
OpenFlow Vulnerability Assessment
Kevin Benton

School of Informatics and
Computing

Indiana University
Bloomington, Indiana, USA

KTBenton@Indiana.edu

L. Jean Camp
School of Informatics and

Computing
Indiana University

Bloomington, Indiana, USA
LJCamp@Indiana.edu

Chris Small
School of Informatics and

Computing
Indiana University

Bloomington, Indiana, USA
ChSmall@Indiana.edu

ABSTRACT
We provide a brief overview of the vulnerabilities present in
the OpenFlow protocol as it is currently deployed by hard-
ware and software vendors. We identify a widespread failure
to adopt TLS for the OpenFlow control channel by both con-
troller and switch vendors, leaving OpenFlow vulnerable to
man-in-the-middle attacks. We also highlight the classes of
vulnerabilities that emerge from the separation and central-
ization of the control plane in OpenFlow network designs.
Finally, we offer suggestions for future work to address these
vulnerabilities in a systematic fashion.

Categories and Subject Descriptors
C.2.6 [Computer-Communication Networks]: Networks

Keywords
Security, Software-Defined Networking, OpenFlow

1. INTRODUCTION AND RELATED WORK
OpenFlow offers powerful network customization by sep-

arating the data flow from the network control plane. The
controller configures the data plane behavior of switches by
installing rules using the OpenFlow protocol. Controllers
can install rules in response to received traffic (i.e. “reac-
tively”) or they can install rules immediately to handle all
traffic (i.e. “proactively”). The communications between the
controller and switches are carried over a TCP connection
that can optionally be protected by TLS with mutually au-
thenticated certificates signed by a private key correspond-
ing to a mutually trusted public key. The TCP connection is
initiated by the switch with an operator-configured setting
that specifies the IP address and TCP port of the controller.

Creating secure networks using OpenFlow is an active re-
search area. FRESCO [7] provides a programming frame-
work to execute and link together security related applica-
tions. FortNOX [5] extends the NOX controller to deal with
conflicting OpenFlow applications by adding role-based con-
straints to the permitted rules that an OpenFlow applica-
tion can send to switches. In a similar context, FlowVisor [6]

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HotSDN’13, August 16, 2013, Hong Kong, China.
ACM 978-1-4503-2178-5/13/08.

acts as a mediator between controllers and switches to apply
limitations to the rules created by controllers. We believe
our work is the first to focus on vulnerabilities that emerge
from OpenFlow network designs and vulnerabilities within
the protocol.

2. VULNERABILITY ANALYSIS
The original OpenFlow specification required the control

channel between the controllers and switches to be protected
using TLS. However, the subsequent specifications up to the
current one (v1.3.0), make TLS optional. TLS has a higher
technical barrier (than plaintext) for operators due to the
steps required to configure it correctly, which include the
following: generating a site-wide certificate, generating con-
troller certificates, generating switch certificates, signing the
certificates with the site-wide private key, and installing the
correct keys and certificates into all of the devices. Compar-
atively, the plaintext operation only requires a single config-
uration parameter (the controller address). This creates an
incentive for network administrators to forego TLS.

Due to the rapidly evolving nature of OpenFlow, many
vendors of both switches and controllers have not fully im-
plemented the specification. Specifically, most have skipped
the TLS portion entirely. There is a noticeable lack of sup-
port from both software and hardware vendors, which con-
sequently deters both sides from spending significant effort
implementing it. The NEC IP8800 is the only hardware
switch we identified with TLS support. The only controller
with full TLS support was Open vSwitch. When referring to
TLS support, one of the developers for the Floodlight con-
troller wrote, “it would be pretty trivial to add it if there
was sufficient interest”, arguing that the lack of demand for
the feature was due to limited support from the switches [1].

Man-in-the-middle Attacks The lack of TLS leaves an
avenue for adversaries to infiltrate OpenFlow networks and
remain largely undetected. While this may be infeasible
for some physically secure networks, it becomes a greater
concern in campus-style and remote-office deployments in
which switches are deployed to locations which are easier
for adversaries to access. Note that OpenFlow traffic may
also be carried by an adversarial or less competent ISP.

The risks posed by a successful man-in-the-middle attack
in an in-band (i.e., links carry both data and OpenFlow traf-
fic) managed OpenFlow network are arguably worse than in
current networks. In regular networks, an attacker has to
wait until an operator logs into each switch management in-
terface using an insecure protocol (e.g. Telnet, SNMPv2) to
capture credentials. However, due to the constant connec-
tivity and lack of authentication in the plaintext OpenFlow

151



TCP control channel, an attacker can immediately seize full
control of any down-stream switches and execute very fine-
grained eavesdropping attacks that would be difficult to de-
tect. While this type of attack was technically achievable be-
fore, OpenFlow eliminates both the heterogeneity in network
management interfaces and the time-consuming requirement
of capturing management credentials.

