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a b s t r a c t 

In supply chain management, supplier selection can be treated as a type of hierarchical

multi-criteria decision-making (MCDM) problems since it involves various criteria and hi- 

erarchical structure among criteria often exists. This paper investigates a kind of MCDM

problems with two-level criteria and develops a novel hybrid method integrating TL-ANP

(2-tuple linguistic analytic network process) and IT-ELECTRE II (interval 2-tuple Elimina- 

tion and Choice Translating Reality II). Considering interactions among criteria, a TL-ANP

approach, in which comparison matrices are consistent 2-tuple linguistic preference rela- 

tions, is put forward to determine weights of criteria and sub-criteria. To deal with the

case of criteria being not compensated, an IT-ELECTRE II approach is proposed. In this ap- 

proach, ratings of alternatives on sub-criteria are represented as interval 2-tuple linguistic

variables. A possible degree and a likelihood-based preference degree are respectively de- 

fined, followed by concordance, discordance and indifferent sets. Afterwards, concordance

and discordance indices are identified and applied to establish net concordance and net

discordance indices. Further, comprehensive dominant values of alternatives are obtained

to rank alternatives. Thereby, a novel hybrid method is presented for MCDM with two-level

criteria under interval 2-tuple linguistic environment. At length, a real case of supplier se- 

lection is examined and comparison analyses are conducted to illustrate the application

and superiority of the proposed method.

© 2016 Elsevier Inc. All rights reserved.

 

 

 

 

 

 

1. Introduction

With the acceleration of economic globalization process, today’s enterprises are exposed to fierce competition. To attract

more customers, many enterprises improve the quality and reduce cost (price) of their products. In this process, the

raw material supplier plays an important role. Therefore, Enterprises must select appropriate suppliers and retain good

relations of cooperation with them. While selecting suppliers, various criteria are involved and some of them are conflict,

such as quality and cost. Hence, the supplier selection can be considered as a kind of multi-criteria decision-making

(MCDM) problems [8,26,34–36] . Current research on supplier selection mainly focuses on two key issues: evaluation criteria

identification and decision-making methods. 
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Table 1

Criteria and corresponding sub-criteria for supplier selections.

Criteria Sub-criteria Literature

Quality Quality performance; Quality containment & VDCS feed back Yang and Tzeng [41]

Price & Terms Price; Terms; Responsiveness; Lead time, VMI/VOI hub set up cost

Supply chain support Purchase order reactiveness; Capacity support & flexibility; Delivery/VMI

operation

Technology Technical support, Design involvement; ECN/PCN process

Cost Product price, Freight cost; Tariff and custom duties Chen and Yang [2]

Quality Rejection rate of product; Increased lead time; Quality assessment; Remedy for

quality problems

Service performance Delivery schedule, Technological and R & D support; Response to changes; Ease

of communication

Supplier Profile Financial status, Customer base; Performance history; Production facility and

capacity

Risk Geographical location, Political stability; Economy, Terrorism

General management capability

perspective

Management and strategy; Financial status; Customer relations; Training

program; Reputation, History; Language; License; Geographical location

Lee et al. [16]

Manufacturing capability perspective Production capacity; Product diversity; R & D capability, Safety regulations;

Environmental regulations, Quality control; Product price

Collaboration capability perspective After-sales service, Delivery reliability

Agility perspective Delivery speed; Delivery flexibility; Make flexibility; Source flexibility; Agile

customer responsiveness; Collaboration with partners, IT infrastructure

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For evaluation criteria identification, Dickson [6] firstly performed an investigation and proposed 23 different criteria

including quality, on-time delivery, price, performance history, warranties policy, technical capability, etc. Among these 

criteria, the first three criteria are most popular and applied in many supplier selection problems [2,16,27,41] . Subsequently,

a lot of new evaluation criteria were introduced, such as finance, management and reputation, service, etc. According to

these criteria, different sub-criteria [2,16,41] were presented and listed in Table 1 . 

In the regard of decision-making methods, earlier studies adopted some classical methods to solve supplier selection

problems with crisp numerical assessment information, such as AHP (Analytic Hierarchical Process) [20] , ANP (Analytic

Network Process) [32] and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) [17] . However, as the

complexity of decision-making problems increases, decision information is more and more vague. In this context, Pedrycz

[24,25] suggested that linguistic variable [7,18] is suitable to describe quantitative assessment information. For example,

when we evaluate the reputation of a supplier, terms like “poor”, “good” and “very good” are usually employed. By

converting linguistic variables into triangle fuzzy numbers (TFNs), many fuzzy decision methods [1,11,14,16,21,27,28,33] have

been proposed. Roughly speaking, these methods can be divided into two classes: single methods and hybrid methods. 

Common single methods are fuzzy AHP (FAHP) [27] , fuzzy ANP (FANP) [33] and fuzzy TOPSIS (FTOPSIS) [28] . Hybrid

methods are those which fuse at least two single methods. Generally, some single methods are used to determine criteria

weights and others are applied to rank suppliers. For example, considering that criteria are independent on each other,

Hashemian et al. [11] and Lee et al. [16] derived criteria weights by FAHP, and then ranked suppliers by fuzzy PROMETHEE

(Preference Ranking Organization Method for Enrichment Evaluation) and FTOPSIS, respectively. Considering interactions 

among criteria, Nguyen et al. [21] used FANP to determine criteria weights and adopted COPRAS-G (Complex Proportional

Assessment of alternatives with Grey relations) to rank suppliers; Büyüközkan and Çifçi [1] obtained criteria weights

by fuzzy DEMATEL and FANP, and sorted suppliers by FTOPSIS; Karsak and Dursun [14] used QFD (Quality Function

Deployment) to derive criteria weights, and then applied DEA (Data Envelopment Analysis) to rank suppliers. 

The aforementioned methods demonstrate that most researchers solved supplier selection problems by transforming 

linguistic variables into TFNs. As a result, computation results usually do not exactly match any of initial linguistic terms

and an approximation process must be used to express results in the initial expression domain, which easily leads to loss of

information and lack of precision in the final results. To overcome these limitations, Herrera and Martínez [12] introduced

2-tuple linguistic representation model which consists of a linguistic term and a numeric value. The main advantage

of this representation is to be continuous in its domain. Therefore, it can express any counting of information in the

universe of the discourse. Subsequently, Zhang [44] further extended the 2-tuple linguistic variable into the interval 2-tuple

linguistic variable. In 2-tuple linguistic context, Wang [37] proposed Hierarchy Arithmetic Weighted Average approach to

rank suppliers; Karsak and Dursun [15] used QFD to give a decision framework for medical supplier selection problems. You

et al. [42] addressed an interval 2-tuple linguistic VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje technique)

method to tackle anesthetic equipment supplier problems. However, methods [37, 42] assumed that criteria are independent

and assigned criteria weights in advance. 

Though previous linguistic decision making methods can solve some supplier selection problems, there are some

shortcomings: (1) Fuzzy decision methods [1,16,21,28,33] may result in information loss or distortion. (2) Although 2-tuple

decision methods [37,42] can overcome the information loss, they did not consider interactions among criteria. The phe-

nomena of interaction among criteria often exist in real-world decision making problems. For instance, while evaluating a
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supplier, the high quality often brings a good reputation and a good reputation may imply the high quality. (3) Methods

[1,16,21,28,33,37,42] regards that values on different criteria can completely compensate for each other. In fact, sometimes,

values on some criteria cannot compensate for each other. As an example, if the quality of supplier A is much worse than

that of supplier B , then supplier A is not better than supplier B even if values of supplier A on other criteria are much

better than those of supplier B . 

To make up above shortcomings, this paper proposes a new hybrid method for solving supplier selection problems with

two-level criteria. The main motivations of this paper are outlined as follows: 

(1) As mentioned before, various criteria and sub-criteria are involved in supplier selection problems. This implies

that hierarchical structure often exists in supplier selection. Existing methods [17,28,37,42] only addressed supplier

selection with single level criteria and can not handle supplier selection with two-level criteria. Therefore, this paper

investigates MCDM with two-level criteria and applies it to supplier selection. 

(2) In MCDM, it is very important to reasonably determine criteria weights. However, methods [37,42] did not discuss

the determination of criteria weights. Although fuzzy decision methods [11,16,21] derived criteria weights by FAHP or

FANP, loss of information happens together with converting linguistic ratings into TFNs. To remedy these disadvan-

tages, this paper develops a 2-tuple linguistic ANP (TL-ANP) approach to deriving criteria and sub-criteria weights. 

(3) Due to the fact that methods [1,16,21,28,33,37,42] regards that values on different criteria can completely com-

pensate for each other, these methods are not able to solve MCDM in which values on different criteria are not

allowed to compensate for each other. Considering that ELECTRE (Elimination and Choice Translating Reality) family

[13,19,23] has a notable merit (namely, alternatives are compared on each criterion and scores on criteria cannot

compensate for each other), this paper presents an interval 2-tuple ELECTRE II (IT-ELECTRE II) approach to dealing

with the case of criteria being not compensated. 

Consequently, this paper formulates supplier selection as a kind of MCDM problems with two-level criteria. Combining

TL-ANP and IT-ELECTRE II, a novel hybrid method is proposed for solving such problems. Compared with existing methods,

the proposed method has three key features: 

(1) While determining weights of criteria and sub-criteria, the proposed TL-ANP approach considers interactions among

criteria or within criteria. Thus, decision results may be more consistent with real-world decision situations. However,

2-tuple decision methods [37,42] assumed that criteria are independence on each other and ignored interactions

among criteria. 

(2) Different from FANP [21,33] , the proposed TL-ANP approach employs 2-tuple linguistic variables to express preference

relations between two criteria or sub-criteria, by which the loss or distortion of information can be effectively

avoided. FANP [21,33] converted linguistic variables into TFNs, which can result in that one linguistic variable may be

converted into distinct TFNs or the aggregated results do not belong to the given linguistic term set. 

(3) An IT-ELECTRE II approach is proposed to effectively circumvent the issue that criteria cannot compensate for each

other. In this approach, ratings of alternatives on sub-criteria are represented by interval 2-tuple linguistic variables

which can neatly express uncertain decision information provided by decision makers (DMs). Moreover, this approach

inherits the merit of ELECTRE. Hence, decision results may be more reliable compared with VIKOR and TOPSIS. 

The rest of this paper is organized as follows. In Section 2 , some preliminaries for 2-tuple and interval 2-tuple linguistic

variables, 2-tuple linguistic preference relation and ANP are reviewed. Section 3 develops a novel hybrid method for MCDM

with two-level criteria in interval 2-tuple linguistic environment. In Section 4 , a real case of supplier selection is analyzed

to illustrate the application of the proposed method. Section 5 carries out comparison analyses to show the superiority of

the proposed method. Finally, some primary conclusions are furnished in Section 6 . 

2. Preliminaries 

This section briefly reviews some basic definitions and properties related to 2-tuple linguistic variables, interval 2-tuple

linguistic variables, 2-tuple linguistic preference relation and ANP. 

2.1. 2-tuple linguistic variables and interval 2-tuple linguistic variables 

Let S = { s 0 , s 1 , s 2 , ���, s g } be a predefined linguistic term set with granularity g + 1. The 2-tuple linguistic representation

model expresses linguistic information by a pair of values called linguistic 2-tuple ( s i , α), where s i ∈ S represents the central

value of the i th linguistic term and α ∈ [ − 0.5, 0.5) indicates the deviation to the central value of the i th linguistic term. 

Example 1. Let S = { s 0 , s 1 , s 2 , s 3 , s 4 , s 5 , s 6 , s 7 , s 8 } be a linguistic term set. The meanings of linguistic terms s 0 , s 1 , s 2 , s 3 ,

s 4 , s 5 , s 6 , s 7 , s 8 respectively are: “extremely poor”, “very poor”, “medium poor”, “poor”, “medium”, “medium good”, “good”,

“very good” and “extremely good”. Thus, 2-tuple ( s 7 , 0.2) means that the real linguistic rating is better than the term “very

good ( s 7 )” and the degree to which the real linguistic rating is preferred to the term “very good ( s 7 )” is 0.2. 

Together with the 2-tuple ( s i , α), there is a numerical value β representing the result of an aggregation of the indices of

a set of labels assessed in a linguistic term set S . In traditional 2-tuple linguistic model [12] , the range of β is between 0 and
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g . Hence, there exists a restriction that the range of β varies with the granularity if there exist multi-granularity linguistic

term sets [44] in a decision-making problem. To overcome this restriction, Chen and Tai [5] proposed a generalized 2-tuple

linguistic model and translation functions. 

