Supplier selection using ANP and ELECTRE II in interval 2-tuple linguistic environment

${ }^{\text {a }}$ College of Information Technology, Jiangxi University of Finance and Economics, Nanchang 330013, China
${ }^{\mathrm{b}}$ College of Science, Guilin University of Technology, Guilin 541004, China
${ }^{\text {c }}$ School of Statistics, Jiangxi University of Finance and Economics, Nanchang 330013, China

A R T I C L E I N F O

Article history:

Received 11 June 2015
Revised 23 December 2016
Accepted 26 December 2016
Available online 27 December 2016

Keywords:

Supplier selection
Interval 2-tuple
ANP
ELECTRE
Multi-criteria decision-making

Abstract

In supply chain management, supplier selection can be treated as a type of hierarchical multi-criteria decision-making (MCDM) problems since it involves various criteria and hierarchical structure among criteria often exists. This paper investigates a kind of MCDM problems with two-level criteria and develops a novel hybrid method integrating TL-ANP (2-tuple linguistic analytic network process) and IT-ELECTRE II (interval 2-tuple Elimination and Choice Translating Reality II). Considering interactions among criteria, a TL-ANP approach, in which comparison matrices are consistent 2 -tuple linguistic preference relations, is put forward to determine weights of criteria and sub-criteria. To deal with the case of criteria being not compensated, an IT-ELECTRE II approach is proposed. In this approach, ratings of alternatives on sub-criteria are represented as interval 2-tuple linguistic variables. A possible degree and a likelihood-based preference degree are respectively defined, followed by concordance, discordance and indifferent sets. Afterwards, concordance and discordance indices are identified and applied to establish net concordance and net discordance indices. Further, comprehensive dominant values of alternatives are obtained to rank alternatives. Thereby, a novel hybrid method is presented for MCDM with two-level criteria under interval 2-tuple linguistic environment. At length, a real case of supplier selection is examined and comparison analyses are conducted to illustrate the application and superiority of the proposed method.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

With the acceleration of economic globalization process, today's enterprises are exposed to fierce competition. To attract more customers, many enterprises improve the quality and reduce cost (price) of their products. In this process, the raw material supplier plays an important role. Therefore, Enterprises must select appropriate suppliers and retain good relations of cooperation with them. While selecting suppliers, various criteria are involved and some of them are conflict, such as quality and cost. Hence, the supplier selection can be considered as a kind of multi-criteria decision-making (MCDM) problems [8,26,34-36]. Current research on supplier selection mainly focuses on two key issues: evaluation criteria identification and decision-making methods.

[^0]Table 1
Criteria and corresponding sub-criteria for supplier selections.

Criteria	Sub-criteria	Literature
Quality	Quality performance; Quality containment \& VDCS feed back	Yang and Tzeng [41]
Price \& Terms	Price; Terms; Responsiveness; Lead time, VMI/VOI hub set up cost	
Supply chain support	Purchase order reactiveness; Capacity support \& flexibility; Delivery/VMI operation	
Technology	Technical support, Design involvement; ECN/PCN process	
Cost	Product price, Freight cost; Tariff and custom duties	Chen and Yang [2]
Quality	Rejection rate of product; Increased lead time; Quality assessment; Remedy for quality problems	
Service performance	Delivery schedule, Technological and R \& D support; Response to changes; Ease of communication	
Supplier Profile	Financial status, Customer base; Performance history; Production facility and capacity	
Risk	Geographical location, Political stability; Economy, Terrorism	
General management capability perspective	Management and strategy; Financial status; Customer relations; Training program; Reputation, History; Language; License; Geographical location	Lee et al. [16]
Manufacturing capability perspective	Production capacity; Product diversity; R \& D capability, Safety regulations; Environmental regulations, Quality control; Product price	
Collaboration capability perspective	After-sales service, Delivery reliability	
Agility perspective	Delivery speed; Delivery flexibility; Make flexibility; Source flexibility; Agile customer responsiveness; Collaboration with partners, IT infrastructure	

For evaluation criteria identification, Dickson [6] firstly performed an investigation and proposed 23 different criteria including quality, on-time delivery, price, performance history, warranties policy, technical capability, etc. Among these criteria, the first three criteria are most popular and applied in many supplier selection problems [2,16,27,41]. Subsequently, a lot of new evaluation criteria were introduced, such as finance, management and reputation, service, etc. According to these criteria, different sub-criteria $[2,16,41]$ were presented and listed in Table 1.

In the regard of decision-making methods, earlier studies adopted some classical methods to solve supplier selection problems with crisp numerical assessment information, such as AHP (Analytic Hierarchical Process) [20], ANP (Analytic Network Process) [32] and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) [17]. However, as the complexity of decision-making problems increases, decision information is more and more vague. In this context, Pedrycz [24,25] suggested that linguistic variable [7,18] is suitable to describe quantitative assessment information. For example, when we evaluate the reputation of a supplier, terms like "poor", "good" and "very good" are usually employed. By converting linguistic variables into triangle fuzzy numbers (TFNs), many fuzzy decision methods [1,11,14,16,21,27,28,33] have been proposed. Roughly speaking, these methods can be divided into two classes: single methods and hybrid methods.

Common single methods are fuzzy AHP (FAHP) [27], fuzzy ANP (FANP) [33] and fuzzy TOPSIS (FTOPSIS) [28]. Hybrid methods are those which fuse at least two single methods. Generally, some single methods are used to determine criteria weights and others are applied to rank suppliers. For example, considering that criteria are independent on each other, Hashemian et al. [11] and Lee et al. [16] derived criteria weights by FAHP, and then ranked suppliers by fuzzy PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation) and FTOPSIS, respectively. Considering interactions among criteria, Nguyen et al. [21] used FANP to determine criteria weights and adopted COPRAS-G (Complex Proportional Assessment of alternatives with Grey relations) to rank suppliers; Büyüközkan and Çifçi [1] obtained criteria weights by fuzzy DEMATEL and FANP, and sorted suppliers by FTOPSIS; Karsak and Dursun [14] used QFD (Quality Function Deployment) to derive criteria weights, and then applied DEA (Data Envelopment Analysis) to rank suppliers.

The aforementioned methods demonstrate that most researchers solved supplier selection problems by transforming linguistic variables into TFNs. As a result, computation results usually do not exactly match any of initial linguistic terms and an approximation process must be used to express results in the initial expression domain, which easily leads to loss of information and lack of precision in the final results. To overcome these limitations, Herrera and Martínez [12] introduced 2-tuple linguistic representation model which consists of a linguistic term and a numeric value. The main advantage of this representation is to be continuous in its domain. Therefore, it can express any counting of information in the universe of the discourse. Subsequently, Zhang [44] further extended the 2-tuple linguistic variable into the interval 2-tuple linguistic variable. In 2-tuple linguistic context, Wang [37] proposed Hierarchy Arithmetic Weighted Average approach to rank suppliers; Karsak and Dursun [15] used QFD to give a decision framework for medical supplier selection problems. You et al. [42] addressed an interval 2-tuple linguistic VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje technique) method to tackle anesthetic equipment supplier problems. However, methods [37, 42] assumed that criteria are independent and assigned criteria weights in advance.

Though previous linguistic decision making methods can solve some supplier selection problems, there are some shortcomings: (1) Fuzzy decision methods [1,16,21,28,33] may result in information loss or distortion. (2) Although 2-tuple decision methods [37,42] can overcome the information loss, they did not consider interactions among criteria. The phenomena of interaction among criteria often exist in real-world decision making problems. For instance, while evaluating a
supplier, the high quality often brings a good reputation and a good reputation may imply the high quality. (3) Methods [1,16,21,28,33,37,42] regards that values on different criteria can completely compensate for each other. In fact, sometimes, values on some criteria cannot compensate for each other. As an example, if the quality of supplier A is much worse than that of supplier B, then supplier A is not better than supplier B even if values of supplier A on other criteria are much better than those of supplier B.

To make up above shortcomings, this paper proposes a new hybrid method for solving supplier selection problems with two-level criteria. The main motivations of this paper are outlined as follows:
(1) As mentioned before, various criteria and sub-criteria are involved in supplier selection problems. This implies that hierarchical structure often exists in supplier selection. Existing methods [17,28,37,42] only addressed supplier selection with single level criteria and can not handle supplier selection with two-level criteria. Therefore, this paper investigates MCDM with two-level criteria and applies it to supplier selection.
(2) In MCDM, it is very important to reasonably determine criteria weights. However, methods [37,42] did not discuss the determination of criteria weights. Although fuzzy decision methods [11,16,21] derived criteria weights by FAHP or FANP, loss of information happens together with converting linguistic ratings into TFNs. To remedy these disadvantages, this paper develops a 2-tuple linguistic ANP (TL-ANP) approach to deriving criteria and sub-criteria weights.
(3) Due to the fact that methods $[1,16,21,28,33,37,42]$ regards that values on different criteria can completely compensate for each other, these methods are not able to solve MCDM in which values on different criteria are not allowed to compensate for each other. Considering that ELECTRE (Elimination and Choice Translating Reality) family [$13,19,23$] has a notable merit (namely, alternatives are compared on each criterion and scores on criteria cannot compensate for each other), this paper presents an interval 2-tuple ELECTRE II (IT-ELECTRE II) approach to dealing with the case of criteria being not compensated.

Consequently, this paper formulates supplier selection as a kind of MCDM problems with two-level criteria. Combining TL-ANP and IT-ELECTRE II, a novel hybrid method is proposed for solving such problems. Compared with existing methods, the proposed method has three key features:
(1) While determining weights of criteria and sub-criteria, the proposed TL-ANP approach considers interactions among criteria or within criteria. Thus, decision results may be more consistent with real-world decision situations. However, 2-tuple decision methods [37,42] assumed that criteria are independence on each other and ignored interactions among criteria.
(2) Different from FANP [21,33], the proposed TL-ANP approach employs 2-tuple linguistic variables to express preference relations between two criteria or sub-criteria, by which the loss or distortion of information can be effectively avoided. FANP $[21,33]$ converted linguistic variables into TFNs, which can result in that one linguistic variable may be converted into distinct TFNs or the aggregated results do not belong to the given linguistic term set.
(3) An IT-ELECTRE II approach is proposed to effectively circumvent the issue that criteria cannot compensate for each other. In this approach, ratings of alternatives on sub-criteria are represented by interval 2-tuple linguistic variables which can neatly express uncertain decision information provided by decision makers (DMs). Moreover, this approach inherits the merit of ELECTRE. Hence, decision results may be more reliable compared with VIKOR and TOPSIS.

The rest of this paper is organized as follows. In Section 2, some preliminaries for 2-tuple and interval 2-tuple linguistic variables, 2-tuple linguistic preference relation and ANP are reviewed. Section 3 develops a novel hybrid method for MCDM with two-level criteria in interval 2-tuple linguistic environment. In Section 4, a real case of supplier selection is analyzed to illustrate the application of the proposed method. Section 5 carries out comparison analyses to show the superiority of the proposed method. Finally, some primary conclusions are furnished in Section 6.

2. Preliminaries

This section briefly reviews some basic definitions and properties related to 2-tuple linguistic variables, interval 2-tuple linguistic variables, 2-tuple linguistic preference relation and ANP.

2.1. 2-tuple linguistic variables and interval 2-tuple linguistic variables

Let $S=\left\{s_{0}, s_{1}, s_{2}, \cdots, s_{g}\right\}$ be a predefined linguistic term set with granularity $g+1$. The 2-tuple linguistic representation model expresses linguistic information by a pair of values called linguistic 2-tuple (s_{i}, α), where $s_{i} \in S$ represents the central value of the i th linguistic term and $\alpha \in[-0.5,0.5$) indicates the deviation to the central value of the i th linguistic term.

