDERS OF RULES</td>
<td>C</td>
</tr>
<tr>
<td>Damage State: A Fuzzy Degree & C.F.</td>
<td>Visual Inspection</td>
<td>FUZZY RULES & C.F.</td>
<td>F → G, CF1</td>
</tr>
<tr>
<td>F. Hashimoto et al. (IPSJ, 1986) (R.C. STRUCTURES)</td>
<td>Accelerometer Record</td>
<td>F → G, CF1, CF2</td>
<td>G, CF3</td>
</tr>
<tr>
<td>Damage Level: A Fuzzy Degree</td>
<td>Visual Inspection</td>
<td>FUZZY RULES & C.F.</td>
<td>F → G</td>
</tr>
<tr>
<td>N. Shiraishi et al. (IPSJ, 1986) (R.C. BRIDGE DECK)</td>
<td>FUZZY FACTOR</td>
<td>F1...G1</td>
<td>METARULES, PROLOG</td>
</tr>
<tr>
<td>Remaining Life: YEARS + T.V.</td>
<td>Visual Inspection</td>
<td>FUZZY RULES & T.V.</td>
<td>F → G, TV1</td>
</tr>
<tr>
<td>H. Fujiwara et al. (IPSJ, 1991) (R.C. BRIDGE DECK)</td>
<td>FUZZY TRUTH VALUE</td>
<td>F1...TV2, TV3</td>
<td>METARULES, UBF</td>
</tr>
<tr>
<td>Remaining Life: YEAR</td>
<td>Testing Data</td>
<td>HIERARCHICAL STRUCTURE</td>
<td>F1...G1</td>
</tr>
<tr>
<td>T. J. Ross et al. (IPSJ, 1996) (R.C. STRUCTURES)</td>
<td>VISUAL INSPECTION</td>
<td>FUZZY WEIGHTED AVERAGE</td>
<td>METARULES, PROLOG</td>
</tr>
<tr>
<td>Remaining Life: YEAR</td>
<td>Inspection Data</td>
<td>INSPECTION DATA</td>
<td>F1...G1</td>
</tr>
<tr>
<td>A. Watanabe et al. (IPSJ, 1993) (R.C. BRIDGE)</td>
<td>ENVIRONMENT</td>
<td>HIERARCHICAL STRUCTURE</td>
<td>F1...G1</td>
</tr>
<tr>
<td>Inspect Data</td>
<td>Inspect Data</td>
<td>ENVIRONMENT</td>
<td>F1...G1</td>
</tr>
<tr>
<td>M. Kubo et al. (IPSJ, 1993) (R.C. BRIDGE)</td>
<td>TRAFFIC VOLUME</td>
<td>NEURAL NETWORKS</td>
<td>F1...G1</td>
</tr>
<tr>
<td>Inventory Rating</td>
<td>Numerical Data</td>
<td>EQUATIONS</td>
<td>F1...G1</td>
</tr>
<tr>
<td>M. A. D. I. (IPSJ, 1998) (R.C. BRIDGE)</td>
<td>EQUATIONS</td>
<td>EQUATIONS</td>
<td>F1...G1</td>
</tr>
<tr>
<td>Our Approach</td>
<td>Visual Inspection</td>
<td>FUZZY RULES & T.V.</td>
<td>F → G, TV1</td>
</tr>
<tr>
<td>FIPNE (P.C. ORDER BRIDGES)</td>
<td>FUZZY TRUTH VALUE</td>
<td>F1...TV2, TV3</td>
<td>METARULES, PROLOG</td>
</tr>
<tr>
<td>Our Approach</td>
<td>Fuzzy Petri Nets</td>
<td>FIPNE (IN JAVA)</td>
<td></td>
</tr>
</tbody>
</table>

| i.e., C.F.: CERTAINTY FACTOR | T.V.: FUZZY TRUTH VALUE | F1 and G1 are close to F and G, respectively. |

b) Else if the output transition of p_j is an inference transition, and the extended fuzzy place of each $p_k \in \bullet(p_j)\setminus\{p_j\}$ exists in FM_c^E, then infer the extended fuzzy place $FM_c^{E+1}(p_k)$ of $p_k = (p_j, \bullet\bullet)$ by i) transformation, ii) inference, and iii) composition.