Definition 1. [5] . Let S = { s 0 , s 1 , s 2 , ���, s g } be a linguistic term set and β ∈ [0, 1] be a value representing the result of

an aggregation of the indices of a set of labels assessed in a linguistic term set S . To obtain the 2-tuple linguistic variable

equivalent to β , the generalized translation function � is defined as follows: 

�( β) = ( s i , α) with 

{
s i , i = round( β · g ) 

α = β − i 
g 
, α ∈ [ − 1 

2 g 
, 1 

2 g 
) 

. (1) 

Meanwhile, there is a function � − 1 used to convert a 2-tuple linguistic variable into its equivalent numerical value β
∈ [0, 1]. The reverse function � − 1 is defined as 

�−1 : S × [ − 1 
2 g 

, 1 
2 g 

) → [0 , 1] , �−1 ( s i , α) = 

i 
g 

+ α = β. (2)

Specially, a linguistic term s i can be converted into a 2-tuple linguistic variable ( s i , 0). 

Example 2. Let S = { s 0 , s 1 , s 2 , s 3 , s 4 , s 5 , s 6 , s 7 , s 8 } be a linguistic term set with g = 8. From Eq. (2) , we have

α ∈ [ − 1 
16 , 

1 
16 ) = [ −0 . 0 625 , 0 . 0 625) . According to Eq. (2) , one has 

�−1 ( s 1 , 0 . 025) = 

1 
8 

+ 0 . 025 = 0 . 15 , �−1 ( s 0 , 0) = 

0 
8 

+ 0 = 0 . 

On the other hand, suppose the symbolic aggregation operation β = 0.35. In virtue of Eq. (1) , it yields that

i = round(0.35 × 8) = 3 and α= 0.35-3/8 = −0.025. Therefore, �( β) = ( s 3 , −0.025). 

Definition 2. A matrix ˜ Y = ( ̃  y i j ) m ×n is called a 2-tuple linguistic matrix if ˜ y i j = ( s i j , αi j ) ( i = 1, 2, ���, m; j = 1, 2, ���, n ) are

2-tuples defined in Definition 1 . 

Definition 3. Given a 2-tuple linguistic matrix ˜ Y = ( ̃  y i j ) m ×n , if βi j = �−1 ( ̃  y i j ) , matrix �−1 ( ̃  Y ) = ( βi j ) m ×n is called a 2-tuple

linguistic transformed matrix of matrix ˜ Y . Meanwhile, matrix ˜ Y is called the corresponding 2-tuple linguistic matrix of

matrix �−1 ( ̃  Y ) . 

Example 3. Let the linguistic term set S come from Example 1 . Matrix 

˜ Y = 

( 

( s 3 , 0 . 03) ( s 7 , 0 . 00) ( s 1 , 0 . 02) 
( s 5 , −0 . 01) ( s 2 , 0 . 04) ( s 6 , 0 . 01) 
( s 1 , 0 . 05) ( s 6 , 0 . 03) ( s 4 , −0 . 02) 

) 

is a 2-tuple linguistic matrix. Thus, the 2-tuple linguistic transformed matrix �−1 ( ̃  Y ) is obtained as 

�−1 ( ̃  Y ) = ( βi j ) 3 ×3 = 

( 

0 . 405 0 . 875 0 . 145 

0 . 615 0 . 290 0 . 760 

0 . 175 0 . 780 0 . 480 

) 

. 

For example, β11 = �−1 ( ̃  y 11 ) = �−1 ( s 3 , 0 . 03) = 0 . 405 . Similarly, other elements can be acquired. 

Definition 4. [40] . Let S = { s 0 , s 1 , s 2 , ���, s g } be a linguistic term set. An uncertain linguistic variable is defined as ˜ s = [ s k , s l ] ,

where s k , s l ∈ S and k ≤ l . 

Definition 5. [44] . An interval 2-tuple linguistic variable is composed of two 2-tuples, denoted by [( s i , α1 ), ( s j , α2 )] with

( s i , α1 ) ≤ ( s j , α2 )(see [5] ). An interval 2-tuple expressing the equivalent information to an interval value [ β1 , β2 ]( β1 , β2 ∈
[0, 1]) is obtained by the following function: 

�[ β1 , β2 ] = [( s i , α1 ) , ( s j , α2 )] with 

⎧ ⎪ ⎨ 

⎪ ⎩ 

s i , i = round( β1 · g ) 
s j , j = round( β2 · g ) 

α1 = β1 − i 
g 
, α1 ∈ [ − 1 

2 g 
, 1 

2 g 
) 

α2 = β2 − j 
g 
, α2 ∈ [ − 1 

2 g 
, 1 

2 g 
) 

(3) 

Correspondingly, there is always a function � − 1 such that an interval 2-tuple can be transformed into an interval value

[ β1 , β2 ]( β1 , β2 ∈ [0, 1]) as follows: 

�−1 [( s i , α1 ) , ( s j , α2 )] = [ i 
g 

+ α1 , 
j 
g 

+ α2 ] = [ β1 , β2 ] . (4)

Particularly, an uncertain linguistic variable ˜ s = [ s k , s l ] can be transformed into an interval 2-tuple linguistic variable [( s k ,

0), ( s l , 0)]. 

Definition 6. Let ˜ a = [( s i , α1 ) , ( s j , α2 )] and 

˜ b = [( t i , γ1 ) , ( t j , γ2 )] ( s i , s j , t i , t j ∈ S ) be two interval 2-tuples. Minkowski

distance between two interval 2-tuples is defined as 

d q ( ̃  a , ̃  b ) = [ 1 (| �−1 ( s i , α1 ) − �−1 ( t i , γ1 ) | q + | �−1 ( s j , α2 ) − �−1 ( t j , γ2 ) | q )] 1 /q , (5) 

2 
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where q > 0 is a distance parameter. Specially, distances d 1 ( ̃  a , ̃  b ) , d 2 ( ̃  a , ̃  b ) and d + ∞ 

( ̃  a , ̃  b ) are called Hamming distance,

Euclidean distance and Chebyshev distance, respectively. 

Definition 7. Let ˜ y 1 = [( s i , α1 ) , ( s j , α2 )] and ˜ y 2 = [( t i , γ1 ) , ( t j , γ2 )] be two interval 2-tuples. A possibility degree to which ˜ y 1
is preferred to ˜ y 2 (denoted by ˜ y 1 ≥ ˜ y 2 ) is defined as 

φ( ̃  y 1 ≥ ˜ y 2 ) = 

1 
2 
(1 + 

( �−1 ( s j , α2 ) −�−1 ( t j , γ2 ))+( �−1 ( s i , α1 ) −�−1 ( t i , γ1 )) 

| �−1 ( s j , α2 ) −�−1 ( t j , γ2 ) | + | �−1 ( s i , α1 ) −�−1 ( t i , γ1 ) | + l ˜ y 1 ̃ y 2 

) , (6)

where l ˜ y 1 ̃ y 2 
indicates the length of intersection of interval values �−1 ( ̃  y 1 ) and �−1 ( ̃  y 2 ) . 

Example 4. Let the linguistic term set S still come from Example 1 . Consider two interval 2-tuples ˜ y 1 = [( s 2 , 0) , ( s 3 , −0 . 025)]

and ˜ y 2 = [( s 2 , 0 . 05) , ( s 3 , 0 . 025)] . The possibility degree φ( ̃  y 1 ≥ ˜ y 2 ) is computed as follows: 

From Eq. (4) , it derives �−1 ( ̃  y 1 ) = [ 2 8 + 0 , 3 
8 − 0 . 025] = [0 . 25 , 0 . 35] . Similarly, �−1 ( ̃  y 2 ) = [0 . 30 , 0 . 40] . Then, the intersec-

tion of �−1 ( ̃  y 1 ) and �−1 ( ̃  y 2 ) is obtained as [0.30, 0.35]. Thereby, it follows that l ˜ y 1 ̃ y 2 
= 0 . 35 − 0 . 30 = 0 . 05 . On the other

hand, by Eq. (2) , we have �−1 ( s 2 , 0) = 

2 
8 + 0 = 0 . 25 . Analogously, it is obtained that � − 1 ( s 3 , −0.025) = 0.35, � − 1 ( s 2 ,

0.05) = 0.30, � − 1 ( s 3 , 0.025) = 0.40. Thus, by Eq. (6) , one has 

φ( ̃  y 1 ≥ ˜ y 2 ) = 

1 
2 
(1 + 

(0 . 35 −0 . 40)+(0 . 25 −0 . 30) 
| 0 . 35 −0 . 40 | + | 0 . 25 −0 . 30 | +0 . 05 

) = 0 . 1667 . 

Property 1. The possible degree of Definition 7 satisfies the following desirable properties: 

(i) 0 ≤ φ( ̃  y 1 ≥ ˜ y 2 ) ≤ 1 ; 

(ii) φ( ̃  y 1 ≥ ˜ y 2 ) + φ( ̃  y 2 ≥ ˜ y 1 ) = 1 ; 

(iii) φ( ̃  y 1 ≥ ˜ y 2 ) = 1 if ( s i , α1 ) > ( t j , γ 2 ); 

(iv) φ( ̃  y 1 ≥ ˜ y 2 ) = φ( ̃  y 2 ≥ ˜ y 1 ) = 0 . 5 if φ( ̃  y 1 ≥ ˜ y 2 ) = φ( ̃  y 2 ≥ ˜ y 1 ) . 

Proof. See Appendix A . 

2.2. 2-tuple linguistic preference relations 

In a decision-making problem, let S = { s 0 , s 1 , s 2 , ���, s g } be a given linguistic term set and U = { U 1 , U 2 , ���, U n }

be the set of criteria. DMs compare each pair of criteria in U and acquire a pair-wise comparison matrix, denoted by P

= ( p ij ) n × n , where p ij = ( s ij , αij )( i, j = 1, 2, ���, n ) are 2-tuples and indicate the importance degree of criterion U i over U j .

If p i j = ( s g/ 2 , 0) , then criterion U i is as important as criterion U j ; If p ij > ( s g /2 , 0), then criterion U i is more important than

criterion U j ; If p ij < ( s g /2 , 0), then criterion U j is more important than criterion U i . 

Definition 8. [10] . Let S = { s 0 , s 1 , s 2 , ���, s g } be a linguistic term set. A linguistic matrix P = ( p ij ) n × n is called a 2-

tuple linguistic preference relation (TLPR) if it satisfies p ii = ( s g/ 2 , 0) and �( � − 1 ( p ij ) + � − 1 ( p ji )) = ( s g , 0), where

p i j = ( s i j , αi j ) , s i j ∈ S, αi j ∈ [ − 1 
2 g , 

1 
2 g ) . 

Definition 9. [10] . A TLPR P = ( p ij ) n × n is additive consistent if and only if elements in matrix P satisfy

p i j = �( �−1 ( p ik ) + �−1 ( p k j ) − �−1 ( s g/ 2 , 0)) f or ∀ i, j, k = 1 , 2 , · · · , n. 

Theorem 1. Let P = ( p ij ) n × n be an incomplete TLPR and only elements of the first row p 1 j ( j = 1, 2, ���, n ) are given a prior.

Assume rest elements are completed as follows: 

p i j = �( �−1 ( p 1 j ) − �−1 ( p 1 i ) + �−1 ( s g/ 2 , 0)) (i, j = 1 , 2 , · · · , n ) , (7)

then P = ( p ij ) n × n is additive consistent. 

Proof. See Appendix B . 

Remark 1. To derive an additive consistent TLPR P = ( p ij ) n × n , DMs only need to furnish elements of its first row and rest

elements can be determined via Eq. (7) . 

Example 5. The linguistic term set S is described in Example 1 . In a decision making problem with four evaluation

criteria, DMs respectively compare the first criterion with other criteria and provide preference information as p 11 = ( s 4 , 0),

p 12 = ( s 5 , 0.05), p 13 = ( s 6 , −0.01) and p 14 = ( s 3 , 0). By Eq. (7) , rest elements can be generated below: 

p 23 = �( �−1 ( p 13 ) − �−1 ( p 12 ) + �−1 ( s g/ 2 , 0)) = �(0 . 74 − 0 . 725 + 0 . 5) = �(0 . 515) = ( s 4 , 0 . 015) . 

From Definition 8 , one has p 32 = �( � − 1 ( s 8 , 0) − � − 1 ( p 23 )) = �(0.485) = ( s 4 , −0.015). 