Example 1. Let $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}, s_{8}\right\}$ be a linguistic term set. The meanings of linguistic terms $s_{0}, s_{1}, s_{2}, s_{3}$, $s_{4}, s_{5}, s_{6}, s_{7}, s_{8}$ respectively are: "extremely poor", "very poor", "medium poor", "poor", "medium", "medium good", "good", "very good" and "extremely good". Thus, 2-tuple ($s_{7}, 0.2$) means that the real linguistic rating is better than the term "very good $\left(s_{7}\right)$ " and the degree to which the real linguistic rating is preferred to the term "very good $\left(s_{7}\right)$ " is 0.2 .

Together with the 2-tuple (s_{i}, α), there is a numerical value β representing the result of an aggregation of the indices of a set of labels assessed in a linguistic term set S. In traditional 2 -tuple linguistic model [12], the range of β is between 0 and
g. Hence, there exists a restriction that the range of β varies with the granularity if there exist multi-granularity linguistic term sets [44] in a decision-making problem. To overcome this restriction, Chen and Tai [5] proposed a generalized 2-tuple linguistic model and translation functions.
Definition 1. [5]. Let $S=\left\{s_{0}, s_{1}, s_{2}, \cdots, s_{g}\right\}$ be a linguistic term set and $\beta \in[0,1]$ be a value representing the result of an aggregation of the indices of a set of labels assessed in a linguistic term set S. To obtain the 2 -tuple linguistic variable equivalent to β, the generalized translation function Δ is defined as follows:

$$
\Delta(\beta)=\left(s_{i}, \alpha\right) \quad \text { with } \quad\left\{\begin{array}{l}
s_{i}, \quad i=\operatorname{round}(\beta \cdot g) \tag{1}\\
\alpha=\beta-\frac{i}{g}, \quad \alpha \in\left[-\frac{1}{2 g}, \frac{1}{2 g}\right)
\end{array}\right.
$$

Meanwhile, there is a function Δ^{-1} used to convert a 2 -tuple linguistic variable into its equivalent numerical value β $\in[0,1]$. The reverse function Δ^{-1} is defined as

$$
\begin{equation*}
\Delta^{-1}: S \times\left[-\frac{1}{2 g}, \frac{1}{2 g}\right) \rightarrow[0,1], \quad \Delta^{-1}\left(s_{i}, \alpha\right)=\frac{i}{g}+\alpha=\beta \tag{2}
\end{equation*}
$$

Specially, a linguistic term s_{i} can be converted into a 2-tuple linguistic variable ($s_{i}, 0$).
Example 2. Let $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}, s_{8}\right\}$ be a linguistic term set with $g=8$. From Eq. (2), we have $\alpha \in\left[-\frac{1}{16}, \frac{1}{16}\right)=[-0.0625,0.0625)$. According to Eq. (2), one has

$$
\Delta^{-1}\left(s_{1}, 0.025\right)=\frac{1}{8}+0.025=0.15, \quad \Delta^{-1}\left(s_{0}, 0\right)=\frac{0}{8}+0=0
$$

On the other hand, suppose the symbolic aggregation operation $\beta=0.35$. In virtue of Eq. (1), it yields that $i=\operatorname{round}(0.35 \times 8)=3$ and $\alpha=0.35-3 / 8=-0.025$. Therefore, $\Delta(\beta)=\left(s_{3},-0.025\right)$.
Definition 2. A matrix $\tilde{\boldsymbol{Y}}=\left(\tilde{y}_{i j}\right)_{m \times n}$ is called a 2-tuple linguistic matrix if $\tilde{y}_{i j}=\left(s_{i j}, \alpha_{i j}\right)(i=1,2, \cdots, m ; j=1,2, \cdots, n)$ are 2-tuples defined in Definition 1 .
Definition 3. Given a 2-tuple linguistic matrix $\tilde{\boldsymbol{Y}}=\left(\tilde{y}_{i j}\right)_{m \times n}$, if $\beta_{i j}=\Delta^{-1}\left(\tilde{y}_{i j}\right)$, matrix $\boldsymbol{\Delta}^{\mathbf{- 1}}(\tilde{\boldsymbol{Y}})=\left(\beta_{i j}\right)_{m \times n}$ is called a 2-tuple linguistic transformed matrix of matrix $\tilde{\boldsymbol{Y}}$. Meanwhile, matrix $\tilde{\boldsymbol{Y}}$ is called the corresponding 2-tuple linguistic matrix of matrix $\Delta^{\mathbf{- 1}}(\tilde{\boldsymbol{Y}})$.
Example 3. Let the linguistic term set S come from Example 1. Matrix

$$
\tilde{\boldsymbol{Y}}=\left(\begin{array}{ccc}
\left(s_{3}, 0.03\right) & \left(s_{7}, 0.00\right) & \left(s_{1}, 0.02\right) \\
\left(s_{5},-0.01\right) & \left(s_{2}, 0.04\right) & \left(s_{6}, 0.01\right) \\
\left(s_{1}, 0.05\right) & \left(s_{6}, 0.03\right) & \left(s_{4},-0.02\right)
\end{array}\right)
$$

is a 2-tuple linguistic matrix. Thus, the 2-tuple linguistic transformed matrix $\boldsymbol{\Delta}^{\mathbf{- 1}}(\tilde{\boldsymbol{Y}})$ is obtained as

$$
\boldsymbol{\Delta}^{-1}(\tilde{\boldsymbol{Y}})=\left(\beta_{i j}\right)_{3 \times 3}=\left(\begin{array}{ccc}
0.405 & 0.875 & 0.145 \\
0.615 & 0.290 & 0.760 \\
0.175 & 0.780 & 0.480
\end{array}\right)
$$

For example, $\beta_{11}=\Delta^{-1}\left(\tilde{y}_{11}\right)=\Delta^{-1}\left(s_{3}, 0.03\right)=0.405$. Similarly, other elements can be acquired.
Definition 4. [40]. Let $S=\left\{s_{0}, s_{1}, s_{2}, \cdots, s_{g}\right\}$ be a linguistic term set. An uncertain linguistic variable is defined as $\tilde{s}=\left[s_{k}, s_{l}\right]$, where $s_{k}, s_{l} \in S$ and $k \leq l$.
Definition 5. [44]. An interval 2-tuple linguistic variable is composed of two 2-tuples, denoted by [s_{i}, α_{1}), ($\left.s_{j}, \alpha_{2}\right)$] with $\left(s_{i}, \alpha_{1}\right) \leq\left(s_{j}, \alpha_{2}\right)$ (see [5]). An interval 2-tuple expressing the equivalent information to an interval value $\left[\beta_{1}, \beta_{2}\right]\left(\beta_{1}, \beta_{2} \in\right.$ $[0,1]$) is obtained by the following function:

$$
\left\{\begin{array}{lr}
s_{i}, & i=\operatorname{round}\left(\beta_{1} \cdot g\right) \tag{3}\\
s_{j}, & j=\operatorname{round}\left(\beta_{2} \cdot g\right) \\
\alpha_{1}=\beta_{1}-\frac{i}{g}, & \alpha_{1} \in\left[-\frac{1}{2 g}, \frac{1}{2 g}\right) \\
\alpha_{2}=\beta_{2}-\frac{j}{g}, & \alpha_{2} \in\left[-\frac{1}{2 g}, \frac{1}{2 g}\right)
\end{array}\right.
$$

Correspondingly, there is always a function Δ^{-1} such that an interval 2-tuple can be transformed into an interval value [$\left.\beta_{1}, \beta_{2}\right]\left(\beta_{1}, \beta_{2} \in[0,1]\right)$ as follows:

$$
\begin{equation*}
\Delta^{-1}\left[\left(s_{i}, \alpha_{1}\right),\left(s_{j}, \alpha_{2}\right)\right]=\left[\frac{i}{g}+\alpha_{1}, \frac{j}{g}+\alpha_{2}\right]=\left[\beta_{1}, \beta_{2}\right] \tag{4}
\end{equation*}
$$

Particularly, an uncertain linguistic variable $\tilde{s}=\left[s_{k}, s_{l}\right]$ can be transformed into an interval 2-tuple linguistic variable [(s_{k}, $\left.0),\left(s_{l}, 0\right)\right]$.
Definition 6. Let $\tilde{a}=\left[\left(s_{i}, \alpha_{1}\right),\left(s_{j}, \alpha_{2}\right)\right]$ and $\tilde{b}=\left[\left(t_{i}, \gamma_{1}\right),\left(t_{j}, \gamma_{2}\right)\right]\left(s_{i}, s_{j}, t_{i}, t_{j} \in S\right)$ be two interval 2-tuples. Minkowski distance between two interval 2-tuples is defined as

$$
\begin{equation*}
d_{q}(\tilde{a}, \tilde{b})=\left[\frac{1}{2}\left(\left|\Delta^{-1}\left(s_{i}, \alpha_{1}\right)-\Delta^{-1}\left(t_{i}, \gamma_{1}\right)\right|^{q}+\left|\Delta^{-1}\left(s_{j}, \alpha_{2}\right)-\Delta^{-1}\left(t_{j}, \gamma_{2}\right)\right|^{q}\right)\right]^{1 / q} \tag{5}
\end{equation*}
$$

where $q>0$ is a distance parameter. Specially, distances $d_{1}(\tilde{a}, \tilde{b}), d_{2}(\tilde{a}, \tilde{b})$ and $d_{+\infty}(\tilde{a}, \tilde{b})$ are called Hamming distance, Euclidean distance and Chebyshev distance, respectively.

Definition 7. Let $\tilde{y}_{1}=\left[\left(s_{i}, \alpha_{1}\right),\left(s_{j}, \alpha_{2}\right)\right]$ and $\tilde{y}_{2}=\left[\left(t_{i}, \gamma_{1}\right),\left(t_{j}, \gamma_{2}\right)\right]$ be two interval 2-tuples. A possibility degree to which \tilde{y}_{1} is preferred to \tilde{y}_{2} (denoted by $\tilde{y}_{1} \geq \tilde{y}_{2}$) is defined as

$$
\begin{equation*}
\phi\left(\tilde{y}_{1} \geq \tilde{y}_{2}\right)=\frac{1}{2}\left(1+\frac{\left(\Delta^{-1}\left(s_{j}, \alpha_{2}\right)-\Delta^{-1}\left(t_{j}, \gamma_{2}\right)\right)+\left(\Delta^{-1}\left(s_{i}, \alpha_{1}\right)-\Delta^{-1}\left(t_{i}, \gamma_{1}\right)\right)}{\left|\Delta^{-1}\left(s_{j}, \alpha_{2}\right)-\Delta^{-1}\left(t_{j}, \gamma_{2}\right)\right|+\left|\Delta^{-1}\left(s_{i}, \alpha_{1}\right)-\Delta^{-1}\left(t_{i}, \gamma_{1}\right)+\right|+l_{\tilde{y}_{1} \tilde{y}_{2}}}\right), \tag{6}
\end{equation*}
$$

where $l_{\tilde{y}_{1} \tilde{y}_{2}}$ indicates the length of intersection of interval values $\Delta^{-1}\left(\tilde{y}_{1}\right)$ and $\Delta^{-1}\left(\tilde{y}_{2}\right)$.
Example 4. Let the linguistic term set S still come from Example 1. Consider two interval 2-tuples $\tilde{y}_{1}=\left[\left(s_{2}, 0\right),\left(s_{3},-0.025\right)\right]$ and $\tilde{y}_{2}=\left[\left(s_{2}, 0.05\right),\left(s_{3}, 0.025\right)\right]$. The possibility degree $\phi\left(\tilde{y}_{1} \geq \tilde{y}_{2}\right)$ is computed as follows:

From Eq. (4), it derives $\Delta^{-1}\left(\tilde{y}_{1}\right)=\left[\frac{2}{8}+0, \frac{3}{8}-0.025\right]=[0.25,0.35]$. Similarly, $\Delta^{-1}\left(\tilde{y}_{2}\right)=[0.30,0.40]$. Then, the intersection of $\Delta^{-1}\left(\tilde{y}_{1}\right)$ and $\Delta^{-1}\left(\tilde{y}_{2}\right)$ is obtained as [0.30, 0.35]. Thereby, it follows that $l_{\tilde{y}_{1} \tilde{y}_{2}}=0.35-0.30=0.05$. On the other hand, by Eq. (2), we have $\Delta^{-1}\left(s_{2}, 0\right)=\frac{2}{8}+0=0.25$. Analogously, it is obtained that $\Delta^{-1}\left(s_{3},-0.025\right)=0.35, \Delta^{-1}\left(s_{2}\right.$, $0.05)=0.30, \Delta^{-1}\left(s_{3}, 0.025\right)=0.40$. Thus, by Eq. (6), one has

$$
\phi\left(\tilde{y}_{1} \geq \tilde{y}_{2}\right)=\frac{1}{2}\left(1+\frac{(0.35-0.40)+(0.25-0.30)}{|0.35-0.40|+|0.25-0.30|+0.05}\right)=0.1667
$$

Property 1. The possible degree of Definition 7 satisfies the following desirable properties:
(i) $0 \leq \phi\left(\tilde{y}_{1} \geq \tilde{y}_{2}\right) \leq 1$;
(ii) $\phi\left(\tilde{y}_{1} \geq \tilde{y}_{2}\right)+\phi\left(\tilde{y}_{2} \geq \tilde{y}_{1}\right)=1$;
(iii) $\phi\left(\tilde{y}_{1} \geq \tilde{y}_{2}\right)=1$ if $\left(s_{i}, \alpha_{1}\right)>\left(t_{j}, \gamma_{2}\right)$;
(iv) $\phi\left(\tilde{y}_{1} \geq \tilde{y}_{2}\right)=\phi\left(\tilde{y}_{2} \geq \tilde{y}_{1}\right)=0.5$ if $\phi\left(\tilde{y}_{1} \geq \tilde{y}_{2}\right)=\phi\left(\tilde{y}_{2} \geq \tilde{y}_{1}\right)$.

Proof. See Appendix A.

2.2. 2-tuple linguistic preference relations

In a decision-making problem, let $S=\left\{s_{0}, s_{1}, s_{2}, \cdots, s_{g}\right\}$ be a given linguistic term set and $U=\left\{U_{1}, U_{2}, \cdots, U_{n}\right\}$ be the set of criteria. DMs compare each pair of criteria in U and acquire a pair-wise comparison matrix, denoted by \boldsymbol{P} $=\left(p_{i j}\right)_{n \times n}$, where $p_{i j}=\left(s_{i j}, \alpha_{i j}\right)(i, j=1,2, \cdots, n)$ are 2-tuples and indicate the importance degree of criterion U_{i} over U_{j}. If $p_{i j}=\left(s_{g / 2}, 0\right)$, then criterion U_{i} is as important as criterion U_{j}; If $p_{i j}>\left(s_{g / 2}, 0\right)$, then criterion U_{i} is more important than criterion U_{j}; If $p_{i j}<\left(s_{g / 2}, 0\right)$, then criterion U_{j} is more important than criterion U_{i}.

Definition 8. [10]. Let $S=\left\{s_{0}, s_{1}, s_{2}, \cdots, s_{g}\right\}$ be a linguistic term set. A linguistic matrix $\boldsymbol{P}=\left(p_{i j}\right)_{n \times n}$ is called a 2tuple linguistic preference relation (TLPR) if it satisfies $p_{i i}=\left(s_{g / 2}, 0\right)$ and $\Delta\left(\Delta^{-1}\left(p_{i j}\right)+\Delta^{-1}\left(p_{j i}\right)\right)=\left(s_{g}\right.$, 0$)$, where $p_{i j}=\left(s_{i j}, \alpha_{i j}\right), s_{i j} \in S, \alpha_{i j} \in\left[-\frac{1}{2 g}, \frac{1}{2 g}\right)$.

Definition 9. [10]. A TLPR $\boldsymbol{P}=\left(p_{i j}\right)_{n \times n}$ is additive consistent if and only if elements in matrix \boldsymbol{P} satisfy $p_{i j}=\Delta\left(\Delta^{-1}\left(p_{i k}\right)+\Delta^{-1}\left(p_{k j}\right)-\Delta^{-1}\left(s_{g / 2}, 0\right)\right)$ for $\forall i, j, k=1,2, \cdots, n$.

Theorem 1. Let $\boldsymbol{P}=\left(p_{i j}\right)_{n \times n}$ be an incomplete TLPR and only elements of the first row $p_{1 j}(j=1,2, \cdots, n)$ are given a prior. Assume rest elements are completed as follows:

$$
\begin{equation*}
p_{i j}=\Delta\left(\Delta^{-1}\left(p_{1 j}\right)-\Delta^{-1}\left(p_{1 i}\right)+\Delta^{-1}\left(s_{g / 2}, 0\right)\right) \quad(i, j=1,2, \cdots, n) \tag{7}
\end{equation*}
$$

then $\boldsymbol{P}=\left(p_{i j}\right)_{n \times n}$ is additive consistent.
Proof. See Appendix B.
Remark 1. To derive an additive consistent TLPR $\boldsymbol{P}=\left(p_{i j}\right)_{n \times n}$, DMs only need to furnish elements of its first row and rest elements can be determined via Eq. (7).

Example 5. The linguistic term set S is described in Example 1. In a decision making problem with four evaluation criteria, DMs respectively compare the first criterion with other criteria and provide preference information as $p_{11}=\left(s_{4}, 0\right)$, $p_{12}=\left(s_{5}, 0.05\right), p_{13}=\left(s_{6},-0.01\right)$ and $p_{14}=\left(s_{3}, 0\right)$. By Eq. (7), rest elements can be generated below:

$$
p_{23}=\Delta\left(\Delta^{-1}\left(p_{13}\right)-\Delta^{-1}\left(p_{12}\right)+\Delta^{-1}\left(s_{g / 2}, 0\right)\right)=\Delta(0.74-0.725+0.5)=\Delta(0.515)=\left(s_{4}, 0.015\right)
$$

From Definition 8 , one has $p_{32}=\Delta\left(\Delta^{-1}\left(s_{8}, 0\right)-\Delta^{-1}\left(p_{23}\right)\right)=\Delta(0.485)=\left(s_{4},-0.015\right)$.
Similarly, it yields $p_{24}=\left(s_{1}, 0.025\right), p_{42}=\left(s_{7},-0.025\right), p_{34}=\left(s_{1}, 0.01\right), p_{43}=\left(s_{7},-0.01\right)$.

Fig. 1. Frameworks of AHP and ANP.

Thus, a completed TLPR is derived as

$$
\boldsymbol{P}=\left(\begin{array}{cccc}
\left(s_{4}, 0\right) & \left(s_{5}, 0.050\right) & \left(s_{6},-0.010\right) & \left(s_{3}, 0.00\right) \\
\left(s_{3},-0.05\right) & \left(s_{4}, 0\right) & \left(s_{4}, 0.015\right) & \left(s_{1}, 0.025\right) \\
\left(s_{2}, 0.01\right) & \left(s_{4},-0.015\right) & \left(s_{4}, 0\right) & \left(s_{1}, 0.01\right) \\
\left(s_{5}, 0.00\right) & \left(s_{7},-0.025\right) & \left(s_{7},-0.01\right) & \left(s_{4}, 0\right)
\end{array}\right)
$$

According to Definition 9, it is easily proved that matrix \boldsymbol{P} is additive consistent.
Suppose a TLPR $\boldsymbol{P}=\left(p_{i j}\right)_{n \times n}$ is additive consistent and $\boldsymbol{w}=\left(w_{1}, w_{2}, \cdots, w_{n}\right)^{T}$ is an underlying priority vector of TLPR \boldsymbol{P}. Then, the vector \boldsymbol{w} can be determined as follows:

$$
\begin{equation*}
w_{i}=\Delta\left(\sum_{j=1}^{n} \Delta^{-1}\left(p_{i j}\right) / \sum_{i=1}^{n} \sum_{j=1}^{n} \Delta^{-1}\left(p_{i j}\right)\right) \quad(i=1,2, \cdots, n) . \tag{8}
\end{equation*}
$$

2.3. Analysis net process

Analytic net process (ANP) [30] is a generalization of the famous AHP [29]. AHP is a hierarchical structure with independent criteria, whereas ANP is a network structure that can deal with interactions among criteria. Frameworks of AHP and ANP are depicted in Fig. 1.

As shown in Fig. 1, a network structure of ANP includes control level and network level. Control level consists of goal and independent criteria whose weights can be obtained by AHP. There is at least one goal in control level. In network level, a network spreads out in all directions and involves arrows between clusters or loops within the same cluster. These arrows and loops indicate the relations among clusters or within cluster. For example, a single arrow from cluster C_{1} to cluster C_{2} means that cluster C_{1} impacts on cluster C_{2}. A two-way arrow between cluster C_{2} and C_{3} indicates that cluster C_{2} impacts on C_{3}, meanwhile, cluster C_{3} also impacts on C_{2}. A loop in cluster C_{2} implies that there are interactions among elements within cluster C_{2}.

In this paper, we only consider that there is one goal and criteria are omitted in control level. Suppose there are n clusters, denoted by $C_{1}, C_{2}, \cdots, C_{n}$, and each cluster C_{i} has n_{i} elements, $e_{i 1}, e_{i 2}, \cdots, e_{i n_{i}}(i=1,2, \cdots, n)$. To determine weights of all elements in clusters $C_{i}(i=1,2, \cdots, n)$ by ANP, the following procedure needs to be performed:

(i) Determine the weighting matrix \boldsymbol{A}

Considering interactions and feedback among clusters or within clusters, judgment matrices $\boldsymbol{A}^{i}=\left(a_{k j}^{i}\right)_{n \times n}(i=1,2, \cdots$, n) are constructed by pair-wise comparisons with the $1-9$ scale, where $a_{k j}^{i}$ indicates that an influence degree of cluster C_{k} on cluster C_{i} is $a_{k j}^{i}$ times as important as that of cluster C_{j} on cluster C_{i}. If \boldsymbol{A}^{i} is completely consistent or of acceptable consistency, the priority vector of matrix \boldsymbol{A}^{i}, denoted by $\boldsymbol{w}_{i}=\left(w_{i 1}, w_{i 2}, \cdots w_{i n}\right)^{T}$, can be computed by the eigen-value method. Otherwise, \boldsymbol{A}^{i} should be modified. If cluster C_{i} is independent of C_{j}, then $w_{i j}=0$. Thus, the weighting matrix $\boldsymbol{A}=\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{n}\right)$ can be determined and simply denoted by $\boldsymbol{A}=\left(a_{i j}\right)_{n \times n}$.
(ii) Construct the supermatrix \boldsymbol{W}

The supermatrix \boldsymbol{W} is composed of many submatrices $\boldsymbol{W}_{i j}(i, j=1,2, \cdots, n)$ as follows:

$$
\boldsymbol{W}=\begin{gather*}
C_{1} \tag{9}\\
C_{1} e_{11}, \ldots e_{1 n_{1}} \\
C_{2} e_{21}, \ldots e_{1 n_{2}} \\
\ldots \\
C_{n} e_{n 1}, \ldots e_{n n_{n}}
\end{gather*}\left(\begin{array}{cccc}
C_{2} & \ldots & C_{n} \\
\boldsymbol{W}_{11} & \boldsymbol{W}_{12} & \ldots & \boldsymbol{W}_{11}, \ldots e_{n n_{n}} \\
\boldsymbol{W}_{21} & \boldsymbol{W}_{22} & \ldots & \boldsymbol{W}_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
\boldsymbol{W}_{n 1} & \boldsymbol{W}_{n 2} & \ldots & \boldsymbol{W}_{n n}
\end{array}\right)
$$