c) Else if the output transition of p_j is an aggregation transition, and the extended fuzzy place of each $p_k \in \bullet(p_j)\setminus\{p_j\}$ exists in FM_c^E, then infer the extended fuzzy place $FM_c^{E+1}(p_k)$ of $p_k = (p_j, \bullet\bullet)$ by i) transformation, ii) aggregation, and iii) composition.

d) Else if the output transition of p_j is an aggregation-duplication transition, and the extended fuzzy place of each $p_k \in \bullet(p_j)\setminus\{p_j\}$ exists in FM_c^E, then infer the extended fuzzy place $FM_c^{E+1}(p_k)$ of each $p_k \in (p_j, \bullet\bullet)$ by i) transformation, ii) aggregation, and iii) composition.

5) a) If the output transition of p_j is fired, then insert the inferred extended fuzzy place $FM_c^{E+1}(p_k)$ into the next extended fuzzy marking FM_c^{E+2}.

b) If the output transition of p_j is a hierarchy, then insert the extended fuzzy place $FM_c^{E}(p_j)$ into the hierarchy and wait for the final extended fuzzy marking of the hierarchy to be inserted into the current extended fuzzy marking.

c) Else insert this element $FM_c^{E}(p_j)$ and each $FM_c^{E}(p_j)$ into the fuzzy marking FM_c^{E+1}.

6) Delete the element $FM_c^{E}(p_j)$ and each $FM_c^{E}(p_j)\setminus\{p_j\}$ from the current extended fuzzy marking.

7) Repeat steps 3)–6) until no element is in the current extended fuzzy marking.

8) Repeat steps 2)–7) until all output transitions in the current extended fuzzy marking are not fired.

9) Send the final extended fuzzy marking to the upper level hierarchy.

APPENDIX B
TRANSFORMATION ALGORITHMS
A labeling system for fuzzy propositions in rule bases is defined first. Each fuzzy proposition in a module is labeled
by $L_j(a_j, b_j, c_j, d_j, e_j)$, where a_j denotes the rule number in this module, b_j denotes right-hand side (RHS) or left-hand side (LHS) of this rule (1 for LHS and 2 for RHS), c_j denotes the index of linguistic variable, d_j denotes the index of fuzzy set, and e_j refers to the module number for which c_j is an importing or exporting linguistic variable. It should be noted that $c_j = 0$ means that this fuzzy proposition has neither importing nor exporting linguistic variables. For example, in Fig. 8, "X2 is very severe" in the first rule in main module $M0$ is labeled as $L_2(1, 2, 2, 1, 1)$, where F_1 denotes "very severe."

Algorithm 2—Transforming Modularized Fuzzy Rules into Hierarchical Incidence Matrix:

1) **Labeling**: Label each fuzzy proposition in each truth-qualified fuzzy rule in sequence as $L_j(a_j, b_j, c_j, d_j, e_j)$ ($j = 1 \sim m$).

2) **Inference Transition Part**:
 a) Create the row of fuzzy places (FP), whose elements are defined as (p_j, F_j) ($j = 1 \sim m$).
 b) Create the column of uncertain transition (UT), whose elements are defined as (t_i, τ_i) ($i = 1 \sim n$, τ_i means the fuzzy truth value of the ith rule).
 c) Create the $n \times m$ incidence matrix A, where a_{ij} is
 -1 if i) L_j's a_j is i, ii) its b_j is 1, and iii) its c_j is 0; a_{ij} is +1 if i) L_j's a_j is i, ii) its b_j is two, and iii) its c_j is zero. a_{ij} is zero if L_j's a_j is not i.

3) **Aggregation-Duplication Transition Part**: If 1) some L_j's have the same c_j and e_j is zero and 2) part of 1) has $b_j = 1$ (called group 1) and the other parts of 1) have $b_j = 2$ (called group 2), then:
 a) insert an aggregation-duplication transition as the last element in the column of uncertain transition UT;
 b) add a new row at the bottom of the incidence matrix A, where a_{ij} is
 -1 if L_j is in group 2; a_{ij} is +1 if L_j is in group 1. a_{ij} is zero for the rest.

4) Repeat step 3) until no L_j is satisfied.