Similarly, it yields p = ( s , 0.025), p = ( s , −0.025), p = ( s , 0.01), p = ( s , −0.01). 
24 1 42 7 34 1 43 7 
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Fig. 1. Frameworks of AHP and ANP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, a completed TLPR is derived as 

P = 

⎛ 

⎜ ⎝ 

( s 4 , 0) ( s 5 , 0 . 050) ( s 6 , −0 . 010) ( s 3 , 0 . 00) 
( s 3 , −0 . 05) ( s 4 , 0) ( s 4 , 0 . 015) ( s 1 , 0 . 025) 
( s 2 , 0 . 01) ( s 4 , −0 . 015) ( s 4 , 0) ( s 1 , 0 . 01) 
( s 5 , 0 . 00) ( s 7 , −0 . 025) ( s 7 , −0 . 01) ( s 4 , 0) 

⎞ 

⎟ ⎠ 

. 

According to Definition 9 , it is easily proved that matrix P is additive consistent. 

Suppose a TLPR P = ( p ij ) n × n is additive consistent and w = ( w 1 , w 2 , ���, w n ) 
T is an underlying priority vector of TLPR P .

Then, the vector w can be determined as follows: 

w i = �

( 

n ∑ 

j=1 

�−1 ( p i j ) / 
n ∑ 

i =1 

n ∑ 

j=1 

�−1 ( p i j ) 

) 

(i = 1 , 2 , · · · , n ) . (8) 

2.3. Analysis net process 

Analytic net process (ANP) [30] is a generalization of the famous AHP [29] . AHP is a hierarchical structure with indepen-

dent criteria, whereas ANP is a network structure that can deal with interactions among criteria. Frameworks of AHP and

ANP are depicted in Fig. 1 . 

As shown in Fig. 1 , a network structure of ANP includes control level and network level. Control level consists of goal

and independent criteria whose weights can be obtained by AHP. There is at least one goal in control level. In network

level, a network spreads out in all directions and involves arrows between clusters or loops within the same cluster. These

arrows and loops indicate the relations among clusters or within cluster. For example, a single arrow from cluster C 1 to

cluster C 2 means that cluster C 1 impacts on cluster C 2 . A two-way arrow between cluster C 2 and C 3 indicates that cluster

C 2 impacts on C 3 , meanwhile, cluster C 3 also impacts on C 2 . A loop in cluster C 2 implies that there are interactions among

elements within cluster C 2 . 

In this paper, we only consider that there is one goal and criteria are omitted in control level. Suppose there are n

clusters, denoted by C 1 , C 2 , ���, C n , and each cluster C i has n i elements, e i 1 , e i 2 , · · · , e i n i ( i = 1, 2, ���, n ). To determine weights

of all elements in clusters C i ( i = 1, 2, ���, n ) by ANP, the following procedure needs to be performed: 

(i) Determine the weighting matrix A 

Considering interactions and feedback among clusters or within clusters, judgment matrices A 

i = (a i 
k j 

) n ×n ( i = 1, 2, ���,

n ) are constructed by pair-wise comparisons with the 1–9 scale, where a i 
k j 

indicates that an influence degree of cluster

C k on cluster C i is a i 
k j 

times as important as that of cluster C j on cluster C i . If A 

i is completely consistent or of acceptable

consistency, the priority vector of matrix A 

i , denoted by w i = ( w i 1 , w i 2 , ���w in ) 
T , can be computed by the eigen-value

method. Otherwise, A 

i should be modified. If cluster C i is independent of C j , then w ij = 0. Thus, the weighting matrix

A = ( w 1 , w 2 , ���, w n ) can be determined and simply denoted by A = ( a ij ) n × n . 
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(ii) Construct the supermatrix W 

The supermatrix W is composed of many submatrices W ij ( i, j = 1, 2, ���, n ) as follows: 

W = 

C 1 e 11 , ... e 1 n 1 
C 2 e 21 , ... e 1 n 2 

... 

C n e n 1 , ... e n n n 

C 1 
e 11 ,... e 1 n 1 

C 2 
e 21 ,... e 1 n 2 

... C n 
e n 1 ,... e n n n ⎛ 

⎜ ⎝ 

W 11 W 12 · · · W 1 n 

W 21 W 22 · · · W 2 n 

· · · · · · · · · · · ·
W n 1 W n 2 · · · W nn 

⎞ 

⎟ ⎠ 

. (9)

In submatrix W ij , the k th column vector is a local priority vector representing influence degrees of all elements in cluster

C i on the element e jk in cluster C j . Therefore, the sum of elements in k th column of W ij should be equal to 1. This property

also holds for other columns of W ij . The process of determining matrix W ij is similar to that of determining matrix A .

Additionally, if the i th cluster has no influence on the j th cluster, then W ij = 0 . For instance, it can be seen from Fig. 1 that

W 21 = 0 , but W 12 	 = 0 . 

(iii) Compute the weighted supermatrix W̄ 

By multiplying supermatrix W with matrix A , the weighted supermatrix can be derived as 

W̄ = ( W̄ i j ) n ×n = A × W , (10)

where W̄ i j = a i j × W i j ( i, j = 1, 2, ���, n ). 

(iv) Determine the limit matrix W 

∞ 

The limit matrix can be calculated as W 

∞ = lim k →∞ 

W̄ 

k . In this limit matrix, all components in each row are the same. 

(v) Determine overall weights of elements with respect to the goal 

Since each cluster C i has n i elements, there are 
∑ n 

i =1 n i elements in the ANP model. The limit matrix W 

∞ is a t × t

matrix, where t = 

∑ n 
i =1 n i . The overall weight vector of elements with respect to the goal, denoted by ω= ( ω 1 , ω 2 , ���, ω t ) 

T ,

can be determined from the limit matrix W 

∞ , where ω k is the element of the k th row of matrix W 

∞ . 

3. A novel hybrid method for solving MCDM problems with two-level criteria 

In this section, a type of MCDM problems with two-level criteria is described and a new hybrid method is proposed to

solve such problems. 

3.1. Description of problems 

Let A = { A 1 , A 2 , ���, A m 

} be the set of alternatives, U = { U 1 , U 2 , ���, U n } be the set of the first level criteria and T = { u 1 ,

u 2 , ���, u t } be the set of the sub-criteria. Assume each criteria U j has n j sub-criteria, denoted by u j1 , u j2 , · · · , u j n j , then

 = 

∑ n 
j=1 n j . The weight vector of sub-criteria, ω = ( ω 1 , ω 2 , ..., ω t ) 

T , is unknown and needs to be determined. Suppose that

the rating of alternative A i with respect to sub-criterion u j can be represented as an uncertain linguistic variable ˜ x i j = [ s i j , t i j ] ,

where s ij and t ij come from the predefined linguistic term set S = { s 0 , s 1 , s 2 , ���, s g }. Thus, a linguistic decision matrix

˜ X = ( ̃  x i j ) m ×n is elicited and then converted into an interval 2-tuple linguistic matrix ˜ R = ( ̃ r i j ) m ×n , where ˜ r i j = ([ s i j , 0] , [ t i j , 0]) .

This paper focuses on how to select the best alternative (s) considering interactions among criteria. The proposed hybrid

method, integrating TL-ANP and IT-ELECTRE II, concentrates on solving two key issues: (1) Determine sub-criteria weights;

(2) Rank alternatives. 

3.2. Determine sub-criteria weights using TL-ANP 

In classical ANP, elements in judgment matrices are characterized by 1–9 scale. However, due to the inherent complexity

and uncertainty in the real-world decision problems, it is difficult for DMs to express their preferences by numerical values

with full confidence. In this case, linguistic variables are more appropriate to capture uncertainties occurring in pair-wise

comparison judgments. This paper utilizes linguistic variables to represent ratings on pair-wise comparisons of criteria and

sub-criteria and proposes TL-ANP to determine sub-criteria weights. 

The criterion U j and sub-criterion u jk are respectively corresponding to the cluster C j and its element e jk in ANP stated

in Section 2.3 . By using linguistic variables instead of numerical values in1-9 scale, the classical ANP is extended to propose

TL-ANP described as follows: 

(1) Construct the network structure based on interactions among criteria and sub-criteria 

(2) Determine the weighting matrix A. 
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To determine the weighting matrix, 2-tuple linguistic judgment matrices, A 

i = (a i 
k j 

) n ×n ( i = 1, 2, ���, n ), are first built

based on Remark 1 . (See Section 4.3 in detail). 

Let w i = ( w i 1 , w i 2 , ���w in ) 
T be the priority vector of matrices A 

i ( i = 1, 2, ���, n ). By Eq. (9) , components of w i can be

obtained as 

w ik = �

( 

n ∑ 

j=1 

�−1 (a i k j ) / 
n ∑ 

k =1 

n ∑ 

j=1 

�−1 (a i k j ) 

) 

(i = 1 , 2 , · · · , n ; k = 1 , 2 , · · · , t) . (11)

Thus, the weighting matrix A = ( w 1 , w 2 , ���, w n ) can be determined. 

(3) Determine the supermatrix W. 

By comparing the influences of the sub-criteria in criterion U i on sub-criteria in criterion U j , submatrix W ij can be

obtained in a similar way as the weighting matrix A is obtained. All matrices W ij ( i, j = 1, 2, ���, n ) compose of the

supermatrix W , i.e., 

W = 

U 1 u 11 , ... u 1 n 1 

U 2 u 21 , ... u 1 n 2 

... 

U n u n 1 , ... u n n n 

U 1 
u 11 ,... u 1 n 1 

U 2 
u 21 ,... u 1 n 2 

... U n 
u n 1 ,... u n n n ⎛ 

⎜ ⎝ 

W 11 W 12 · · · W 1 n 

W 21 W 22 · · · W 2 n 

· · · · · · · · · · · ·
W n 1 W n 2 · · · W nn 

⎞ 

⎟ ⎠ 

(12) 

(4) Calculate the weighted supermatrix W̄ 

Motivated by Eq. (10) , we calculate the weighted supermatrix as 

W̄ = �( �−1 ( A ) × �−1 ( W )) , (13) 

where �-1 ( A ) and �-1 ( W ) are respectively the 2-tuple linguistic transformed matrices of matrices A and W . 

(5) Compute the limit matrix W 

∞ as follows: 

W 

∞ = �( lim 

k →∞ 

( �−1 ( W̄ )) k ) . (14) 

It is worth mentioning that components of each row in matrix W 

∞ are the same. 

(6) Identify the weight vector of sub-criteria with respect to overall goal. 

From matrix W 

∞ , the weight vector of sub-criteria ω= ( ω 1 , ω 2 , ���, ω t ) 
T can be determined, where ω k ( k = 1, 2, ���,

t ) is a component of k th row of matrix W 

∞ . 

3.3. Rank alternatives by IT-ELECTE II approach 

In this subsection, ELECTE II is generalized to suit interval 2-tuple linguistic environment and thereby an IT-ELECTE II

approach is developed to rank alternatives. This approach is completed by following three phases. 

(I) First phase: likelihood-based preference degree 

Definition 10. Let ˜ r i j = ([ s i j , 0] , [ t i j , 0]) and ˜ r l j = ([ s l j , 0] , [ t l j , 0]) be two ratings of alternatives A i and A l on sub-criterion u j ,

the possible degree of ˜ r i j preferred to ˜ r l j ( ̃ r i j ≥ ˜ r l j ) is defined as 

φ j 

il 
= φ( ̃ r i j ≥ ˜ r l j ) = 

1 

2 

(
1 + 

( �−1 ( t i j , 0) − �−1 ( t l j , 0)) + ( �−1 ( s i j , 0) − �−1 ( s l j , 0)) 

| �−1 ( t i j , 0) − �−1 ( t l j , 0) | + | �−1 ( s i j , 0) − �−1 ( s l j , 0) | + l ˜ r i j ̃ r l j 

)
. (15) 

Similar to Property 1 , the possible degree φ( ̃ r i j ≥ ˜ r l j ) has following features. 

Property 2. The possible degree φ( ̃ r i j ≥ ˜ r l j ) satisfies: 

(i) 0 ≤ φ( ̃ r i j ≥ ˜ r l j ) ≤ 1 ; 

(ii) φ( ̃ r i j ≥ ˜ r l j ) + φ( ̃ r l j ≥ ˜ r i j ) = 1 ; 

(iii) φ( ̃ r i j ≥ ˜ r l j ) = 1 if ( s ij , 0) > ( t lj , 0); 

(iv) φ( ̃ r i j ≥ ˜ r l j ) = φ( ̃ r l j ≥ ˜ r i j ) = 0 . 5 if φ( ̃ r i j ≥ ˜ r l j ) = φ( ̃ r l j ≥ ˜ r i j ) . 

Matrix � j = (φ j 

il 
) m ×m 

( j = 1, 2, ���, t ) are called possible degree matrices. According to Property 2 , matrices �j ( j = 1,

2, ���, t ) are fuzzy complementary preference relations [31] . Based on method [42] , dominant indices of alternatives are

defined below. 