In submatrix $\boldsymbol{W}_{i j}$, the k th column vector is a local priority vector representing influence degrees of all elements in cluster C_{i} on the element $e_{j k}$ in cluster C_{j}. Therefore, the sum of elements in k th column of $\boldsymbol{W}_{i j}$ should be equal to 1 . This property also holds for other columns of $\boldsymbol{W}_{i j}$. The process of determining matrix $\boldsymbol{W}_{i j}$ is similar to that of determining matrix \boldsymbol{A}. Additionally, if the i th cluster has no influence on the j th cluster, then $\boldsymbol{W}_{i j}=\boldsymbol{0}$. For instance, it can be seen from Fig. 1 that $\boldsymbol{W}_{21}=\mathbf{0}$, but $\boldsymbol{W}_{12} \neq \mathbf{0}$.
(iii) Compute the weighted supermatrix $\overline{\boldsymbol{W}}$

By multiplying supermatrix \boldsymbol{W} with matrix \boldsymbol{A}, the weighted supermatrix can be derived as

$$
\begin{equation*}
\overline{\boldsymbol{W}}=\left(\overline{\boldsymbol{W}}_{i j}\right)_{n \times n}=A \times \boldsymbol{W} \tag{10}
\end{equation*}
$$

where $\overline{\boldsymbol{W}}_{i j}=a_{i j} \times \boldsymbol{W}_{i j}(i, j=1,2, \cdots, n)$.
(iv) Determine the limit matrix \boldsymbol{W}^{∞}

The limit matrix can be calculated as $\boldsymbol{W}^{\infty}=\lim _{k \rightarrow \infty} \overline{\boldsymbol{W}}^{k}$. In this limit matrix, all components in each row are the same.
(v) Determine overall weights of elements with respect to the goal

Since each cluster C_{i} has n_{i} elements, there are $\sum_{i=1}^{n} n_{i}$ elements in the ANP model. The limit matrix \boldsymbol{W}^{∞} is a $t \times t$ matrix, where $t=\sum_{i=1}^{n} n_{i}$. The overall weight vector of elements with respect to the goal, denoted by $\boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{t}\right)^{\mathrm{T}}$, can be determined from the limit matrix \boldsymbol{W}^{∞}, where ω_{k} is the element of the k th row of matrix \boldsymbol{W}^{∞}.

3. A novel hybrid method for solving MCDM problems with two-level criteria

In this section, a type of MCDM problems with two-level criteria is described and a new hybrid method is proposed to solve such problems.

3.1. Description of problems

Let $A=\left\{A_{1}, A_{2}, \cdots, A_{m}\right\}$ be the set of alternatives, $U=\left\{U_{1}, U_{2}, \cdots, U_{n}\right\}$ be the set of the first level criteria and $T=\left\{u_{1}\right.$, $\left.u_{2}, \cdots, u_{t}\right\}$ be the set of the sub-criteria. Assume each criteria U_{j} has n_{j} sub-criteria, denoted by $u_{j 1}, u_{j 2}, \cdots, u_{j n_{j}}$, then $t=\sum_{j=1}^{n} n_{j}$. The weight vector of sub-criteria, $\boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{t}\right)^{T}$, is unknown and needs to be determined. Suppose that the rating of alternative A_{i} with respect to sub-criterion u_{j} can be represented as an uncertain linguistic variable $\tilde{x}_{i j}=\left[s_{i j}, t_{i j}\right]$, where $s_{i j}$ and $t_{i j}$ come from the predefined linguistic term set $S=\left\{s_{0}, s_{1}, s_{2}, \cdots, s_{g}\right\}$. Thus, a linguistic decision matrix $\tilde{\boldsymbol{X}}=\left(\tilde{x}_{i j}\right)_{m \times n}$ is elicited and then converted into an interval 2-tuple linguistic matrix $\tilde{\boldsymbol{R}}=\left(\tilde{r}_{i j}\right)_{m \times n}$, where $\tilde{r}_{i j}=\left(\left[s_{i j}, 0\right],\left[t_{i j}, 0\right]\right)$.

This paper focuses on how to select the best alternative (s) considering interactions among criteria. The proposed hybrid method, integrating TL-ANP and IT-ELECTRE II, concentrates on solving two key issues: (1) Determine sub-criteria weights; (2) Rank alternatives.

3.2. Determine sub-criteria weights using TL-ANP

In classical ANP, elements in judgment matrices are characterized by $1-9$ scale. However, due to the inherent complexity and uncertainty in the real-world decision problems, it is difficult for DMs to express their preferences by numerical values with full confidence. In this case, linguistic variables are more appropriate to capture uncertainties occurring in pair-wise comparison judgments. This paper utilizes linguistic variables to represent ratings on pair-wise comparisons of criteria and sub-criteria and proposes TL-ANP to determine sub-criteria weights.

The criterion U_{j} and sub-criterion $u_{j k}$ are respectively corresponding to the cluster C_{j} and its element $e_{j k}$ in ANP stated in Section 2.3. By using linguistic variables instead of numerical values in1-9 scale, the classical ANP is extended to propose TL-ANP described as follows:
(1) Construct the network structure based on interactions among criteria and sub-criteria
(2) Determine the weighting matrix \boldsymbol{A}.

To determine the weighting matrix, 2-tuple linguistic judgment matrices, $\boldsymbol{A}^{i}=\left(a_{k j}^{i}\right)_{n \times n}(i=1,2, \cdots, n)$, are first built based on Remark 1. (See Section 4.3 in detail).
Let $\boldsymbol{w}_{i}=\left(w_{i 1}, w_{i 2}, \cdots w_{i n}\right)^{T}$ be the priority vector of matrices $\boldsymbol{A}^{i}(i=1,2, \cdots, n)$. By Eq. (9), components of \boldsymbol{w}_{i} can be obtained as

$$
\begin{equation*}
w_{i k}=\Delta\left(\sum_{j=1}^{n} \Delta^{-1}\left(a_{k j}^{i}\right) / \sum_{k=1}^{n} \sum_{j=1}^{n} \Delta^{-1}\left(a_{k j}^{i}\right)\right) \quad(i=1,2, \cdots, n ; k=1,2, \cdots, t) \tag{11}
\end{equation*}
$$

Thus, the weighting matrix $\boldsymbol{A}=\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{n}\right)$ can be determined.
(3) Determine the supermatrix \boldsymbol{W}.

By comparing the influences of the sub-criteria in criterion U_{i} on sub-criteria in criterion U_{j}, submatrix $\boldsymbol{W}_{i j}$ can be obtained in a similar way as the weighting matrix \boldsymbol{A} is obtained. All matrices $\boldsymbol{W}_{i j}(i, j=1,2, \cdots, n)$ compose of the supermatrix W, i.e.,

$$
\boldsymbol{W}=\begin{gather*}
U_{1} \tag{12}\\
U_{1} u_{11}, \ldots u_{1 n_{1}} \\
u_{2} u_{11}, \ldots u_{1 n_{1}} \\
u_{21}, \ldots u_{1 n_{2}} \\
\ldots \\
u_{21}, \ldots u_{1 n_{2}}
\end{gathered} \quad \ldots \quad \begin{gathered}
u_{n 1}, \ldots u_{n n_{n}} \\
U_{n} u_{n 1}, \ldots u_{n n_{n}}
\end{gather*}\left(\begin{array}{cccc}
\boldsymbol{W}_{11} & \boldsymbol{W}_{12} & \ldots & \boldsymbol{W}_{1 n} \\
\boldsymbol{W}_{21} & \boldsymbol{W}_{22} & \ldots & \boldsymbol{W}_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
\boldsymbol{W}_{n 1} & \boldsymbol{W}_{n 2} & \ldots & \boldsymbol{W}_{n n}
\end{array}\right)
$$

(4) Calculate the weighted supermatrix $\overline{\boldsymbol{W}}$

Motivated by Eq. (10), we calculate the weighted supermatrix as

$$
\begin{equation*}
\bar{W}=\Delta\left(\Delta^{-1}(A) \times \Delta^{-1}(W)\right) \tag{13}
\end{equation*}
$$

where $\boldsymbol{\Delta}^{-1}(\boldsymbol{A})$ and $\boldsymbol{\Delta}^{-1}(\boldsymbol{W})$ are respectively the 2-tuple linguistic transformed matrices of matrices \boldsymbol{A} and \boldsymbol{W}.
(5) Compute the limit matrix \boldsymbol{W}^{∞} as follows:

$$
\begin{equation*}
\boldsymbol{W}^{\infty}=\boldsymbol{\Delta}\left(\lim _{k \rightarrow \infty}\left(\boldsymbol{\Delta}^{-1}(\overline{\boldsymbol{W}})\right)^{k}\right) . \tag{14}
\end{equation*}
$$

It is worth mentioning that components of each row in matrix \boldsymbol{W}^{∞} are the same.
(6) Identify the weight vector of sub-criteria with respect to overall goal.

From matrix \boldsymbol{W}^{∞}, the weight vector of sub-criteria $\boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{t}\right)^{\mathrm{T}}$ can be determined, where $\omega_{k}(k=1,2, \cdots$, $t)$ is a component of k th row of matrix \boldsymbol{W}^{∞}.

3.3. Rank alternatives by IT-ELECTE II approach

In this subsection, ELECTE II is generalized to suit interval 2-tuple linguistic environment and thereby an IT-ELECTE II approach is developed to rank alternatives. This approach is completed by following three phases.

(I) First phase: likelihood-based preference degree

Definition 10. Let $\tilde{r}_{i j}=\left(\left[s_{i j}, 0\right],\left[t_{i j}, 0\right]\right)$ and $\tilde{r}_{l j}=\left(\left[s_{l j}, 0\right],\left[t_{l j}, 0\right]\right)$ be two ratings of alternatives A_{i} and A_{l} on sub-criterion u_{j}, the possible degree of $\tilde{r}_{i j}$ preferred to $\tilde{r}_{l j}\left(\tilde{r}_{i j} \geq \tilde{r}_{l j}\right)$ is defined as

$$
\begin{equation*}
\phi_{i l}^{j}=\phi\left(\tilde{r}_{i j} \geq \tilde{r}_{l j}\right)=\frac{1}{2}\left(1+\frac{\left(\Delta^{-1}\left(t_{i j}, 0\right)-\Delta^{-1}\left(t_{l j}, 0\right)\right)+\left(\Delta^{-1}\left(s_{i j}, 0\right)-\Delta^{-1}\left(s_{l j}, 0\right)\right)}{\left|\Delta^{-1}\left(t_{i j}, 0\right)-\Delta^{-1}\left(t_{l j}, 0\right)\right|+\left|\Delta^{-1}\left(s_{i j}, 0\right)-\Delta^{-1}\left(s_{l j}, 0\right)\right|+l_{\tilde{r}_{i j} \tilde{r}_{l j}}}\right) . \tag{15}
\end{equation*}
$$

Similar to Property 1, the possible degree $\phi\left(\tilde{r}_{i j} \geq \tilde{r}_{l j}\right)$ has following features.
Property 2. The possible degree $\phi\left(\tilde{r}_{i j} \geq \tilde{r}_{l j}\right)$ satisfies:
(i) $0 \leq \phi\left(\tilde{r}_{i j} \geq \tilde{r}_{l j}\right) \leq 1$;
(ii) $\phi\left(\tilde{r}_{i j} \geq \tilde{r}_{l j}\right)+\phi\left(\tilde{r}_{l j} \geq \tilde{r}_{i j}\right)=1$;
(iii) $\phi\left(\tilde{r}_{i j} \geq \tilde{r}_{l j}\right)=1$ if $\left(s_{i j}, 0\right)>\left(t_{l j}, 0\right)$;
(iv) $\phi\left(\tilde{r}_{i j} \geq \tilde{r}_{l j}\right)=\phi\left(\tilde{r}_{l j} \geq \tilde{r}_{i j}\right)=0.5$ if $\phi\left(\tilde{r}_{i j} \geq \tilde{r}_{l j}\right)=\phi\left(\tilde{r}_{l j} \geq \tilde{r}_{i j}\right)$.