Listener Mode This risk of adversarial rule modifica-
tion is compounded by a “listener mode” supported by many
switches, in which they accept unauthenticated connections
to a configured TCP port from any network source [2]. These
externally initiated connections can be used to write rules to
switches and read information from them to allow for easy
debugging. However, it eliminates the requirement for an
attacker to conduct a man-in-the-middle attack to take over
a network. By simply discovering a switch configured with
a passive listening port, the attacker can dump the flows for
reconnaissance and then insert rules to hijack downstream
switches, capture traffic, and/or configure the switch to act
as a proxy for further attacks.

Switch Authentication Even when TLS is implemented,
failure to implement switch authentication in the controller
(e.g. NOX) can allow an attacker to perform network recon-
naissance by observing how the controller responds to differ-
ent packets. Depending on the topology discovery logic in
the controller, an attacker could potentially take down por-
tions of the network or receive sensitive traffic by falsifying
attached host information.

Flow Table Verification A full TLS implementation
could increase security of the messages between switches and
controllers; however, it wouldn’t help detect switches that
erroneously alter rules. Also, tracking the state changes of
the flow-table for each switch by recording all of the flow-
removed messages generated by switches requires extra logic
on the controller, especially in the case of temporary network
outage recovery. This mismatch between the controller’s
idea of the network’s rule-state and the actual rule-state
can lead to an access-control failure, a network outage, or
other unexpected behavior. Currently, the only way to ver-
ify the rules is by dumping and inspecting the flow tables
from each switch. This can be quite computationally costly
for the switches and the controller(s).

Denial of Service Risks By centralizing the control
plane, a new point of failure is introduced into the network.
This can be mitigated by the use of multiple controllers (e.g.
Onix [4]), but without careful rule design, controllers can be
exposed to DoS attacks. In current network devices, some
edge-case packets will have to be to be processed by the
control plane. However, in OpenFlow, poor rule design can
lead to saturating volumes of controller queries, affecting all
switches that rely on that controller.

The majority of these DoS risks impact networks that use
reactive rules. Networks based on proactive rule insertion
do not have the same exposure as long as no traffic that
can generate arbitrary Packet-In events. Yet these switches
remain vulnerable to a DoS caused by excessive flow modi-
fications from the controller. Special care must be taken by
application developers to avoid conditions that cause exces-
sive Flow-Mod messages. The OpenFlow 1.3 specification [3]
suggests policing packets destined to the controller; however,
it indicates that it is outside the scope of the specification.
It provides no guidance for rate limiting messages to the
controller, nor rule-insertions to the switches.

Today network devices have specialized firmware designed
to deal with the known vulnerabilities of the protocols they
support. For example, most modern enterprise Ethernet
switches have code that offers ARP poisoning protection,
DHCP snooping prevention, broadcast/multicast rate limit-
ing, and MAC address limits for ports. In OpenFlow net-
works, all of these basic protections must be provided by
controller. This places the burden of implementing complex
security protections on the developers of the OpenFlow ap-
plications, who may be unaware of the existence of these
attacks.

Controller Vulnerabilities By placing OpenFlow ap-
plications that perform deep packet inspection and conver-
sation reconstruction on the host responsible for the control
of the entire network, application isolation becomes an inte-
gral part of network security. Without it, compromising one
OpenFlow application could lead to adversarial control of
the entire network. Even attempting to parse complex pro-
tocols can lead to vulnerabilities, as demonstrated by the
long list of Wireshark dissector security advisories1.

3. CONCLUSIONS AND FUTURE WORK
OpenFlow risks repeating the errors of other insecure net-

work management protocols (e.g. Telnet, SNMPv2, TFTP)
where physical security was initially the only security and
adoption of transport security lagged. The potential of Open-
Flow includes controlling enterprise switches over the Inter-
net to manage branch-office networks or to offer “network-
management-as-a-service” to others. Without wide-spread
adoption of strong protocol security, OpenFlow will be un-
able to expand into those roles.

Acknowledgments2

4. REFERENCES
[1] Floodlight-developers mailing list: Tls support.

https://groups.google.com/a/openflowhub.org/forum/
?fromgroups=#!topic/floodlight-dev/hwPdcZOZhog, Jan 2012.

[2] Hp switch software - openflow supplement. http://h20000.www2.
hp.com/bc/docs/support/SupportManual/c03170243/c03170243.pdf,
Feb 2012.

[3] Openflow switch specification: Version 1.3.0.
https://www.opennetworking.org/images/stories/downloads/
specification/openflow-spec-v1.3.0.pdf, Jun 2012.

[4] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, et al.
Onix: A distributed control platform for large-scale production
networks. OSDI, Oct, 2010.

[5] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and
G. Gu. A security enforcement kernel for openflow networks. In
Proceedings of the first workshop on Hot topics in software
defined networks, HotSDN ’12, pages 121–126, New York, NY,
USA, 2012. ACM.

[6] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar. Flowvisor: A network
virtualization layer. OpenFlow Switch Consortium, Tech. Rep,
2009.

[7] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and
M. Tyson. Fresco: Modular composable security services for
software-defined networks. Internet Society NDSS (Feb. 2013).
To appear, 2013.

1http://www.wireshark.org/security/
2This material is based upon work supported, in part, by
DARPA FA8750-13-2-0023. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the DoD or Indiana University.

152