Definition 11. A dominant index of an alternative A i on sub-criterion u j is defined as 

DI j 
i 

= 

1 
m (m −1) 

( 

m ∑ 

l=1 

φ j 

il 
+ 

m 

2 
− 1 

) 

. (16) 
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For sub-criterion u j , if DI 
j 
i 

> DI 
j 

l 
, then alternative A i is preferred to A l , denoted by A i 
A l ; If DI 

j 
i 

= DI 
j 

l 
, then alternatives A i

and A l are indifferent, denoted by A i ∼ A l ; If DI 
j 
i 

< DI 
j 

l 
, then alternative A l is preferred to A i , denoted by A l 
A i . 

According to Eq. (16) , Theorem 2 can be easily proved. 

Theorem 2. The dominant index DI 
j 
i 

satisfies following properties: 

(1) 0 ≤ DI 
j 
i 

≤ 1 (i = 1 , 2 , · · · , m ; j = 1 , 2 , · · · , t) ; 

(2) 
m ∑ 

i =1 

DI 
j 
i 

= 1 ( j = 1 , 2 , · · · , t) . 

Definition 12. A likelihood-based preference degree of A i 
A l on sub-criterion u j is defined as 

L j 
il 

= L j ( A i 
 A l ) = 

⎧ ⎨ 

⎩ 

1 , if DI j 
i 
− DI j 

l 
≥ q 

(DI j 
i 
− DI j 

l 
) /q , if 0 < DI j 

i 
− DI j 

l 
< q 

0 , if DI j 
i 
− DI j 

l 
≤ 0 

(17)

where q > 0 is a threshold value of strict preference and may be determined by DMs. 

The likelihood-based preference degree L j ( A i 
A l ) indicates the degree to which alternative A i is preferred to A l with

respect to sub-criterion u j . If L 
j ( A i 
A l ) = 1, then alternative A i is absolutely preferred to A l ; If 0 < L j ( A i 
A l ) < 1, then alter-

native A i is weakly preferred to A l ; If L 
j ( A i 
A l ) = 0, then alternative A i is not preferred to A l . Matrix L j = (L 

j 

il 
) m ×m 

is called a

likelihood-based preference degree matrix. Based on the likelihood-based preference degree, concordance and discordance

indices are defined in the second phase to respectively describe one alternative is preferred or inferior to the other. 

(II) Second phase: concordance and discordance indices 

Employing the likelihood-based preference degree, concordance sets, including the strong concordance set J + s 
il 

and the

weak concordance set J + w 

il 
, are respectively defined as follows: 

J + s 
il 

= { j ∣∣L j ( A i 
 A l ) = 1 } , (18)

J + w 

il 
= { j ∣∣0 < L j ( A i 
 A l ) < 1 } . (19)

Analogously, discordance sets are composed of the subscripts of those sub-criteria where A i is inferior to A l . Discordance

sets also can be divided into two categories: a strong discordance set J −s 
il 

and a weak discordance set J −w 

il 
which are

respectively defined as 

J −s 
il 

= { j ∣∣L j ( A l 
 A i ) = 1 } , (20)

J −w 

il 
= { j ∣∣0 < L j ( A l 
 A i ) < 1 } . (21)

In addition, it can be seen from Eq. (17) that L j ( A i 
A l ) = L j ( A l 
A i ) = 0 if DI 
j 
i 

= DI 
j 

l 
. In this case, alternatives A i and A l are

considered to be indifferent on sub-criterion u j . Thereby, an indifferent set is defined as 

J = il = { j ∣∣L j ( A i 
 A l ) = 0 and DI j 
i 

= DI j 
l 
} . (22)

Based on concordance, discordance and indifferent sets, a concordance index is defined as the ratio of the sum of

the weighted likelihood-based preference degree in concordance sets and indifference set to the sum of all weighted

likelihood-based preference degrees, i.e., 

C(i, l) = 

∑ 

j∈ J + s 
il 

∪ J + w 
il 

∪ J = 
il 
( �−1 ( ω j ) L 

j ( A i 
 A l )) ∑ t 
j=1 (( �

−1 ( ω j )( L j ( A i 
 A l ) + L j ( A l 
 A i )) 
, (23)

where ω = ( ω 1 , ω 2 , ���, ω n ) 
T is the 2-tuple weight vector of sub-criteria obtained in Section 3.2 . 

The concordance index C ( i, l ) shows the comprehensive degree to which alternative A i is preferred to A l . The larger the

C ( i, l ), the bigger the degree of alternative A i is preferred to A l . 

Remark 2. In methods [3,4,39,43] , the concordance index is defined as 

C G (i, l) = 

∑ 

j∈ J + s 
il 

∪ J + w 
il 

∪ J = 
il 

ω 

′ 
j / 

n ∑ 

j=1 

ω 

′ 
j , (24)

where ω’ = ( ω’ , ω’ , ���, ω’ n ) 
T is a numerical weight vector of criteria. 
1 2 
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Obviously, the concordance index C G ( i, l ) did not consider likelihood-based preference degree L j ( A i 
A l ), whereas the

proposed concordance index C ( i, l ) does, which may improve the distinguishing power of C ( i, l ) and increase the sensitivity

to the ratings of alternatives on criteria. 

Example 6. In a MCDM problem, let { A 1 , A 2 , A 3 } be an alternative set and { U 1 , U 2 , U 3 , U 4 } be a set of criteria whose weight

vector is ω’ = (0.4, 0.3, 0.1, 0.2) T . The linguistic term set S comes from Example 1 . Suppose the decision matrix is provided

as 

˜ R = 

A 1 

A 2 

A 3 

U 1 U 2 U 3 U 4 ⎛ 

⎝ 

[( s 7 , 0 . 025) , ( s 8 , 0 . 0 0 0)] [( s 4 , 0 . 0 0 0) , ( s 5 , −0 . 025)] [( s 1 , 0 . 025) , ( s 2 , −0 . 025)] [( s 4 , −0 . 050) , ( s 5 , −0 . 025)] 

[( s 1 , 0 . 025) , ( s 2 , −0 . 025)] [( s 4 , −0 . 050) , ( s 5 , −0 . 025)] [( s 7 , 0 . 025) , ( s 8 , 0 . 0 0 0)] [( s 4 , 0 . 0 0 0) , ( s 5 , −0 . 025)] 

[( s 1 , 0 . 025) , ( s 2 , −0 . 025)] [( s 1 , 0 . 025) , ( s 2 , −0 . 025)] [( s 7 , 0 . 025) , ( s 8 , 0 . 0 0 0)] [( s 4 , 0 . 0 0 0) , ( s 5 , −0 . 025)] 

⎞ 

⎠ 

Take C (1, 2) as an example to illustrate how to compute the concordance index C ( i, l ). 

Similar to Example 4 , the possible degree matrix on criterion U 1 is obtained as �1 = ( 

0 . 5 1 1 

0 0 . 5 0 . 5 

0 0 . 5 0 . 5 

) . By Eq. (16) ,

the dominant index vector on criterion U 1 is derived as D I 1 = (DI 1 1 , DI 1 2 , DI 1 3 ) = (0 . 50 , 0 . 25 , 0 . 25) . Let q = 0.1, then the

likelihood-based preference degree matrix on criterion U 1 is computed as L 1 = (L 1 
il 
) 3 ×3 = ( 

0 1 1 

0 0 0 

0 0 0 

) . Likewise, dominant

index vectors on other criteria can also be derived, i.e., 

L 2 = 

( 

0 0 . 555 1 

0 0 1 

0 0 0 

) 

, L 3 = 

( 

0 0 0 

1 0 0 

1 0 0 

) 

, L 4 = 

( 

0 0 0 

0 . 8333 0 0 

0 . 8333 0 0 

) 

. 

Further, since L 1 
12 

= 1 and L 2 
12 

= 0 . 555 < 1 , the strong concordance set J + s 
12 

= { 1 } and the weak concordance set J + w 

12 
= { 2 }

can be respectively acquired by Eqs. (18) and ( 19 ). Analogously, one gets the strong discordance set J −s 
12 

= { 3 } , the weak

discordance set J −w 

12 
= { 4 } and the indifferent set J = 12 = �, where � is an empty set. Thereby, the likelihood-based preference

degree C (1, 2) can be obtained by Eq. (23) as C(1 , 2) = 

0 . 4+0 . 3 ×0 . 555 
0 . 4+0 . 3 ×0 . 555+0 . 1 ×1+0 . 2 ×0 . 8333 = 0 . 6799 . 

To verify advantages of the proposed concordance index Eq. (23) compared with that described in Eq. (24) , some

meaningful analyses are conducted as follows. 

Observing matrix ˜ R , one has ˜ r 11 = ̃  r 23 , ˜ r 12 = ̃  r 24 , ˜ r 13 = ̃  r 21 and ˜ r 14 = ̃  r 22 . On the other hand, it is noticed that the sum of

ω ’ 1 and ω ’ 2 (i.e., 0.7) is greater than that of ω’ 3 and ω’ 4 (i.e., 0.3). Therefore, alternative A 1 should be preferred to A 2 (i.e.,

A 1 
A 2 ). For alternatives A 2 and A 3 , their ratings are all the same except that the rating of A 2 on criterion U 2 is greater than

that of A 3 . Hence, it is concluded that A 2 
A 3 . Thus, the relation A 1 
A 2 
A 3 should hold intuitively. Thereby, it is deduced

that the concordance index of alternative A 1 with respect to A 2 should be less than that of alternative A 1 with respect to A 3 .

Indeed, by the proposed concordance index C ( i, l ) (i.e., Eq. (23) ), one gets C (1, 2) = 0.6799 < C (1, 3) = 0.7241. This result

is accordance with the above analysis. 

On the other hand, using Eq. (24) yields that C G (1, 2) = C G (1, 3) = 0.7 which is not consistent with the above analysis.

In other words, C G ( i, l ) in Eq. (24) has no ability to distinguish C G (1, 2) and C G (1, 3). Therefore, the concordance index C ( i,

l ) has stronger distinguishing power than index C G ( i, l ). Moreover, when ˜ r 14 and ˜ r 22 simultaneously increase to [( s 4 , −0.02),

( s 5 , −0.025)] while other elements are fixed, it obtains C (1, 2) = 0.7253 < C (1, 3) = 0.7924. However, indices C G (1, 2) = C G (1,

3) = 0.7 remain unchanged. This observation implies that index C ( i, l ) is sensitive to variations of criterion ratings, whereas

index C G ( i, l ) is not sensitive. 

Concordance index C ( i, l ) shows the comprehensive degree to which one alternative is preferred to the other. Conversely,

to describe the comprehensive degree to which one alternative is inferior to the other, the discordance index is defined as 

D (i, l) = max 
j∈ J −s 

il 
∪ J −w 

il 

{ d 1 ( ̃  y i j , ̃  y l j ) } / max 
j∈ K 

{ d 1 ( ̃  y i j , ̃  y l j ) } , (25)

where 

˜ y i j = �( �−1 ( w j ) �
−1 ( ̃ r i j )) = [�(( �−1 ( w j ) �

−1 ( s i j , 0)) , �(( �−1 ( w j ) �
−1 ( t i j , 0))] (26)

and d 1 ( ̃  y i j , ̃  y l j ) represents the Hamming distance between ˜ y i j and ˜ y l j (see Eq. (5) ). 

Matrices C = ( c il ) m × m 

and D = ( d il ) m × m 

are respectively called concordance matrix and discordance matrix, where

c = C ( i, l ) and d = D ( i, l ). 
il il 
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According to concordance and discordance indices, alternatives are ranked in the third phase. 

(III) Third phase: ranking alternatives 

Using the concordance index, the net concordance index is defined as 

N C i = 

∑ 

l 	 = i 
C(i, l) / 

∑ 

l 	 = i 
C(l, i ) . (27)

Similarly, the net discordance index is defined as 

N D i = 

∑ 

l 	 = i 
D (i, l) / 

∑ 

l 	 = i 
D (l, i ) (28)

It is clearly that the larger NC i and the smaller ND i , the better the alternative A i . Hence, comprehensive dominant values

of alternatives can be defined as 

C D i = N C i / ( N C i + N D i ) . (29)

The greater comprehensive dominant value CD i , the better the alternative A i . Alternatives can be ranked based on

descending orders of comprehensive dominant value CD i ( i = 1, 2, ���, m ). 

3.4. Proposed algorithm for MCDM with two-level criteria 

According to the aforementioned analyses, a new algorithm for MCDM with two-level criteria in interval 2-tuple

environment is designed below. 