Matrix $\boldsymbol{\Phi}^{j}=\left(\phi_{i l}^{j}\right)_{m \times m}(j=1,2, \cdots, t)$ are called possible degree matrices. According to Property 2 , matrices $\boldsymbol{\Phi}^{j}(j=1$, $2, \cdots, t$) are fuzzy complementary preference relations [31]. Based on method [42], dominant indices of alternatives are defined below.

Definition 11. A dominant index of an alternative A_{i} on sub-criterion u_{j} is defined as

$$
\begin{equation*}
D I_{i}^{j}=\frac{1}{m(m-1)}\left(\sum_{l=1}^{m} \phi_{i l}^{j}+\frac{m}{2}-1\right) \tag{16}
\end{equation*}
$$

For sub-criterion u_{j}, if $D I_{i}^{j}>D I_{l}^{j}$, then alternative A_{i} is preferred to A_{l}, denoted by $A_{i} \succ A_{l}$; If $D I_{i}^{j}=D I_{l}^{j}$, then alternatives A_{i} and A_{l} are indifferent, denoted by $A_{i} \sim A_{l}$; If $D I_{i}^{j}<D I_{l}^{j}$, then alternative A_{l} is preferred to A_{i}, denoted by $A_{l} \succ A_{i}$.

According to Eq. (16), Theorem 2 can be easily proved.
Theorem 2. The dominant index $D I_{i}^{j}$ satisfies following properties:
(1) $0 \leq D I_{i}^{j} \leq 1(i=1,2, \cdots, m ; j=1,2, \cdots, t)$;
(2) $\sum_{i=1}^{m} D I_{i}^{j}=1(j=1,2, \cdots, t)$.

Definition 12. A likelihood-based preference degree of $A_{i} \succ A_{l}$ on sub-criterion u_{j} is defined as

$$
L_{i l}^{j}=L^{j}\left(A_{i} \succ A_{l}\right)= \begin{cases}1, & \text { if } D I_{i}^{j}-D I_{l}^{j} \geq q \tag{17}\\ \left(D I_{i}^{j}-D I_{l}^{j}\right) / q, & \text { if } 0<D I_{i}^{j}-D I_{l}^{j}<q \\ 0, & \text { if } D I_{i}^{j}-D I_{l}^{j} \leq 0\end{cases}
$$

where $q>0$ is a threshold value of strict preference and may be determined by DMs.
The likelihood-based preference degree $L^{j}\left(A_{i} \succ A_{l}\right)$ indicates the degree to which alternative A_{i} is preferred to A_{l} with respect to sub-criterion u_{j}. If $L^{j}\left(A_{i} \succ A_{l}\right)=1$, then alternative A_{i} is absolutely preferred to A_{l}; If $0<L^{j}\left(A_{i} \succ A_{l}\right)<1$, then alternative A_{i} is weakly preferred to A_{l}; If $L^{j}\left(A_{i} \succ A_{l}\right)=0$, then alternative A_{i} is not preferred to A_{l}. Matrix $\boldsymbol{L}^{j}=\left(L_{i l}^{j}\right)_{m \times m}$ is called a likelihood-based preference degree matrix. Based on the likelihood-based preference degree, concordance and discordance indices are defined in the second phase to respectively describe one alternative is preferred or inferior to the other.

(II) Second phase: concordance and discordance indices

Employing the likelihood-based preference degree, concordance sets, including the strong concordance set $J_{i l}^{+s}$ and the weak concordance set $J_{i l}^{+w}$, are respectively defined as follows:

$$
\begin{align*}
& J_{i l}^{+s}=\left\{j \mid L^{j}\left(A_{i} \succ A_{l}\right)=1\right\}, \tag{18}\\
& J_{i l}^{+w}=\left\{j \mid 0<L^{j}\left(A_{i} \succ A_{l}\right)<1\right\}
\end{align*}
$$

Analogously, discordance sets are composed of the subscripts of those sub-criteria where A_{i} is inferior to A_{l}. Discordance sets also can be divided into two categories: a strong discordance set $J_{i l}^{-s}$ and a weak discordance set $J_{i l}^{-w}$ which are respectively defined as

$$
\begin{align*}
& J_{i l}^{-s}=\left\{j \mid L^{j}\left(A_{l} \succ A_{i}\right)=1\right\}, \tag{20}\\
& J_{i l}^{-w}=\left\{j \mid 0<L^{j}\left(A_{l} \succ A_{i}\right)<1\right\} . \tag{21}
\end{align*}
$$

In addition, it can be seen from Eq. (17) that $L^{j}\left(A_{i} \succ A_{l}\right)=L^{j}\left(A_{l} \succ A_{i}\right)=0$ if $D I_{i}^{j}=D I_{l}^{j}$. In this case, alternatives A_{i} and A_{l} are considered to be indifferent on sub-criterion u_{j}. Thereby, an indifferent set is defined as

$$
\begin{equation*}
J_{i l}^{=}=\left\{j \mid L^{j}\left(A_{i} \succ A_{l}\right)=0 \text { and } D I_{i}^{j}=D I_{l}^{j}\right\} . \tag{22}
\end{equation*}
$$

Based on concordance, discordance and indifferent sets, a concordance index is defined as the ratio of the sum of the weighted likelihood-based preference degree in concordance sets and indifference set to the sum of all weighted likelihood-based preference degrees, i.e.,

$$
\begin{equation*}
C(i, l)=\frac{\sum_{j \in J_{i}^{+s} \cup_{i l}^{+w} \cup J_{\overline{i l}}}\left(\Delta^{-1}\left(\omega_{j}\right) L^{j}\left(A_{i} \succ A_{l}\right)\right)}{\sum_{j=1}^{t}\left(\left(\Delta^{-1}\left(\omega_{j}\right)\left(L^{j}\left(A_{i} \succ A_{l}\right)+L^{j}\left(A_{l} \succ A_{i}\right)\right)\right.\right.}, \tag{23}
\end{equation*}
$$

where $\boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)^{\mathrm{T}}$ is the 2-tuple weight vector of sub-criteria obtained in Section 3.2.
The concordance index $C(i, l)$ shows the comprehensive degree to which alternative A_{i} is preferred to A_{l}. The larger the $C(i, l)$, the bigger the degree of alternative A_{i} is preferred to A_{l}.
Remark 2. In methods [3,4,39,43], the concordance index is defined as

$$
\begin{equation*}
C^{G}(i, l)=\sum_{j \in \in_{i l}^{+S} \cup_{i l}^{+w} U_{J_{\bar{i}}}} \omega^{\prime}{ }_{j} / \sum_{j=1}^{n} \omega^{\prime}{ }_{j}, \tag{24}
\end{equation*}
$$

where $\omega^{\prime}=\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}, \cdots, \omega_{n}^{\prime}\right)^{\mathrm{T}}$ is a numerical weight vector of criteria.

Obviously, the concordance index $C^{G}(i, l)$ did not consider likelihood-based preference degree $L^{j}\left(A_{i} \succ A_{l}\right)$, whereas the proposed concordance index $C(i, l)$ does, which may improve the distinguishing power of $C(i, l)$ and increase the sensitivity to the ratings of alternatives on criteria.

Example 6. In a MCDM problem, let $\left\{A_{1}, A_{2}, A_{3}\right\}$ be an alternative set and $\left\{U_{1}, U_{2}, U_{3}, U_{4}\right\}$ be a set of criteria whose weight vector is $\omega^{\prime}=(0.4,0.3,0.1,0.2)^{\mathrm{T}}$. The linguistic term set S comes from Example 1 . Suppose the decision matrix is provided as

Take $C(1,2)$ as an example to illustrate how to compute the concordance index $C(i, l)$.
Similar to Example 4, the possible degree matrix on criterion U_{1} is obtained as $\boldsymbol{\Phi}^{1}=\left(\begin{array}{ccc}0.5 & 1 & 1 \\ 0 & 0.5 & 0.5\end{array}\right)$. By Eq. (16), the dominant index vector on criterion U_{1} is derived as $\boldsymbol{D} \boldsymbol{I}^{1}=\left(D I_{1}^{1}, D I_{2}^{1}, D I_{3}^{1}\right)=(0.50,0.25,0.25)$. Let $q=0.1$, then the likelihood-based preference degree matrix on criterion U_{1} is computed as $\boldsymbol{L}^{1}=\left(L_{i l}^{1}\right)_{3 \times 3}=\left(\begin{array}{rll}0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. Likewise, dominant index vectors on other criteria can also be derived, i.e.,

$$
\boldsymbol{L}^{2}=\left(\begin{array}{ccc}
0 & 0.555 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad \boldsymbol{L}^{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \quad \boldsymbol{L}^{4}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0.8333 & 0 & 0 \\
0.8333 & 0 & 0
\end{array}\right)
$$

Further, since $L_{12}^{1}=1$ and $L_{12}^{2}=0.555<1$, the strong concordance set $J_{12}^{+s}=\{1\}$ and the weak concordance set $J_{12}^{+w}=\{2\}$ can be respectively acquired by Eqs. (18) and (19). Analogously, one gets the strong discordance set $J_{12}^{-s}=\{3\}$, the weak discordance set $J_{12}^{-w}=\{4\}$ and the indifferent set $J_{12}^{=}=\Phi$, where Φ is an empty set. Thereby, the likelihood-based preference degree $C(1,2)$ can be obtained by Eq. (23) as $C(1,2)=\frac{0.4+0.3 \times 0.555}{0.4+0.3 \times 0.555+0.1 \times 1+0.2 \times 0.8333}=0.6799$.

To verify advantages of the proposed concordance index Eq. (23) compared with that described in Eq. (24), some meaningful analyses are conducted as follows.

Observing matrix $\tilde{\boldsymbol{R}}$, one has $\tilde{r}_{11}=\tilde{r}_{23}, \tilde{r}_{12}=\tilde{r}_{24}, \tilde{r}_{13}=\tilde{r}_{21}$ and $\tilde{r}_{14}=\tilde{r}_{22}$. On the other hand, it is noticed that the sum of ω_{1}^{\prime} and ω_{2}^{\prime} (i.e., 0.7) is greater than that of ω_{3}^{\prime} and ω_{4}^{\prime} (i.e., 0.3). Therefore, alternative A_{1} should be preferred to A_{2} (i.e., $A_{1} \succ A_{2}$). For alternatives A_{2} and A_{3}, their ratings are all the same except that the rating of A_{2} on criterion U_{2} is greater than that of A_{3}. Hence, it is concluded that $A_{2} \succ A_{3}$. Thus, the relation $A_{1} \succ A_{2} \succ A_{3}$ should hold intuitively. Thereby, it is deduced that the concordance index of alternative A_{1} with respect to A_{2} should be less than that of alternative A_{1} with respect to A_{3}.

Indeed, by the proposed concordance index $C(i, l)$ (i.e., Eq. (23)), one gets $C(1,2)=0.6799<C(1,3)=0.7241$. This result is accordance with the above analysis.