5) **Duplication Transition Part**: If 1) some L_j's have the same c_j and e_j is zero and 2) all of 1) have $b_j = 1$ (called group 1), then:
 a) insert a duplication transition as the last element in the column of uncertain transition UT;
 b) insert a fuzzy place as the last element in the row of fuzzy place FP;
 c) add a new row at the bottom and a new column at the left end of the incidence matrix A, where a_{ij} is
 -1 for the last element of the new row (or column), a_{ij} is +1 if L_j is in group 1, and a_{ij} is zero for the rest.

6) Repeat step 5) until no L_j is satisfied.

7) **Aggregation Transition Part**: If 1) some L_j's have the same c_j and e_j is zero and 2) all of 1) have $b_j = 2$ (called group 1), then:
 a) insert an aggregation transition as the last element in the column of uncertain transition UT;
 b) insert a fuzzy place as the last element in the row of fuzzy place FP;
 c) add a new row at the bottom and a new column at the left end of the incidence matrix A, where a_{ij} is
 +1 for the last element of the new row (or column), a_{ij} is zero for the rest.

8) Repeat step 7) until no L_j is satisfied.

9) **Hierarchy Part**: If 1) some L_j's have the same c_j and e_j is not zero and 2) part of 1) has $b_j = 1$ (called group 1) and the other part of 1) has $b_j = 2$ (called group 2), then:
 a) insert a hierarchy H_a as the last element in the column of uncertain transition UT;
 b) add a new row at the bottom of the incidence matrix A, where a_{ij} is
 -1/P_k if L_j is in group 2 and P_k, importing fuzzy place with respect to this hierarchy in H_a, has the same c_j in related L_i and a_{ij} is +1/P_k if L_j is in group 1 and P_k, exporting fuzzy place with respect to this hierarchy in H_a, has the same c_j in related L_i; a_{ij} is zero for the rest.

10) Repeat step 9) until no L_j is satisfied.

Based on the hierarchical incidence matrix, hierarchical fuzzy Petri nets are constructed by an algorithm which is described below.

Algorithm 3—Transforming Hierarchical Incidence Matrix into Hierarchical Fuzzy Petri Nets:

1) **Fuzzy Places**: Draw fuzzy places based on the row of fuzzy places FP.

2) **Uncertain Transitions**: Draw uncertain transitions based on the column of uncertain transitions UT.

3) **Arcs**: Link fuzzy places and uncertain transitions based on the incidence matrix A.
 a) If a_{ij} is -1, then draw an arc from fuzzy place p_j to uncertain transition t_i.
 b) Else If a_{ij} is $+1$, then draw an arc from uncertain transition t_i to fuzzy place p_j.
 c) If a_{ij} is $-1/P_k$, then draw an arc from fuzzy place p_j to hierarchy H_k and an arc from hierarchy H_1 to fuzzy place P_k in H_1.
 d) Else if a_{ij} is $1/P_k$, then draw an arc from fuzzy place H_k in H_1 to hierarchy H_1 and an arc from hierarchy H_1 to fuzzy place p_j.
 e) Else if a_{ij} is zero, then there is no arc between uncertain transition t_i and fuzzy place p_j.

ACKNOWLEDGMENT

The authors would like to thank S. Lin for his early work on this project.

REFERENCES

Fuzzy set as a basis for a theory of possibility,
The concepts of a linguistic variable and its application to
A possibilistic-logic-based approach to integrating imprecise
Worldwide perspectives and trends in expert systems,
Fuzzy Petri nets for rule-based decision making,
A simple inference engine capable of accommodating both imprecision and uncertainty,
A. Miyamoto, H. Morikawa, M. Kushida, and T.Tokuyama, "A knowledge-based expert system application in structural safety
assessment of concrete bridges," in Bridge Management: Inspection, Maintenance, Assessment and Repair 2 (Proceedings of the Second
1993, pp. 96–109.
C. Wu and S. Lee, "Enhanced high-level Petri nets with multiple colors for knowledge verification/validation of rule-based expert systems,"
1979, pp. 149–194.
J. T. Yao, "The concepts of a linguistic variable and its application to approximate reasoning (part 1, 2 and 3)," Inf. Sci., vol. 199–249,