Step 1 . Identify the criteria set, sub-criteria set and alternative set. 

Step 2 . Construct the network structure based on relations among criteria. 

Step 3 . Determine the 2-tuple linguistic weight vector of sub-criteria by TL-ANP in Section 3.2 . 

Step 4 . Establish the uncertain linguistic decision matrix ˜ X = ( ̃  x i j ) m ×t with ˜ x i j = [ s i j , t i j ] and convert it into an interval

2-tuple linguistic matrix ˜ R = ( ̃ r i j ) m ×t , where ˜ r i j = [( s i j , 0) , ( t i j , 0)] . 

Step 5 . Calculate the possible degree φ j 

il 
( i, l = 1, 2, ���, m; j = 1, 2, ���, t ) using Eq. (15) . 

Step 6 . Derive likelihood-based preference degrees L 
j 

il 
( i, l = 1, 2, ���, m; j = 1, 2, ���, t ) by Eqs. (16) and ( 17 ). 

Step 7 . Construct concordance, discordance and indifference sets according to Eqs. (18) –( 22 ). 

Step 8 . Determine concordance and discordance indices via Eqs. (23) , ( 25 ) and ( 26 ). 

Step 9 . Compute net concordance and discordance indices by Eqs. (27) and ( 28 ). 

Step 10 . Identify comprehensive dominant value of alternatives by Eq. (29) . 

Step 11 . Rank alternatives according to their comprehensive dominant values. 

4. An application to a real-life supplier selection case 

In this section, a real case of Yutong Bus supplier selection with two-level criteria is examined to demonstrate the

application of the proposed method. 

4.1. Case description of Yutong Bus supplier selection 

Yutong Bus Co., Ltd. (YBC for short), an auto manufacture company focusing on passenger car, was funded in 1963 and

became the first listed company among the bus industry in China in 1997. The primary area of YBC is located in Yutong

industrial Park in Zhengzhou. In 2014, bus sales in YBC reached 61,398 units and the turnover exceeded 25.7 billion yuan.

With the increasing commercial competitions, YBC has to improve the quality and reduce the cost of products to enhance its

core competitiveness. To gain this goal, it is very important to select an appropriate supplier for automotive upholstery. As

a corporate consultant employed by YBC from 2013, the first author is responsible for the decision making and consultation

on supply chain management. According to purchasing records of automotive upholstery from the purchasing department,

the first author and his team screen suppliers and five suppliers remain for further evaluation, including Wuxi Huaguang

Auto Parts Group Co.,Ltd ( A 1 ), Shanghai Edscha Machinery Co., Ltd ( A 2 ), Anhui Qingsong Tools Co., Ltd ( A 3 ), Shandong

Sanling Automotive upholstery Co., Ltd ( A 4 ) and Henan Kiekert Xingguang Co., Ltd ( A 5 ). Next subsections show how the first

author and his team utilize our proposed method to help YBC select a best supplier from these five suppliers. In addition,

the discussion on validation of obtained results is performed. 

4.2. Determination of criteria and sub-criteria and network relationships 

Employing the general criteria stated in Introduction and consulting a DM committee consisting of five managers from

different functional departments of YBC, including purchasing manager, quality manager, production manager and technical

director, the first author and his team determine the evaluation criteria and their sub-criteria which are depicted in Table

2 . By the multi-session brainstorming, network relationships among criteria are determined. Fig. 2 shows interdependences

among criteria and the feedback within a criterion. 



30 S.-p. Wan et al. / Information Sciences 385–386 (2017) 19–38 

Table 2 

Criteria and sub-criteria for supplier selection. 

Criteria Sub-criteria 

Quality ( U 1 ) Quality performance ( u 1 ); Quality containment & VDCS feed back ( u 2 ) 

Cost ( U 2 ) Product cost ( u 3 ); Logistics cost( u 4 ) 

Technology ( U 3 ) R & D ability ( u 5 );Design and manufacture ability ( u 6 ); Information technology ( u 7 ) 

Agility ( U 4 ) Lead time ( u 8 ); Delivery time ( u 9 ) 

General management capability ( U 5 ) Management and strategy ( u 10 ); Financial status ( u 11 ); Reputation ( u 12 ) 

Fig. 2. Network relationship map of interactions among or within criteria. 

Table 3 

Linguistic terms corresponding to linguistic variables for pair-wise comparisons. 

Linguistic variable Linguistic terms Linguistic variable Linguistic terms 

Extreme weak s 0 Moderately strong s 5 
Very weak s 1 Strong s 6 
Weak s 2 Very strong s 7 
Moderately weak s 3 Extremely strong s 8 
Equally strong s 4 

Table 4 

Elements in the first row of matrix A 1 . 

U 1 U 2 U 3 U 4 U 5 

U 2 s 4 s 1 s 3 s 1 

Table 5 

Matrix A 1 . 

U 1 U 2 U 3 U 4 U 5 w 1 

U 2 ( s 4 , 0) ( s 1 , 0) ( s 3 , 0) ( s 1 , 0) ( s 1 , 0 .0156) 

U 3 ( s 7 , 0) ( s 4 , 0) ( s 6 , 0) ( s 4 , 0) ( s 3 , −0 .0469) 

U 4 ( s 5 , 0) ( s 2 , 0) ( s 4 , 0) ( s 2 , 0) ( s 2 , −0 .0469) 

U 5 ( s 7 , 0) ( s 4 , 0) ( s 6 , 0) ( s 4 , 0) ( s 3 , −0 .0469) 

 

 

 

 

 

 

 

 

4.3. Determine weights of sub-criteria 

(1) Determine the weighting matrix 

For determining the weighting matrix, it is necessary to construct 2-tuple linguistic judgment matrices

A 

j = (a 
j 

ki 
) 5 ×5 ( j = 1, 2, ���, 5). As a preparation, the first author provides a linguistic term set as shown in Table 3 to

help DMs compare criteria and sub-criteria. In what follows, take matrix A 

1 as an example to illustrate the construction of

matrices A 

j ( j = 1, 2, 3, 4, 5). 

From Remark 1 , the first author only needs to obtain the elements in the first row of A 

1 by consulting DM committee.

For instance, to obtain a 1 
12 

, the first author asks DM committee such a question: “Compared with the influence of technology

( U 3 ) on quality ( U 1 ), how much is the influence degree of cost ( U 2 ) on quality ( U 1 )?”. DM committee answers “very weak”

according to the given linguistic term set. Thus, element a 1 12 = s 1 is identified. Likewise, other elements in the first row of A 

1 

can be obtained and represented in Table 4 . Converting elements in Table 4 into 2-tuples and then employing Eq. (7) , rest

elements of A 

1 can be yielded in a similar way to Example 5 . Thus, a 2-tuple linguistic matrix A 

1 is constructed and listed

in Table 5 . Finally, the priority vector w 1 of matrix A 

1 is computed by Eq. (11) and shown in the last column in Table 5 . 

Similarly, other matrices A 

j and their corresponding priority vectors w j ( j = 2, 3, 4, 5) can be derived. These priority

vectors w j compose of the weighting matrix A . Please see Table 6 . 
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Table 6 

Weighting matrix A . 

U 1 U 2 U 3 U 4 U 5 

U 1 ( s 0 , 0) ( s 4 , −0 .0278) ( s 0 , 0) ( s 0 , 0) ( s 2 , −0 .04) 

U 2 ( s 1 , 0 .0156) ( s 0 , 0) ( s 0 , 0) ( s 0 , 0) ( s 1 , −0 .015) 

U 3 ( s 3 , −0 .0469) ( s 2 , 0 .0556) ( s 0 , 0) ( s 5 , −0 .0625) ( s 2 , 0 .06) 

U 4 ( s 2 , −0 .0469) ( s 0 , 0) ( s 0 , 0) ( s 0 , 0) ( s 2 , 0 .01) 

U 5 ( s 3 , −0 .0469) ( s 2 , −0 .0278) ( s 8 , 0) ( s 5 , −0 .0625) ( s 1 , −0 .015) 

Table 7 

Supermatrix. 

u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 e 12 

u 1 ( s 0 ,0) ( s 0 ,0) ( s 6 , −0.0625) ( s 5 , −0.0625) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 5 , −0.0625) ( s 5 ,0) ( s 4 ,0) 

u 2 ( s 0 ,0) ( s 0 ,0) ( s 3 , −0.0625) ( s 4 , −0.0625) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 4 , −0.0625) ( s 3 ,0) ( s 4 ,0) 

u 3 ( s 6 ,0) ( s 4 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 4 ,0) ( s 6 , −0.0625) ( s 6 , −0.0625) 

u 4 ( s 2 ,0) ( s 4 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 4 ,0) ( s 3 , −0.0625) ( s 3 , −0.0625) 

u 5 ( s 4 , −0.0278) ( s 2 , −0.0556) ( s 2 ,0.0556) ( s 2 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 1 ,0.0139) ( s 2 , −0.0278) ( s 4 , −0.0278) ( s 3 ,0.0139) ( s 4 , −0.0278) 

u 6 ( s 2 , 0.0556) ( s 3 ,0.0417) ( s 4 , −0.0278) ( s 2 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 4 , −0.0278) ( s 2 , −0.0278) ( s 2 ,0.0556) ( s 4 , −0.0278) ( s 2 ,0.0556) 

u 7 ( s 2 , −0.0278) ( s 3 ,0.0139) ( s 2 , −0.0278) ( s 4 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 3 ,0.0139) ( s 4 ,0.0556) ( s 2 , −0.0278) ( s 1 ,0.0139) ( s 2 , −0.0278) 

u 8 ( s 4 ,0) ( s 3 , −0.0625) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 5 ,0) ( s 5 , −0.0625) ( s 4 ,0) 

u 9 ( s 4 ,0) ( s 6 , −0.0625) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 0 ,0) ( s 3 ,0) ( s 4 , −0.0625) ( s 4 ,0) 

u 10 ( s 2 ,0.0278) ( s 4 , −0.0278) ( s 4 , −0.0278) ( s 2 , −0.0278) ( s 2 ,0.0278) ( s 3 , −0.0139) ( s 3 , −0.0139) ( s 3 , −0.0139) ( s 3 , −0.0139) ( s 3 , −0.0139) ( s 3 ,0.0417) ( s 4 , −0.0556) 

u 11 ( s 4 ,0.0278) ( s 2 , −0.0278) ( s 2 ,0.0565) ( s 2 , −0.0278) ( s 4 ,0.0278) ( s 4 , −0.0556) ( s 4 , −0.0556) ( s 2 ,0.0278) ( s 2 ,0.0278) ( s 2 ,0.0278) ( s 2 ,0) ( s 3 , −0.0139) 

u 12 ( s 2 , −0.0556) ( s 2 ,0.0556) ( s 2 , −0.0278) ( s 4 ,0.0556) ( s 2 , −0.0556) ( s 2 , −0.0556) ( s 2 , −0.0556) ( s 3 , −0.0139) ( s 3 , −0.0139) ( s 3 , −0.0139) ( s 3 , −0.0417) ( s 2 , −0.0556) 

Table 8 

Limit matrix. 