On the other hand, using Eq. (24) yields that $C^{G}(1,2)=C^{G}(1,3)=0.7$ which is not consistent with the above analysis. In other words, $C^{G}(i, l)$ in Eq. (24) has no ability to distinguish $C^{G}(1,2)$ and $C^{G}(1,3)$. Therefore, the concordance index $C(i$, $l)$ has stronger distinguishing power than index $C^{G}(i, l)$. Moreover, when \tilde{r}_{14} and \tilde{r}_{22} simultaneously increase to $\left[\left(s_{4},-0.02\right)\right.$, $\left(s_{5},-0.025\right)$] while other elements are fixed, it obtains $C(1,2)=0.7253<C(1,3)=0.7924$. However, indices $C^{G}(1,2)=C^{G}(1$, $3)=0.7$ remain unchanged. This observation implies that index $C(i, l)$ is sensitive to variations of criterion ratings, whereas index $C^{G}(i, l)$ is not sensitive.

Concordance index $C(i, l)$ shows the comprehensive degree to which one alternative is preferred to the other. Conversely, to describe the comprehensive degree to which one alternative is inferior to the other, the discordance index is defined as

$$
\begin{equation*}
D(i, l)=\max _{j \in G_{i l}^{-s} \cup \cup_{i l}^{-w}}\left\{d_{1}\left(\tilde{y}_{i j}, \tilde{y}_{l j}\right)\right\} / \max _{j \in K}\left\{d_{1}\left(\tilde{y}_{i j}, \tilde{y}_{l j}\right)\right\}, \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{y}_{i j}=\Delta\left(\Delta^{-1}\left(w_{j}\right) \Delta^{-1}\left(\tilde{r}_{i j}\right)\right)=\left[\Delta \left(\left(\Delta^{-1}\left(w_{j}\right) \Delta^{-1}\left(s_{i j}, 0\right)\right), \Delta\left(\left(\Delta^{-1}\left(w_{j}\right) \Delta^{-1}\left(t_{i j}, 0\right)\right)\right]\right.\right. \tag{26}
\end{equation*}
$$

and $d_{1}\left(\tilde{y}_{i j}, \tilde{y}_{l j}\right)$ represents the Hamming distance between $\tilde{y}_{i j}$ and $\tilde{y}_{l j}$ (see Eq. (5)).
Matrices $\boldsymbol{C}=\left(c_{i l}\right)_{m \times m}$ and $\boldsymbol{D}=\left(d_{i l}\right)_{m \times m}$ are respectively called concordance matrix and discordance matrix, where $c_{i l}=C(i, l)$ and $d_{i l}=D(i, l)$.

According to concordance and discordance indices, alternatives are ranked in the third phase.

(III) Third phase: ranking alternatives

Using the concordance index, the net concordance index is defined as

$$
\begin{equation*}
N C_{i}=\sum_{l \neq i} C(i, l) / \sum_{l \neq i} C(l, i) \tag{27}
\end{equation*}
$$

Similarly, the net discordance index is defined as

$$
\begin{equation*}
N D_{i}=\sum_{l \neq i} D(i, l) / \sum_{l \neq i} D(l, i) \tag{28}
\end{equation*}
$$

It is clearly that the larger $N C_{i}$ and the smaller $N D_{i}$, the better the alternative A_{i}. Hence, comprehensive dominant values of alternatives can be defined as

$$
\begin{equation*}
C D_{i}=N C_{i} /\left(N C_{i}+N D_{i}\right) \tag{29}
\end{equation*}
$$

The greater comprehensive dominant value $C D_{i}$, the better the alternative A_{i}. Alternatives can be ranked based on descending orders of comprehensive dominant value $C D_{i}(i=1,2, \cdots, m)$.

3.4. Proposed algorithm for MCDM with two-level criteria

According to the aforementioned analyses, a new algorithm for MCDM with two-level criteria in interval 2-tuple environment is designed below.

Step 1. Identify the criteria set, sub-criteria set and alternative set.
Step 2. Construct the network structure based on relations among criteria.
Step 3. Determine the 2-tuple linguistic weight vector of sub-criteria by TL-ANP in Section 3.2.
Step 4. Establish the uncertain linguistic decision matrix $\tilde{\boldsymbol{X}}=\left(\tilde{x}_{i j}\right)_{m \times t}$ with $\tilde{x}_{i j}=\left[s_{i j}, t_{i j}\right]$ and convert it into an interval 2-tuple linguistic matrix $\tilde{\boldsymbol{R}}=\left(\tilde{r}_{i j}\right)_{m \times t}$, where $\tilde{r}_{i j}=\left[\left(s_{i j}, 0\right),\left(t_{i j}, 0\right)\right]$.
Step 5. Calculate the possible degree $\phi_{i l}^{j}(i, l=1,2, \cdots, m ; j=1,2, \cdots, t)$ using Eq. (15).
Step 6. Derive likelihood-based preference degrees $L_{i l}^{j}(i, l=1,2, \cdots, m ; j=1,2, \cdots, t)$ by Eqs. (16) and (17).
Step 7. Construct concordance, discordance and indifference sets according to Eqs. (18)-(22).
Step 8. Determine concordance and discordance indices via Eqs. (23), (25) and (26).
Step 9. Compute net concordance and discordance indices by Eqs. (27) and (28).
Step 10. Identify comprehensive dominant value of alternatives by Eq. (29).
Step 11. Rank alternatives according to their comprehensive dominant values.

4. An application to a real-life supplier selection case

In this section, a real case of Yutong Bus supplier selection with two-level criteria is examined to demonstrate the application of the proposed method.

4.1. Case description of Yutong Bus supplier selection

Yutong Bus Co., Ltd. (YBC for short), an auto manufacture company focusing on passenger car, was funded in 1963 and became the first listed company among the bus industry in China in 1997. The primary area of YBC is located in Yutong industrial Park in Zhengzhou. In 2014, bus sales in YBC reached 61,398 units and the turnover exceeded 25.7 billion yuan. With the increasing commercial competitions, YBC has to improve the quality and reduce the cost of products to enhance its core competitiveness. To gain this goal, it is very important to select an appropriate supplier for automotive upholstery. As a corporate consultant employed by YBC from 2013, the first author is responsible for the decision making and consultation on supply chain management. According to purchasing records of automotive upholstery from the purchasing department, the first author and his team screen suppliers and five suppliers remain for further evaluation, including Wuxi Huaguang Auto Parts Group Co.,Ltd $\left(A_{1}\right)$, Shanghai Edscha Machinery Co., Ltd (A_{2}), Anhui Qingsong Tools Co., Ltd (A_{3}), Shandong Sanling Automotive upholstery Co., Ltd (A_{4}) and Henan Kiekert Xingguang Co., Ltd (A_{5}). Next subsections show how the first author and his team utilize our proposed method to help YBC select a best supplier from these five suppliers. In addition, the discussion on validation of obtained results is performed.

4.2. Determination of criteria and sub-criteria and network relationships

Employing the general criteria stated in Introduction and consulting a DM committee consisting of five managers from different functional departments of YBC, including purchasing manager, quality manager, production manager and technical director, the first author and his team determine the evaluation criteria and their sub-criteria which are depicted in Table 2. By the multi-session brainstorming, network relationships among criteria are determined. Fig. 2 shows interdependences among criteria and the feedback within a criterion.

Table 2
Criteria and sub-criteria for supplier selection.

Criteria	Sub-criteria
Quality $\left(U_{1}\right)$	Quality performance $\left(u_{1}\right)$; Quality containment \& VDCS feed back $\left(u_{2}\right)$
Cost $\left(U_{2}\right)$	Product cost $\left(u_{3}\right)$; Logistics cost $\left(u_{4}\right)$
Technology $\left(U_{3}\right)$	R \& D ability $\left(u_{5}\right)$;Design and manufacture ability $\left(u_{6}\right)$; Information technology $\left(u_{7}\right)$
Agility $\left(U_{4}\right)$	Lead time $\left(u_{8}\right) ;$ Delivery time $\left(u_{9}\right)$
General management capability $\left(U_{5}\right)$	Management and strategy $\left(u_{10}\right)$; Financial status $\left(u_{11}\right)$; Reputation $\left(u_{12}\right)$

Fig. 2. Network relationship map of interactions among or within criteria.

Table 3
Linguistic terms corresponding to linguistic variables for pair-wise comparisons.

Linguistic variable	Linguistic terms	Linguistic variable	Linguistic terms
Extreme weak	s_{0}	Moderately strong	s_{5}
Very weak	s_{1}	Strong	s_{6}
Weak	s_{2}	Very strong	s_{7}
Moderately weak	s_{3}	Extremely strong	s_{8}
Equally strong	s_{4}		

Table 4
Elements in the first row of matrix \boldsymbol{A}^{1}.

U_{1}	U_{2}	U_{3}	U_{4}	U_{5}
U_{2}	s_{4}	s_{1}	s_{3}	s_{1}

Table 5
Matrix \boldsymbol{A}^{1}.

U_{1}	U_{2}	U_{3}	U_{4}	U_{5}	$\boldsymbol{w}_{\mathbf{1}}$
U_{2}	$\left(s_{4}, 0\right)$	$\left(s_{1}, 0\right)$	$\left(s_{3}, 0\right)$	$\left(s_{1}, 0\right)$	$\left(s_{1}, 0.0156\right)$
U_{3}	$\left(s_{7}, 0\right)$	$\left(s_{4}, 0\right)$	$\left(s_{6}, 0\right)$	$\left(s_{4}, 0\right)$	$\left(s_{3},-0.0469\right)$
U_{4}	$\left(s_{5}, 0\right)$	$\left(s_{2}, 0\right)$	$\left(s_{4}, 0\right)$	$\left(s_{2}, 0\right)$	$\left(s_{2},-0.0469\right)$
U_{5}	$\left(s_{7}, 0\right)$	$\left(s_{4}, 0\right)$	$\left(s_{6}, 0\right)$	$\left(s_{4}, 0\right)$	$\left(s_{3},-0.0469\right)$

4.3. Determine weights of sub-criteria

(1) Determine the weighting matrix

For determining the weighting matrix, it is necessary to construct 2-tuple linguistic judgment matrices $\boldsymbol{A}^{j}=\left(a_{k i}^{j}\right)_{5 \times 5}(j=1,2, \cdots, 5)$. As a preparation, the first author provides a linguistic term set as shown in Table 3 to help DMs compare criteria and sub-criteria. In what follows, take matrix \boldsymbol{A}^{1} as an example to illustrate the construction of matrices $\boldsymbol{A}^{j}(j=1,2,3,4,5)$.

From Remark 1, the first author only needs to obtain the elements in the first row of \boldsymbol{A}^{1} by consulting DM committee. For instance, to obtain a_{12}^{1}, the first author asks DM committee such a question: "Compared with the influence of technology $\left(U_{3}\right)$ on quality $\left(U_{1}\right)$, how much is the influence degree of cost $\left(U_{2}\right)$ on quality $\left(U_{1}\right)$?". DM committee answers "very weak" according to the given linguistic term set. Thus, element $a_{12}^{1}=s_{1}$ is identified. Likewise, other elements in the first row of \boldsymbol{A}^{1} can be obtained and represented in Table 4. Converting elements in Table 4 into 2-tuples and then employing Eq. (7), rest elements of \boldsymbol{A}^{1} can be yielded in a similar way to Example 5 . Thus, a 2 -tuple linguistic matrix \boldsymbol{A}^{1} is constructed and listed in Table 5. Finally, the priority vector \boldsymbol{w}_{1} of matrix \boldsymbol{A}^{1} is computed by Eq. (11) and shown in the last column in Table 5.