u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 e 12 

u 1 ( s 1 , −0.0552) ( s 1 , −0.0552) ( s 1 , −0.0552) ( s 1 , −0.0552) ( s 1 , −0.0552) ( s 1 , −0.0552) ( s 1 , −0.0552) ( s 1 , −0.0552) ( s 1 , −0.0552) ( s 1 , −0.0552) ( s 1 , −0.0552) ( s 1 , −0.0552) 

u 2 ( s 0 ,0.0484) ( s 0 ,0.0484) ( s 0 ,0.0484) ( s 0 ,0.0484) ( s 0 ,0.0484) ( s 0 ,0.0484) ( s 0 ,0.0484) ( s 0 ,0.0484) ( s 0 ,0.0484) ( s 0 ,0.0484) ( s 0 ,0.0484) ( s 0 ,0.0484) 

u 3 ( s 0 ,0.0396) ( s 0 ,0.0396) ( s 0 ,0.0396) ( s 0 ,0.0396) ( s 0 ,0.0396) ( s 0 ,0.0396) ( s 0 ,0.0396) ( s 0 ,0.0396) ( s 0 ,0.0396) ( s 0 ,0.0396) ( s 0 ,0.0396) ( s 0 ,0.0396) 

u 4 ( s 0 ,0.0234) ( s 0 ,0.0234) ( s 0 ,0.0234) ( s 0 ,0.0234) ( s 0 ,0.0234) ( s 0 ,0.0234) ( s 0 ,0.0234) ( s 0 ,0.0234) ( s 0 ,0.0234) ( s 0 ,0.0234) ( s 0 ,0.0234) ( s 0 ,0.0234) 

u 5 ( s 1 , −0.0351) ( s 1 , −0.0351) ( s 1 , −0.0351) ( s 1 , −0.0351) ( s 1 , −0.0351) ( s 1 , −0.0351) ( s 1 , −0.0351) ( s 1 , −0.0351) ( s 1 , −0.0351) ( s 1 , −0.0351) ( s 1 , −0.0351) ( s 1 , −0.0351) 

u 6 ( s 1 , −0.0281) ( s 1 , −0.0281) ( s 1 , −0.0281) ( s 1 , −0.0281) ( s 1 , −0.0281) ( s 1 , −0.0281) ( s 1 , −0.0281) ( s 1 , −0.0281) ( s 1 , −0.0281) ( s 1 , −0.0281) (( s 1 , −0.0281) ( s 1 , −0.0281) 

u 7 ( s 1 , −0.0480) ( s 1 , −0.0480) ( s 1 , −0.0480) ( s 1 , −0.0480) ( s 1 , −0.0480) ( s 1 , −0.0480) ( s 1 , −0.0480) ( s 1 , −0.0480) ( s 1 , −0.0480) ( s 1 , −0.0480) ( s 1 , −0.0480) ( s 1 , −0.0480) 

u 8 ( s 1 , −0.0525) ( s 1 , −0.0525) ( s 1 , −0.0525) ( s 1 , −0.0525) ( s 1 , −0.0525) ( s 1 , −0.0525) ( s 1 , −0.0525) ( s 1 , −0.0525) ( s 1 , −0.0525) ( s 1 , −0.0525) ( s 1 , −0.0525) ( s 1 , −0.0525) 

u 9 ( s 0 ,0.0611) ( s 0 ,0.0611) ( s 0 ,0.0611) ( s 0 ,0.0611) ( s 0 ,0.0611) ( s 0 ,0.0611) ( s 0 ,0.0611) ( s 0 ,0.0611) ( s 0 ,0.0611) ( s 0 ,0.0611) ( s 0 ,0.0611) ( s 0 ,0.0611) 

u 10 ( s 1 ,0.0218) ( s 1 ,0.0218) ( s 1 ,0.0218) ( s 1 ,0.0218) ( s 1 ,0.0218) ( s 1 ,0.0218) ( s 1 ,0.0218) ( s 1 ,0.0218) ( s 1 ,0.0218) ( s 1 ,0.0218) ( s 1 ,0.0218) ( s 1 ,0.0218) 

u 11 ( s 1 ,0.0488) ( s 1 ,0.0488) ( s 1 ,0.0488) ( s 1 ,0.0488) ( s 1 ,0.0488) ( s 1 ,0.0488) ( s 1 ,0.0488) ( s 1 ,0.0488) ( s 1 ,0.0488) ( s 1 ,0.0488) ( s 1 ,0.0488) ( s 1 ,0.0488) 

u 12 ( s 1 , −0.0241) ( s 1 , −0.0241) ( s 1 , −0.0241) ( s 1 , −0.0241) ( s 1 , −0.0241) ( s 1 , −0.0241) ( s 1 , −0.0241) ( s 1 , −0.0241) ( s 1 , −0.0241) ( s 1 , −0.0241) ( s 1 , −0.0241) ( s 1 , −0.0241) 

 

 

 

 

 

 

 

 

 

(2) Determine the supermatrix 

By pairwise comparisons on sub-criteria and performing the similar process for deriving matrix A , the supermatrix

W can be obtained by Eq. (12) and shown in Table 7 (see Appendix C ). 

(3) Compute the weighted supermatrix 

As shown in Table 7 , each block indicates a block matrix of the supermatrix and denoted by W ij . Thus, each component

of the weighted supermatrix W̄ = ( W̄ i j ) 5 ×5 determined by Eq. (13) is also a block matrix, where W̄ i j = �( �−1 ( a i j ) ×
�−1 ( W i j )) . For example, from Tables 6 and 7 , one has a 12 = ( s 4 , −0.0278) and W 12 = ( 

( s 6 , −0 . 0625) ( s 5 , −0 . 0625) 

( s 3 , −0 . 0625) ( s 4 , −0 . 0625) 
) .

By Eq. (2) and Definition 3 , it yields � − 1 ( a 12 ) = 0.4722 and �−1 ( W 12 ) = ( 
�−1 ( s 6 , −0 . 0625) �−1 ( s 5 , −0 . 0625) 

�−1 ( s 3 , −0 . 0625) �−1 ( s 4 , −0 . 0625) 
) =

( 
0 . 6875 0 . 5625 

0 . 3125 0 . 4375 
) . Hence, it follows from Eq. (13) that W̄ 12 = �( �−1 ( a 12 ) × �−1 ( W 12 )) =( 

�( 0 . 3246) �(0 . 2656) 

�(0 . 1476) �(0 . 20 6 6) 
) . In

virtue of Eq. (1) , one gets W̄ 12 = ( 
( s 3 , −0 . 0504) ( s 2 , 0 . 0156) 

( s 1 , 0 . 0226) ( s 2 , −0 . 0434) 
) . 

(4) Determine the limit matrix and sub-criteria weights 

By Eq. (14) , the convergence of ( �−1 ( W̄ )) k becomes stable at k = 12. Therefore, matrix ( �−1 ( W̄ )) 12 can be considered

as the limit matrix which is shown in Table 8 (see Appendix C ). From Table 8 , each sub-criterion weight, which is

corresponding to each row of the limit matrix, is respectively obtained as ω 1 = ( s 1 , −0.0552), ω 2 = ( s 0 , 0.0484), ω 3 = ( s 0 ,

0.0396), ω 4 = ( s 0 , 0.0234), ω 5 = ( s 1 , −0.0351), ω 6 = ( s 1 , −0.0281), ω 7 = ( s 1 , −0.0480), ω 8 = ( s 1 , −0.0525), ω 9 = ( s 0 ,

0.0611), ω = ( s ,0.0218), ω = ( s , −0.0488), ω = ( s , −0.0241). 
10 1 11 1 12 1 



32 S.-p. Wan et al. / Information Sciences 385–386 (2017) 19–38 

Table 9 

Assessment ratings of suppliers with respect to each sub-criterion. 

A 1 A 2 A 3 A 4 A 5 

u 1 [ M, MG ] [ MG, G ] [ P, M ] [ MP, MG ] [ M, MG ] 

u 2 [ MG, MG ] [ M, G ] [ VP, MP ] [ P, P ] [ MG, G ] 

u 3 [ VG, EG ] [ G, G ] [ P, MP ] [ EP, VP ] [ MG, MG ] 

u 4 [ EP, P ] [ VP, VP ] [ G, VG ] [ MG, VG ] [ VP, P ] 

u 5 [ G, EG ] [ G, G ] [ M, MG ] [ M, MG ] [ MG, VG ] 

u 6 [ G, VG ] [ VG, EG ] [ VG, EG ] [ G, G ] [ M, MG ] 

u 7 [ MG, VG ] [ MG, VG ] [ G, G ] [ M, G ] [ MG, G ] 

u 8 [ G, EG ] [ G, EG ] [ VG, VG ] [ P, MP ] [ M, M ] 

u 9 [ M, G ] [ G, G ] [ VG, EG ] [ VG, VG ] [ MG, VG ] 

u 10 [ MG, G ] [ VG, EG ] [ G, G ] [ MG, G ] [ MP, M ] 

u 11 [ MG, VG ] [ G, EG ] [ MP, MP ] [ P, M ] [ VP, MP ] 

u 12 [ M, G ] [ MG, G ] [ M, M ] [ G, EG ] [ MG, VG ] 

Table 10 

Interval 2-tuple linguistic decision matrix. 

A 1 A 2 A 3 A 4 A 5 

u 1 [( b 4 ,0), ( b 5 ,0)] [( b 5 ,0), ( b 6 ,0)] [( b 2 ,0), ( b 4 ,0)] [( b 3 ,0), ( b 5 ,0)] [( b 4 ,0), ( b 5 ,0)] 

u 2 [( b 5 ,0), ( b 5 ,0)] [( b 4 ,0), ( b 5 ,0)] [( b 1 ,0), ( b 3 ,0)] [( b 2 ,0), ( b 3 ,0)] [( b 5 ,0), ( b 6 ,0)] 

u 3 [( b 7 ,0), ( b 8 ,0)] [( b 6 ,0), ( b 6 ,0)] [( b 2 ,0), ( b 3 ,0)] [( b 0 ,0), ( b 1 ,0)] [( b 5 ,0), ( b 5 ,0)] 

u 4 [( b 0 ,0), ( b 2 ,0)] [( b 1 ,0), ( b 1 ,0)] [( b 6 ,0), ( b 7 ,0)] [( b 5 ,0), ( b 7 ,0)] [( b 1 ,0), ( b 2 ,0)] 

u 5 [( b 6 ,0), ( b 8 ,0)] [( b 6 ,0), ( b 8 ,0)] [( b 4 ,0), ( b 5 ,0)] [( b 4 ,0), ( b 5 ,0)] [( b 5 ,0), ( b 7 ,0)] 

u 6 [( b 6 ,0), ( b 7 ,0)] [( b 7 ,0), ( b 8 ,0)] [( b 7 ,0), ( b 8 ,0)] [( b 6 ,0), ( b 6 ,0)] [( b 4 ,0), ( b 5 ,0)] 

u 7 [( b 5 ,0), ( b 7 ,0)] [( b 5 ,0), ( b 7 ,0)] [( b 6 ,0), ( b 6 ,0)] [( b 4 ,0), ( b 6 ,0)] [( b 5 ,0), ( b 6 ,0)] 

u 8 [( b 6 ,0), ( b 8 ,0)] [( b 6 ,0), ( b 8 ,0)] [( b 2 ,0), ( b 3 ,0)] [( b 7 ,0), ( b 7 ,0)] [( b 4 ,0), ( b 4 ,0)] 

u 9 [( b 5 ,0), ( b 6 ,0)] [( b 6 ,0), ( b 6 ,0)] [( b 7 ,0), ( b 8 ,0)] [( b 7 ,0), ( b 7 ,0)] [( b 5 ,0), ( b 7 ,0)] 

u 10 [( b 6 ,0), ( b 7 ,0)] [( b 7 ,0), ( b 8 ,0)] [( b 6 ,0), ( b 6 ,0)] [( b 5 ,0), ( b 6 ,0)] [( b 3 ,0), ( b 4 ,0)] 

u 11 [( b 5 ,0), ( b 7 ,0)] [( b 6 ,0), ( b 8 ,0)] [( b 3 ,0), ( b 3 ,0)] [( b 2 ,0), ( b 4 ,0)] [( b 1 ,0), ( b 3 ,0)] 

u 12 [( b 6 ,0), ( b 7 ,0)] [( b 5 ,0), ( b 6 ,0)] [( b 4 ,0), ( b 4 ,0)] [( b 6 ,0), ( b 8 ,0)] [( b 5 ,0), ( b 7 ,0)] 

 

 

 

 

 

 

4.4. Evaluate candidate suppliers and select the best one 

(1) Determine the decision matrix 

According to the following linguistic terms set, DM committee evaluates candidate suppliers on each sub-criterion and

establishes an uncertain linguistic decision matrix shown in Table 9 . Further, this matrix is converted into an interval

2-tuple linguistic matrix represented in Table 10 . 

S = {b 0 = Extreme poor (EP), b 1 = Very poor (VP), b 2 = Poor (P), b 3 = Medium Poor (MP), b 4 = Medium (M),

b 5 = Medium good (MG), b 6 = Good (G), b 7 = Very good (VG), b 8 = Extreme good (EG)}. 

(2) Calculate the possible degree matrix 

According to Table 10 , the possible degrees on sub-criterion u 1 can be obtained in a way similar to Example 4 . Thus, the

possible degree matrix is generated as 

�1 = (φ1 
il ) 5 ×5 = 

⎛ 

⎜ ⎜ ⎝ 

0 . 5 0 1 0 . 75 0 . 5 

1 0 . 5 1 1 1 

0 0 0 . 5 0 . 1667 0 

0 . 25 0 0 . 8333 0 . 5 0 . 25 

0 . 5 0 1 0 . 75 0 . 5 

⎞ 

⎟ ⎟ ⎠ 

(3) Compute the likelihood-based preference degree matrix on each sub-criterion 

Using Eq. (16) , the dominant index vector on sub-criterion u 1 is obtained as DI 1 = (0.2125, 0.30 0 0, 0.1083, 0.1667,

0.2125). Taking q = 0.1 in Eq. (17) , the likelihood-based preference degree matrix on sub-criterion u 1 is obtained as: 

L 1 = (L 1 il ) 5 ×5 = 

⎛ 

⎜ ⎜ ⎝ 

0 0 1 0 . 458 0 

0 . 875 0 1 1 0 . 875 

0 0 0 0 0 

0 0 0 . 583 0 0 

0 0 1 0 . 458 0 

⎞ 

⎟ ⎟ ⎠ 

. 

For example, as DI 1 
1 

= 0 . 2125 and DI 1 
2 

= 0 . 3 , it follows that 0 < DI 1 
2 

− DI 1 
1 

= 0 . 0875 < q . Thus, by Eq. (17) , one has

L 1 = 0 . 0875 / 0 . 1 = 0 . 875 . Meanwhile, L 1 = 0 as DI 1 − DI 1 < 0 . 

21 12 1 2 
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Table 11 

Concordance, discordance and indifferent sets. 

Strong concordance sets Weak concordance sets Indifferent sets Strong discordance sets Weak discordance sets 

J + s 
12 

∅ J + w 
12 

{3 ,4,5,12} J = 12 {7 ,8} J −s 
12 

∅ J −w 
12 

{1 ,2,6, 9,10,11} 

J + s 
13 

{1 ,2,3,5,8,12} J + w 
13 

{7 ,10,11} J = 13 ∅ J −s 
13 

{4 ,9} J −w 
13 

{6} 

J + s 
14 

{2 ,3,5,7,10} J + w 
14 

{1, 6, 11} J = 14 {8} J −s 
14 

{4 ,9} J −w 
14 

{12} 

J + s 
15 

{3 ,6,8,11,10} J + w 
15 

{5 ,7,12} J = 15 {1} J −s 
15 

∅ J −w 
15 

{2 ,4,9} 

J + s 
21 

∅ J + w 
21 

{1 ,2,6,9,10,11} J = 21 {7 ,8} J −s 
21 

∅ J −w 
21 

{3 ,4,5,12} 

J + s 
23 

{1 ,2,3,8,10,11} J + w 
23 

{5 ,7,12} J = 23 {6} J −s 
23 

{4 ,9} J −w 
23 

∅ 
J + s 
24 

{1 ,2,3,6,7,10,11} J + w 
24 

{5} J = 24 {8} J −s 
24 

{4 ,12} J −w 
24 

{9} 

J + s 
25 

{6 , 8,10,11} J + w 
25 

{1 ,3,7} J = 25 ∅ J −s 
25 

∅ J −w 
25 

{2 ,4,5,9,12} 

J + s 
31 

{4, 9} J + w 
31 

{6} J = 31 ∅ J −s 
31 

{1 ,2,3 8,5,12} J −w 
31 

{7 ,10,11} 

J + s 
32 

{4 ,9} J + w 
32 

∅ J = 32 {6} J −s 
32 

{1 ,2,3, 8,10,11} J −w 
32 

{5 ,7,12} 

J + s 
34 

{6 ,7} J + w 
34 

{3 ,4, 9,10,11} J = 34 {2 ,5} J −s 
34 

{8 ,12} J −w 
34 

{1} 

J + s 
35 

{6 ,9,10} J + w 
35 

{4 ,7,11} J = 35 ∅ J −s 
35 

{1 ,2,5,7 10} J −w 
35 

{3} 

J + s 
41 

{4 ,9} J + w 
41 

{12} J = 41 {8} J −s 
41 

{2 ,3,5710} J −w 
41 

{1 ,6,11} 

J + s 
42 

{4 ,12} J + w 
42 

{9} J = 42 {8} J −s 
42 

{1 ,2,3 ,6,7, 10,11} J −w 
42 

{5} 

J + s 
43 

{8, 12} J + w 
43 

{1} J = 43 {2 ,5} J −s 
43 

{6 ,7} J −w 
43 

{3 ,4,9, 10,11} 

J + s 
45 

{8} J + w 
45 

{4 ,6,9,10,11,12} J = 45 ∅ J −s 
45 

{2 ,3,5} J −w 
45 

{1 ,7} 

J + s 
51 

∅ J + w 
51 

{2 ,4,9} J = 51 {1} J −s 
51 

{3 ,6,8, 10,11} J −w 
51 

{5 ,7,12} 

J + s 
52 

∅ J + w 
52 

{2 ,4,5,9, 12} J = 52 ∅ J −s 
52 

{6 ,8, 10,11} J −w 
52 

{1 ,3,7} 

J + s 
53 

{1 ,2,5,12} J + w 
53 

{3 ,8} J = 53 ∅ J −s 
53 

{6 , 9,10} J −w 
53 

{4 ,7, 11} 

J + s 
54 

{2 ,3,5} J + w 
54 

{1 ,7} J = 54 ∅ J −s 
54 

{8} J −w 
54 

{4 ,6,9, 10,11,12} 

Note: ∅ indicates an empty set. 

 

 

 

 

 

(4) Determine concordance, discordance and indifference sets 

Similar to Example 6 , concordance, discordance and indifference sets are obtained by Eqs. (18) –( 22 ) and listed in Table 11 .

(5) Compute concordance matrix and discordance matrix 

In virtue of Eq. (23) , the concordance matrix is identified as 

C = 

⎛ 

⎜ ⎜ ⎝ 

− 0 . 3958 0 . 8422 0 . 8523 0 . 8901 

0 . 6042 − 0 . 8921 0 . 8090 0 . 8420 

0 . 1578 0 . 1079 − 0 . 5965 0 . 5790 

0 . 1477 0 . 1910 0 . 4035 − 0 . 6347 

0 . 1099 0 . 1580 0 . 4210 0 . 3653 −

⎞ 

⎟ ⎟ ⎠ 

. 

Using Eqs. (5) , ( 25 ) and ( 26 ), the discordance matrix is obtained as 

D = 

⎛ 

⎜ ⎜ ⎝ 

− 1 . 0 0 0 0 0 . 2317 0 . 2187 0 . 0581 

0 . 6087 − 0 . 1853 0 . 1887 0 . 0829 

1 . 0 0 0 0 1 . 0 0 0 0 − 1 . 0 0 0 0 0 . 6035 

1 . 0 0 0 0 1 . 0 0 0 0 0 . 5319 − 0 . 5520 

1 . 0 0 0 0 1 . 0 0 0 0 1 . 0 0 0 0 1 . 0 0 0 0 −

⎞ 

⎟ ⎟ ⎠ 

. 

(6) Compute net concordance and discordance indices 

By Eqs. (27) and ( 28 ), net concordance and discordance vectors are respectively derived as 

NC = (2 . 9229 , 3 . 6907 , 0 . 5632 , 0 . 5250 , 0 . 3579) , ND = (0 . 4180 , 0 . 2664 , 1 . 8491 , 1 . 2810 , 3 . 0853) . 

(7) Compute comprehensive dominant values of suppliers 

Comprehensive dominant values of suppliers are determined via Eq. (29) , i.e., 

C D 1 = 0 . 8749 , C D 2 = 0 . 9327 , C D 3 = 0 . 2335 , C D 4 = 0 . 2907 , C D 5 = 0 . 1039 . 

Since CD 2 > CD 1 > CD 4 > CD 3 > CD 5 , the ranking is A 2 
A 1 
A 4 
A 3 
A 5 . Hence, Shanghai Edscha Machinery Co., Ltd

(namely A 2 ) is the best supplier, followed by Wuxi Huaguang ( A 1 ) and then by Sanling ( A 4 ), Henan Kiekert ( A 3 ) and Anhui

Qingsong ( A 5 ) are ranked at the bottom. 

4.5. Discussion on validation of the obtained results 

It is often that different decision making methods may yield different ranking when they are fed with exactly the same

assessment data. Wang and Triantaphyllou [38] established three testing criteria which are usually used to evaluate the

relative performance of various MCDM methods: 
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Test criterion 1: An effective MCDM method should not change the indication of the best alternative on replacing a non-

optimal alternative by another worse alternative without changing the relative importance of each decision criteria. 

Test criterion 2: An effective MCDM method should following transitive property. 

Test criterion 3: When a MCDM problem is decomposed into smaller problems and the same MADM method is applied

on smaller problems to rank alternatives, combined ranking of alternatives should be identical to the original ranking

of un-decomposed problem. 

The validity of the results obtained by the method of this paper is tested using these criteria. 

4.5.1. Validity test of the results obtained by the proposed method using criterion 1 

In order to test the validity of the results obtained by the proposed method under test criterion 1, alternative A 4 , a

non-optimal alternative, is replaced by the following worse alternative: 

A 

′ 
4 = ( [ P , M ] , [ VP , P ] , [ EP , EP ] , [ M , G ] , [ MP , M ] , [ MG , MG ] , [ MP , M ] , [ MG , G ] , [ MG , MG ] , [ M , MG ] , [ EP , P ] , [ MG , G ] ) . 

Since the relative importance of the criteria remains unchanged in this modified MCDM problem, employing the same

steps of the proposed method, corresponding results are obtained as 

C D 1 = 0 . 9015 , C D 2 = 0 . 9505 , C D 3 = 0 . 3369 , C D 4 = 0 . 0508 , C D 5 = 0 . 2168 . 

According to the descending order of comprehensive values, alternatives are ranked as A 2 
 A 1 
 A 3 
 A 5 
 A 

′ 
4 . Thus, the

indication of the best alternative for the modified MCDM problem is still A 2 which is same as that for the original MCDM

problem, Therefore, it is confirmed that the proposed method does not change the indication of the best alternative when

a non-optimal alternative is replaced by another worse alternative. Hence, the proposed MCDM method is valid under test

criterion 1. For other non-optimal alternatives, such as A 1 , A 3 and A 5 , the same conclusion holds. 

4.5.2. Validity test of the results obtained by the proposed method under criteria 2 and 3 

In order to test validity of the obtained results by the proposed method using criteria 2 and 3, original MCDM problem

is decomposed into two sets of smaller MCDM problems { A 1 , A 2 , A 3 } and { A 1 , A 3 , A 4 , A 5 }, respectively. Following the steps

of the proposed method, corresponding rankings are respectively generated as A 2 
A 1 
A 3 and A 1 
A 4 
A 3 
A 5 for these two

sub-problems. 

Combining the rankings of above sub-problems together, the final ranking is obtained as A 2 
A 1 
A 4 
A 3 
A 5 which is

identical to the ranking of un-decomposed MCDM problem and exhibits transitive property. Hence, the obtained results are

valid under test criteria 2 and 3. 

5. Thorough comparative analyses with existing MCDM methods 

To demonstrate the superiority of the proposed method, this section conducts thorough comparative analyses with

existing MCDM methods, including interval-valued 2-tuple weighted average (IVTWA) operator aggregated method [44] ,

interval 2-tuple linguistic VIKOR (ITL-VIKOR) method [42] and a fuzzy integrated method [9] . 

5.1. Ranking results obtained by existing methods and Spearman’s rank-correlation test 

To compare with methods [9,42,44] , we first use these methods to solve the above real case. 

(1) According to the aggregation method [44] and ITL-VIKOR method [42] , sub-criteria weights are assigned in advance.

To make this comparison more validly, suppose sub-criteria weights are the numerical values corresponding to

sub-criteria weights obtained by the proposed method, i.e., 

ω 

′ 
1 = (0 . 0698 , 0 . 0484 , 0 . 0396 , 0 . 0234 , 0 . 0899 , 0 . 0969 , 0 . 0770 , 0 . 0725 , 0 . 0611 , 0 . 1468 , 0 . 1738 , 0 . 1009 ) . 

In virtue of method [44] and method [42] , the ranking orders of alternatives are generated as A 2 
A 1 
A 4 
A 3 
A 5 and A 2 

∼ A 1 
A 4 
A 3 
A 5 , respectively. 

(2) Method [9] is an integrated method combining FAHP and FTOPSIS, where FAHP is used to determine sub-criteria

weights and FTOPSIS is applied to rank alternatives. Since method [11] assumed that criteria and sub-criteria are in-

dependent on each other, whereas the proposed method considers the interactions among some criteria, sub-criteria

weights cannot be determined by FAHP. To make comparison validly, sub-criteria weights are still assigned as ω’ 1 .

Employing FTOPSIS, the ranking order of alternatives is obtained as A 2 
A 3 
A 1 
A 4 
A 5 . 

To measure the ranking differences between methods [9,42,44] and the proposed method, Spearman’s rank-correlation

test, a technique allowing for ascertaining whether there is statistically significant rank-correlation between two sets of

values, is applied to the decision. In this test, ranking values of alternatives are computed by their corresponding ranking

orders. For example, given a ranking order A 
A 
A 
A 
A , ranking values of alternatives A , A , A , A and A are 2, 1,
2 1 4 3 5 1 2 3 4 5 
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Table 12 

Rankings by four methods and their differences. 