Similarly, other matrices \boldsymbol{A}^{j} and their corresponding priority vectors $\boldsymbol{w}_{j}(j=2,3,4,5)$ can be derived. These priority vectors \boldsymbol{w}_{j} compose of the weighting matrix \boldsymbol{A}. Please see Table 6.

Table 6
Weighting matrix \boldsymbol{A}.

	U_{1}	U_{2}	U_{3}	U_{4}	U_{5}
U_{1}	$\left(s_{0}, 0\right)$	$\left(s_{4},-0.0278\right)$	$\left(s_{0}, 0\right)$	$\left(s_{0}, 0\right)$	$\left(s_{2},-0.04\right)$
U_{2}	$\left(s_{1}, 0.0156\right)$	$\left(s_{0}, 0\right)$	$\left(s_{0}, 0\right)$	$\left(s_{0}, 0\right)$	$\left(s_{1},-0.015\right)$
U_{3}	$\left(s_{3},-0.0469\right)$	$\left(s_{2}, 0.0556\right)$	$\left(s_{0}, 0\right)$	$\left(s_{5},-0.0625\right)$	$\left(s_{2}, 0.06\right)$
U_{4}	$\left(s_{2},-0.0469\right)$	$\left(s_{0}, 0\right)$	$\left(s_{0}, 0\right)$	$\left(s_{0}, 0\right)$	$\left(s_{2}, 0.01\right)$
U_{5}	$\left(s_{3},-0.0469\right)$	$\left(s_{2},-0.0278\right)$	$\left(s_{8}, 0\right)$	$\left(s_{5},-0.0625\right)$	$\left(s_{1},-0.015\right)$

Table 7
Supermatrix.

	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}	u_{9}	u_{10}	u_{11}	e_{12}
u_{1}	$\left(s_{0}, 0\right)$	$\left(s_{0}, 0\right)$	$\left(s_{6},-0.0625\right)$	$\left(s_{5},-0.0625\right)$	$\left(s_{0}, 0\right)$	$\left(s_{5},-0.0625\right)$	$\left(s_{5}, 0\right)$	$\left(s_{4}, 0\right)$				
u_{2}	$\left(s_{0}, 0\right)$	$\left(s_{0}, 0\right)$	$\left(s_{3},-0.0625\right)$	$\left(s_{4},-0.0625\right)$	$\left(s_{0}, 0\right)$	$\left(s_{4},-0.0625\right)$	$\left(s_{3}, 0\right)$	$\left(s_{4}, 0\right)$				
u_{3}	$\left(s_{6}, 0\right)$	$\left(s_{4}, 0\right)$	$\left(s_{0}, 0\right)$	$\left(s_{4}, 0\right)$	$\left(s_{6},-0.0625\right)$	$\left(s_{6},-0.0625\right)$						
u_{4}	$\left(s_{2}, 0\right)$	$\left(s_{4}, 0\right)$	$\left(s_{0}, 0\right)$	$\left(s_{4}, 0\right)$	$\left(s_{3},-0.0625\right)$	$\left(s_{3},-0.0625\right)$						
u_{5}	$\left(s_{4},-0.0278\right)$	$\left(s_{2},-0.0556\right)$	$\left(s_{2}, 0.0556\right)$	$\left(s_{2}, 0\right)$	$\left(s_{0}, 0\right)$	$\left(s_{0}, 0\right)$	$\left(s_{0}, 0\right)$	$\left(s_{1}, 0.0139\right)$	$\left(s_{2},-0.0278\right)$	$\left(s_{4},-0.0278\right)$	$\left(s_{3}, 0.0139\right)$	$\left(s_{4},-0.0278\right)$
u_{6}	$\left(s_{2}, 0.0556\right)$	$\left(s_{3}, 0.0417\right)$	$\left(s_{4},-0.0278\right)$	$\left(s_{2}, 0\right)$	$\left(s_{0}, 0\right)$	$\left(s_{0}, 0\right)$	$\left(s_{0}, 0\right)$	$\left(s_{4},-0.0278\right)$	$\left(s_{2},-0.0278\right)$	$\left(s_{2}, 0.0556\right)$	$\left(s_{4},-0.0278\right)$	$\left(s_{2}, 0.0556\right)$
u_{7}	$\left(s_{2},-0.0278\right)$	$\left(s_{3}, 0.0139\right)$	$\left(s_{2},-0.0278\right)$	$\left(s_{4}, 0\right)$	$\left(s_{0}, 0\right)$	$\left(s_{0}, 0\right)$	$\left(s_{0}, 0\right)$	$\left(s_{3}, 0.0139\right)$	$\left(s_{4}, 0.0556\right)$	$\left(s_{2},-0.0278\right)$	$\left(s_{1}, 0.0139\right)$	$\left(s_{2},-0.0278\right)$
u_{8}	$\left(s_{4}, 0\right)$	$\left(s_{3},-0.0625\right)$	$\left(s_{0}, 0\right)$	$\left(s_{5}, 0\right)$	$\left(s_{5},-0.0625\right)$	$\left(s_{4}, 0\right)$						
u_{9}	$\left(s_{4}, 0\right)$	$\left(s_{6},-0.0625\right)$	$\left(s_{0}, 0\right)$	$\left(s_{3}, 0\right)$	$\left(s_{4},-0.0625\right)$	$\left(s_{4}, 0\right)$						
u_{10}	$\left(s_{2}, 0.0278\right)$	$\left(s_{4},-0.0278\right)$	$\left(s_{4},-0.0278\right)$	$\left(s_{2},-0.0278\right)$	$\left(s_{2}, 0.0278\right)$	$\left(s_{3},-0.0139\right)$	$\left(s_{3},-0.0139\right)$	$\left(s_{3},-0.0139\right)$	$\left(s_{3},-0.0139\right)$	$\left(s_{3},-0.0139\right)$	$\left(s_{3}, 0.0417\right)$	$\left(s_{4},-0.0556\right)$
u_{11}	$\left(s_{4}, 0.0278\right)$	$\left(s_{2},-0.0278\right)$	$\left(s_{2}, 0.0565\right)$	$\left(s_{2},-0.0278\right)$	$\left(s_{4}, 0.0278\right)$	$\left(s_{4},-0.0556\right)$	$\left(s_{4},-0.0556\right)$	$\left(s_{2}, 0.0278\right)$	$\left(s_{2}, 0.0278\right)$	$\left(s_{2}, 0.0278\right)$	$\left(s_{2}, 0\right)$	$\left(s_{3},-0.0139\right)$
u_{12}	($s_{2},-0.0556$)	$\left(s_{2}, 0.0556\right)$	$\left(s_{2},-0.0278\right)$	$\left(s_{4}, 0.0556\right)$	$\left(s_{2},-0.0556\right)$	$\left(s_{2},-0.0556\right)$	$\left(s_{2},-0.0556\right)$	$\left(s_{3},-0.0139\right)$	$\left(s_{3},-0.0139\right)$	$\left(s_{3},-0.0139\right)$	$\left(s_{3},-0.0417\right)$	$\left(s_{2},-0.0556\right)$

Table 8
Limit matrix.

	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}	u_{9}	u_{10}	u_{11}	e_{12}
u_{1}	$\left(s_{1},-0.0552\right)$											
u_{2}	$\left(s_{0}, 0.0484\right)$											
u_{3}	$\left(s_{0}, 0.0396\right)$											
u_{4}	$\left(s_{0}, 0.0234\right)$											
u_{5}	($s_{1},-0.0351$)	($s_{1},-0.0351$)	$\left(s_{1},-0.0351\right)$									
u_{6}	$\left(s_{1},-0.0281\right)$	($\left(s_{1},-0.0281\right)$	$\left(s_{1},-0.0281\right)$									
u_{7}	$\left(s_{1},-0.0480\right)$											
u_{8}	$\left(s_{1},-0.0525\right)$											
u_{9}	$\left(s_{0}, 0.0611\right)$											
u_{10}	$\left(s_{1}, 0.0218\right)$											
u_{11}	$\left(s_{1}, 0.0488\right)$											
u_{12}	$\left(s_{1},-0.0241\right)$											

(2) Determine the supermatrix

By pairwise comparisons on sub-criteria and performing the similar process for deriving matrix \boldsymbol{A}, the supermatrix Wcan be obtained by Eq. (12) and shown in Table 7 (see Appendix C).

(3) Compute the weighted supermatrix

As shown in Table 7, each block indicates a block matrix of the supermatrix and denoted by $\boldsymbol{W}_{i j}$. Thus, each component of the weighted supermatrix $\overline{\boldsymbol{W}}=\left(\overline{\boldsymbol{W}}_{i j}\right)_{5 \times 5}$ determined by Eq. (13) is also a block matrix, where $\overline{\boldsymbol{W}}_{i j}=\boldsymbol{\Delta}\left(\boldsymbol{\Delta}^{-1}\left(a_{i j}\right) \times\right.$ $\left.\boldsymbol{\Delta}^{-1}\left(\boldsymbol{W}_{i j}\right)\right)$. For example, from Tables 6 and 7 , one has $a_{12}=\left(s_{4},-0.0278\right)$ and $\boldsymbol{W}_{12}=\left(\begin{array}{ll}\left(s_{6},-0.0625\right) & \left(s_{5},-0.0625\right) \\ \left(s_{3},-0.0625\right) & \left(s_{4},-0.0625\right)\end{array}\right)$. By Eq. (2) and Definition 3, it yields $\Delta^{-1}\left(a_{12}\right)=0.4722$ and $\Delta^{-1}\left(\boldsymbol{W}_{12}\right)=\left(\begin{array}{ll}\Delta^{-1}\left(s_{6},-0.0625\right) & \Delta^{-1}\left(s_{5},-0.0625\right) \\ \Delta^{-1}\left(s_{3},-0.0625\right) & \Delta^{-1}\left(s_{4},-0.0625\right)\end{array}\right)=$ $\left(\begin{array}{ll}0.6875 & 0.5625 \\ 0.3125 & 0.4375\end{array}\right)$. Hence, it follows from Eq. (13) that $\overline{\boldsymbol{W}}_{12}=\boldsymbol{\Delta}\left(\boldsymbol{\Delta}^{-1}\left(a_{12}\right) \times \boldsymbol{\Delta}^{-1}\left(\boldsymbol{W}_{12}\right)\right)=\left(\begin{array}{ll}\Delta(0.3246) & \Delta(0.2656) \\ \Delta(0.1476) & \Delta(0.2066)\end{array}\right)$. In virtue of Eq. (1), one gets $\overline{\boldsymbol{W}}_{12}=\left(\begin{array}{cc}\left(s_{3},-0.0504\right) & \left(s_{2}, 0.0156\right) \\ \left(s_{1}, 0.0226\right) & \left(s_{2},-0.0434\right)\end{array}\right)$.
(4) Determine the limit matrix and sub-criteria weights

By Eq. (14), the convergence of $\left(\Delta^{-1}(\overline{\boldsymbol{W}})\right)^{k}$ becomes stable at $k=12$. Therefore, matrix $\left(\Delta^{-1}(\overline{\boldsymbol{W}})\right)^{12}$ can be considered as the limit matrix which is shown in Table 8 (see Appendix C). From Table 8, each sub-criterion weight, which is corresponding to each row of the limit matrix, is respectively obtained as $\omega_{1}=\left(s_{1},-0.0552\right), \omega_{2}=\left(s_{0}, 0.0484\right), \omega_{3}=\left(s_{0}\right.$, $0.0396), \omega_{4}=\left(s_{0}, 0.0234\right), \omega_{5}=\left(s_{1},-0.0351\right), \omega_{6}=\left(s_{1},-0.0281\right), \omega_{7}=\left(s_{1},-0.0480\right), \omega_{8}=\left(s_{1},-0.0525\right), \omega_{9}=\left(s_{0}\right.$, $0.0611), \omega_{10}=\left(s_{1}, 0.0218\right), \omega_{11}=\left(s_{1},-0.0488\right), \omega_{12}=\left(s_{1},-0.0241\right)$.