Suppliers Ranking Ranking differences 

The proposed method (A) Method [44] (B) Method [42] (C) Method [9] (D) A-B A-C A-D 

A 1 2 2 1 .5 3 0 0 .5 1 

A 2 1 1 1 .5 1 0 0 .5 0 

A 3 4 4 4 2 0 0 2 

A 4 3 3 3 4 0 0 1 

A 5 5 5 5 5 0 0 0 

Spearman’s test result r s 1 0 .925 0 .7 

Z 2 1 .85 1 .4 

Table 13 

Comparison with existing MCDM methods. 

Method [44] Method [42] Method [9] The proposed 

method 

Hierarchical structure Single-level criteria Single-level criteria Two-level criteria Two-level criteria 

Determination of criteria 

weights 

Given in advance Given in advance Fuzzy AHP TL-ANP 

Decision making approach Aggregation 

operator 

ITL-VIKOR Fuzzy TOPSIS IT-ELECTREE II 

( S i , αi ) ( R i , αi ) ( O i , αi ) 

Vector of ranking values (0.7618, 

0.8034, 

0.5745, 

0.6127, 

0.5420) 

( �(0.3374), 

�(0.2688), 

�(0.5968), 

�(0.5429), 

�(0.6531)) 

( �(0.0509), 

�(0.0631), 

�(0.1241), 

�(0.1241), 

�(0.1490)) 

( �(0.0892), 

�(0.0619), 

�(0.8002), 

�(0.7300), 

�(1.0 0 0 0)) 

(0.0040, 

0.0062, 

0.0042, 

0.0030, 

0.0023) 

(0.8749, 

0.9327, 

0.2335, 

0.2907, 

0.1039) 

Ranking order 
A 2 
 A 1 
 A 4 

 A 3 
 A 5 

A 2 
 A 1 
 A 4 

 A 3 
 A 5 

A 2 
 A 3 
 A 1 

 A 4 
 A 5 

A 2 
 A 1 
 A 4 

A 3 
 A 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4, 3 and 5, respectively. Then, to measure the ranking differences between two ranking orders, two test statistics r s and Z

are needed to be calculated by the following expressions [22] : 

r s = 1 − 6 
n ( n 2 −1) 

∑ n 

i =1 
( d i ) 

2 
(30)

Z = r s 
√ 

n − 1 (31)

where d i is the difference between two ranking values of alternative A i in two ranking orders, n is the number of alter-

natives. According to [22] , one has − 1 ≤ r s ≤ 1. Furthermore, the closer the value of r s is to 1or −1, the stronger the

correlation between two ranking orders. If Z ≥ 1.645, then it can be concluded that there is evidence of a positive relation

between two ranking orders. Otherwise, it is considered that two ranking orders are dissimilar. Employing Eqs. (30) and

( 31 ), differences between ranking orders of alternatives obtained by methods [9,42,44] and those generated by the proposed

method are given in Table 12 . 

It is observed from Table 12 that the two sets of rankings obtained by method [44] and the proposed method have the

highest rank-correlation of 1 and the largest test value of Z = 2. Therefore, it is concluded that these two sets of rank-

ings have completely positive correlation. The test value between the rankings obtained by method [42] and those obtained

by the proposed method is 1.85, which exceeds the critical 1.645. Thus, we affirm that the rankings obtained by method

[42] are strongly positively correlated with those obtained by the proposed method. However, as for the rankings obtained

by method [9] and those obtained by the proposed method, the test value is 1.4, which is lower than 1.645. Therefore, these

two sets of rankings are considered to be dissimilar. In summary, the rankings obtained by the proposed method are statisti-

cally positively correlated with those obtained by methods [42,44] , which demonstrates the validity of the proposed method.

5.2. Further comparative analysis 

To show advantages of the proposed method, this section further compares the proposed method with existing methods

[11,42,44] from hierarchical structure, determination of criteria weights and decision making approaches. The detailed

comparison results are described in Table 13 . In addition, to intuitively compare the ranking results of alternatives obtained

by different methods, we depict these results in Fig. 3 . 

(1) Compared with methods [42,44] , the proposed method is able to solve more complex MCDM problems because the

former only can handle MCDM problems with single level criteria, while the latter can handle MCDM problems with
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Fig. 3. Ranking orders of alternatives obtained by different methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

two-level criteria. Thus, the latter has wider scope of applications than the former. Although method [9] also can

tackle the MCDM problems with two-level criteria, it transformed linguistic variables into TFNs, which may cause

loss or distortion of information. The proposed method deals with MCDM problems by interval 2-tuple linguistic

variables which can effectively overcome this shortcoming. 

(2) The proposed method determines criteria and sub-criteria weights objectively by TL-ANP, which can avoid the subjec-

tive randomness. However, methods [42,44] gave criteria weights in advance and did not consider the determination

of criteria weights. Although method [9] employed fuzzy AHP to derive criteria weights, there are two limitations:

1) it is supposed that criteria are independent on each other; 2) it did not discuss how to repair the consistency of

preference relations when preference relations are unacceptable consistent. On the other hand, the proposed method

not only considers interactions among criteria, but also constructs consistent preference relations. 

(3) As for the decision making approach, the proposed method utilizes IT-ELECTRE II to rank alternatives. Compared with

decision making approaches used in other methods [9,42,44] , the conditions of IT-ELECTRE II (i.e., alternatives are

compared on each criterion and the comparison scores on criteria cannot compensate for each other) are stricter.

Therefore, the results obtained by IT-ELECTRE II are more cautious and more reliable. 

6. Conclusions 

In today’s fierce competitive market, it is necessary for enterprises to select a suitable supplier to win a space in their

business. Therefore, supplier selection is a critical issue for enterprises. This paper investigated a type of supplier selection

problems with two-level criteria and proposed a hybrid method by combining ANP with ELECRE II in interval 2-tuple

linguistic environment. Primary contributions are summarized as follows: 

(1) Interactions among criteria or within criteria are considered while determining weights of criteria and sub-criteria,

which is more consistent with real-world decision situations. 

(2) A TL-ANP approach is proposed to determine weights of criteria and sub-criteria. There are two prominent character-

istics of this approach: 1) 2-tuple linguistic variables are used in comparison matrices, which not only can help DMs

supply their information more flexible and easier, but can avoid the loss and distortion of evaluation information;

2) The proposed technique for constructing comparison matrix of a TLPR can guarantee the consistency of TLPR.

Moreover, DMs are only required to supply the elements in the first row of comparison matrix. Thus, the workload

of DMs and the cost of enterprise may be remarkably reduced. 

(3) An IT-ELECTRE II approach is developed to rank alternatives. In this approach, ratings of alternatives on sub-criteria

are in the form of interval 2-tuples, which can suitably model the quantitative and qualitative criteria involved

in supplier selection. Furthermore, IT-ELECTRE II is able to neatly compare alternative suppliers and has a strong

distinguishing power. 

Future study will extend the proposed hybrid method to group decision-making problems and other decision environ-

ments, such as hesitant fuzzy set and linguistic hesitant fuzzy set. 
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Appendix A 

Proof of Property 1. Denote �−1 ( s i , α1 ) = β−
1 

, �−1 ( t i , α2 ) = β+ 
1 

, �−1 ( s j , γ1 ) = β−
2 

, �−1 ( t j , γ2 ) = β+ 
2 

. 

(i) Since −(| β+ 
1 

− β+ 
2 
| + | β−

1 
− β−

2 
| ) ≤ (β+ 

1 
− β+ 

2 
) + (β−

1 
− β−

2 
) ≤ | β+ 

1 
− β+ 

2 
| + | β−

1 
− β−

2 
| , it obtains that −1 ≤

(β+ 
1 

−β+ 
2 

)+(β−
1 

−β−
2 

) 

| β+ 
1 

−β+ 
2 

| + | β−
1 

−β−
2 

| ≤ 1 . In the following, the proof is completed in two cases. 

Case 1. (β+ 
1 

− β+ 
2 

) + (β−
1 

− β−
2 

) ≥ 0 . Thus, it yields that 

0 ≤ (β+ 
1 

−β+ 
2 
)+(β−

1 
−β−

2 
) 

| β+ 
1 

−β+ 
2 
| + | β−

1 
−β−

2 
| + l ˜ y 1 ̃ y 2 

≤ (β+ 
1 

−β+ 
2 
)+(β−

1 
−β−

2 
) 

| β+ 
1 

−β+ 
2 
| + | β−

1 
−β−

2 
| ≤ 1 . 

Consequently, 0 ≤ 1 
2 (1 + 

(β+ 
1 

−β+ 
2 

)+(β−
1 

−β−
2 

) 

| β+ 
1 

−β+ 
2 

| + | β−
1 

−β−
2 

| + l ˜ y 1 ̃ y 2 

) = 

1 
2 (1 + 

( �−1 ( t i , α2 ) −�−1 ( t j , γ2 ))+( �−1 ( s i , α1 ) −�−1 ( s j , γ1 )) 

| �−1 ( t i , α2 ) −�−1 ( t j , γ2 ) | + | �−1 ( s i , α1 ) −�−1 ( s j , γ1 ) | + l ˜ y 1 ̃ y 2 

) ≤ 1 . 

Namely, 0 ≤ φ( ̃  y 1 ≥ ˜ y 2 ) ≤ 1 . 

Case 2. (β+ 
1 

− β+ 
2 

) + (β−
1 

− β−
2 

) < 0 . The proof process is similar to Case 1 . 

(ii) To prove this conclusion, it is only needed to perform the operation φ( ̃  y 1 ≥ ˜ y 2 ) + φ( ̃  y 2 ≥ ˜ y 1 ) based on the expression

of φ( ̃  y 1 ≥ ˜ y 2 ) . Here, the proof process is omitted. 

(iii) If (s 1 
i 
, α1 

1 
) 
 (s 2 

j 
, α2 

2 
) , then l ˜ y 1 ̃ y 2 

= 0 and β−
2 

< β+ 
2 

< β−
1 

< β+ 
1 

. 

Thereby, (β+ 
1 

− β+ 
2 

) + (β−
1 

− β−
2 

) = | β+ 
1 

− β+ 
2 
| + | β−

1 
− β−

2 
| . 

Similar to the proof process of Case 1 , the conclusion φ( ̃  y 1 ≥ ˜ y 2 ) = 1 can be easily derived. 

(iv) It is easily obtained from conclusion (ii). 

The proof of Property 1 is completed. 

Appendix B 

Proof of Theorem 1. From p ij = �( � − 1 ( p 1 j ) − � − 1 ( p 1 i ) + � − 1 ( s g /2 , 0)) ( i, j = 1, 2, ���, n ), we have 

p ik = �( �−1 ( p 1 k ) − �−1 ( p 1 i ) + �−1 ( s g/ 2 , 0)) , p k j = �( �−1 ( p 1 j ) − �−1 ( p 1 k ) + �−1 ( s g/ 2 , 0)) . 

Thereby, 

�−1 ( p ik ) + �−1 ( p k j ) = ( �−1 ( p 1 k ) − �−1 ( p 1 i ) + �−1 ( s g/ 2 , 0)) + ( �−1 ( p 1 j ) − �−1 ( p 1 k ) + �−1 ( s g/ 2 , 0)) . (B.1)

Simplifying Eq. (B.1) , one has 

�−1 ( p ik ) + �−1 ( p k j ) = �−1 ( p 1 j ) − �−1 ( p 1 i ) + �−1 ( s g/ 2 , 0) + �−1 ( s g/ 2 , 0) . (B.2)

Subtracting � − 1 ( s g /2 , 0) on both sides of Eq. (B.2) , it follows that 

�−1 ( p ik ) + �−1 ( p k j ) − �−1 ( s g/ 2 , 0) = �−1 ( p 1 j ) − �−1 ( p 1 i ) + �−1 ( s g/ 2 , 0) . (B.3)

Consequently, �( � − 1 ( p ik ) + � − 1 ( p kj ) − � − 1 ( s g /2 , 0)) = �( � − 1 ( p 1 j ) − � − 1 ( p 1 i ) + � − 1 ( s g /2 , 0)) = p ij . Namely,

p ij = �( � − 1 ( p ik ) + � − 1 ( p kj ) − � − 1 ( s g /2 , 0)). From Definition 9 , matrix P = ( p ij ) n × n is additively consistent. This

completes the proof. 

Appendix C 

(See Tables 7 and 8 ). 
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