Table 9
Assessment ratings of suppliers with respect to each sub-criterion.

	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
u_{1}	$[M, M G]$	$[M G, G]$	$[P, M]$	$[M P, M G]$	$[M, M G]$
u_{2}	$[M G, M G]$	$[M, G]$	$[V P, M P]$	$[P, P]$	$[M G, G]$
u_{3}	$[V G, E G]$	$[G, G]$	$[P, M P]$	$[E P, V P]$	$[M G, M G]$
u_{4}	$[E P, P]$	$[V P, V P]$	$[G, V G]$	$[M G, V G]$	$[V P, P]$
u_{5}	$[G, E G]$	$[G, G]$	$[M, M G]$	$[M, M G]$	$[M G, V G]$
u_{6}	$[G, V G]$	$[V G, E G]$	$[V G, E G]$	$[G, G]$	$[M, M G]$
u_{7}	$[M G, V G]$	$[M G, V G]$	$[G, G]$	$[M, G]$	$[M G, G]$
u_{8}	$[G, E G]$	$[G, E G]$	$[V G, V G]$	$[P, M P]$	$[M, M]$
u_{9}	$[M, G]$	$[G, G]$	$[V G, E G]$	$[V G, V G]$	$[M G, V G]$
u_{10}	$[M G, G]$	$[V G, E G]$	$[G, G]$	$[M G, G]$	$[M P, M]$
u_{11}	$[M G, V G]$	$[G, E G]$	$[M P, M P]$	$[P, M]$	$[V P, M P]$
u_{12}	$[M, G]$	$[M G, G]$	$[M, M]$	$[G, E G]$	$[M G, V G]$

Table 10
Interval 2-tuple linguistic decision matrix.

	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
u_{1}	$\left[\left(b_{4}, 0\right),\left(b_{5}, 0\right)\right]$	$\left[\left(b_{5}, 0\right),\left(b_{6}, 0\right)\right]$	$\left[\left(b_{2}, 0\right),\left(b_{4}, 0\right)\right]$	$\left[\left(b_{3}, 0\right),\left(b_{5}, 0\right)\right]$	$\left[\left(b_{4}, 0\right),\left(b_{5}, 0\right)\right]$
u_{2}	$\left[\left(b_{5}, 0\right),\left(b_{5}, 0\right)\right]$	$\left[\left(b_{4}, 0\right),\left(b_{5}, 0\right)\right]$	$\left[\left(b_{1}, 0\right),\left(b_{3}, 0\right)\right]$	$\left[\left(b_{2}, 0\right),\left(b_{3}, 0\right)\right]$	$\left[\left(b_{5}, 0\right),\left(b_{6}, 0\right)\right]$
u_{3}	$\left[\left(b_{7}, 0\right),\left(b_{8}, 0\right)\right]$	$\left[\left(b_{6}, 0\right),\left(b_{6}, 0\right)\right]$	$\left[\left(b_{2}, 0\right),\left(b_{3}, 0\right)\right]$	$\left[\left(b_{0}, 0\right),\left(b_{1}, 0\right)\right]$	$\left[\left(b_{5}, 0\right),\left(b_{5}, 0\right)\right]$
u_{4}	$\left[\left(b_{0}, 0\right),\left(b_{2}, 0\right)\right]$	$\left[\left(b_{1}, 0\right),\left(b_{1}, 0\right)\right]$	$\left[\left(b_{6}, 0\right),\left(b_{7}, 0\right)\right]$	$\left[\left(b_{5}, 0\right),\left(b_{7}, 0\right)\right]$	$\left[\left(b_{1}, 0\right),\left(b_{2}, 0\right)\right]$
u_{5}	$\left[\left(b_{6}, 0\right),\left(b_{8}, 0\right)\right]$	$\left[\left(b_{6}, 0\right),\left(b_{8}, 0\right)\right]$	$\left[\left(b_{4}, 0\right),\left(b_{5}, 0\right)\right]$	$\left[\left(b_{4}, 0\right),\left(b_{5}, 0\right)\right]$	$\left[\left(b_{5}, 0\right),\left(b_{7}, 0\right)\right]$
u_{6}	$\left[\left(b_{6}, 0\right),\left(b_{7}, 0\right)\right]$	$\left[\left(b_{7}, 0\right),\left(b_{8}, 0\right)\right]$	$\left[\left(b_{7}, 0\right),\left(b_{8}, 0\right)\right]$	$\left[\left(b_{6}, 0\right),\left(b_{6}, 0\right)\right]$	$\left[\left(b_{4}, 0\right),\left(b_{5}, 0\right)\right]$
u_{7}	$\left[\left(b_{5}, 0\right),\left(b_{7}, 0\right)\right]$	$\left[\left(b_{5}, 0\right),\left(b_{7}, 0\right)\right]$	$\left[\left(b_{6}, 0\right),\left(b_{6}, 0\right)\right]$	$\left[\left(b_{4}, 0\right),\left(b_{6}, 0\right)\right]$	$\left[\left(b_{5}, 0\right),\left(b_{6}, 0\right)\right]$
u_{8}	$\left[\left(b_{6}, 0\right),\left(b_{8}, 0\right)\right]$	$\left[\left(b_{6}, 0\right),\left(b_{8}, 0\right)\right]$	$\left[\left(b_{2}, 0\right),\left(b_{3}, 0\right)\right]$	$\left[\left(b_{7}, 0\right),\left(b_{7}, 0\right)\right]$	$\left[\left(b_{4}, 0\right),\left(b_{4}, 0\right)\right]$
u_{9}	$\left[\left(b_{5}, 0\right),\left(b_{6}, 0\right)\right]$	$\left[\left(b_{6}, 0\right),\left(b_{6}, 0\right)\right]$	$\left[\left(b_{7}, 0\right),\left(b_{8}, 0\right)\right]$	$\left[\left(b_{7}, 0\right),\left(b_{7}, 0\right)\right]$	$\left[\left(b_{5}, 0\right),\left(b_{7}, 0\right)\right]$
u_{10}	$\left[\left(b_{6}, 0\right),\left(b_{7}, 0\right)\right]$	$\left[\left(b_{7}, 0\right),\left(b_{8}, 0\right)\right]$	$\left[\left(b_{6}, 0\right),\left(b_{6}, 0\right)\right]$	$\left[\left(b_{5}, 0\right),\left(b_{6}, 0\right)\right]$	$\left[\left(b_{3}, 0\right),\left(b_{4}, 0\right)\right]$
u_{11}	$\left[\left(b_{5}, 0\right),\left(b_{7}, 0\right)\right]$	$\left[\left(b_{6}, 0\right),\left(b_{8}, 0\right)\right]$	$\left[\left(b_{3}, 0\right),\left(b_{3}, 0\right)\right]$	$\left[\left(b_{2}, 0\right),\left(b_{4}, 0\right)\right]$	$\left[\left(b_{1}, 0\right),\left(b_{3}, 0\right)\right]$
u_{12}	$\left[\left(b_{6}, 0\right),\left(b_{7}, 0\right)\right]$	$\left[\left(b_{5}, 0\right),\left(b_{6}, 0\right)\right]$	$\left[\left(b_{4}, 0\right),\left(b_{4}, 0\right)\right]$	$\left[\left(b_{6}, 0\right),\left(b_{8}, 0\right)\right]$	$\left[\left(b_{5}, 0\right),\left(b_{7}, 0\right)\right]$

4.4. Evaluate candidate suppliers and select the best one

(1) Determine the decision matrix

According to the following linguistic terms set, DM committee evaluates candidate suppliers on each sub-criterion and establishes an uncertain linguistic decision matrix shown in Table 9. Further, this matrix is converted into an interval 2-tuple linguistic matrix represented in Table 10.
$S=\left\{\mathrm{b}_{0}=\right.$ Extreme poor (EP), $\mathrm{b}_{1}=$ Very poor (VP), $\mathrm{b}_{2}=$ Poor (P), $\mathrm{b}_{3}=$ Medium Poor (MP), $\mathrm{b}_{4}=$ Medium (M), $\mathrm{b}_{5}=$ Medium good (MG), $\mathrm{b}_{6}=\operatorname{Good}(\mathrm{G}), \mathrm{b}_{7}=\operatorname{Very} \operatorname{good}(\mathrm{VG}), \mathrm{b}_{8}=$ Extreme good (EG) $)$.

(2) Calculate the possible degree matrix

According to Table 10, the possible degrees on sub-criterion u_{1} can be obtained in a way similar to Example 4 . Thus, the possible degree matrix is generated as

$$
\boldsymbol{\Phi}^{1}=\left(\phi_{i l}^{1}\right)_{5 \times 5}=\left(\begin{array}{ccccc}
0.5 & 0 & 1 & 0.75 & 0.5 \\
1 & 0.5 & 1 & 1 & 1 \\
0 & 0 & 0.5 & 0.1667 & 0 \\
0.25 & 0 & 0.8333 & 0.5 & 0.25 \\
0.5 & 0 & 1 & 0.75 & 0.5
\end{array}\right)
$$

(3) Compute the likelihood-based preference degree matrix on each sub-criterion

Using Eq. (16), the dominant index vector on sub-criterion u_{1} is obtained as $\boldsymbol{D I}^{1}=(0.2125,0.3000,0.1083,0.1667$, 0.2125). Taking $q=0.1$ in Eq. (17), the likelihood-based preference degree matrix on sub-criterion u_{1} is obtained as:

$$
\boldsymbol{L}^{1}=\left(L_{i l}^{1}\right)_{5 \times 5}=\left(\begin{array}{ccccc}
0 & 0 & 1 & 0.458 & 0 \\
0.875 & 0 & 1 & 1 & 0.875 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.583 & 0 & 0 \\
0 & 0 & 1 & 0.458 & 0
\end{array}\right) .
$$

For example, as $D I_{1}^{1}=0.2125$ and $D I_{2}^{1}=0.3$, it follows that $0<D I_{2}^{1}-D I_{1}^{1}=0.0875<q$. Thus, by Eq. (17), one has $L_{21}^{1}=0.0875 / 0.1=0.875$. Meanwhile, $L_{12}^{1}=0$ as $D I_{1}^{1}-D I_{2}^{1}<0$.

Table 11
Concordance, discordance and indifferent sets.

Strong concordance sets		Weak concordance sets		Indifferent sets		Strong discordance sets		Weak discordance sets	
J_{12}^{+s}	\emptyset	J_{12}^{+w}	\{3,4,5,12\}	$J_{12}^{\overline{-}}$	$\{7,8\}$	J_{12}^{-5}	\emptyset	J_{12}^{-w}	\{1,2,6, 9,10,11\}
${ }_{13}^{+5}$	\{1,2,3,5,8,12\}	J_{13}^{+w}	\{7,10,11\}	$J_{13}^{1 /}$	\emptyset	J_{13}^{-5}	\{4,9\}	J_{13}^{12}	\{6)
${ }_{\text {J4 }}{ }^{+5}$	\{2,3,5,7,10\}	J_{14}^{+w}	$\{1,6,11\}$	J_{14}	\{8\}	J_{14}^{5}	$\{4,9\}$	J_{14}^{13}	\{12\}
${ }_{\text {J }}{ }_{\text {J }}$	\{3,6,8,11,10\}	J_{15}^{+w}	\{5,7,12\}	$J_{15}^{\overline{-1}}$	\{1\}	J_{15}^{5}	(4)	J_{15}	\{2,4,9\}
${ }^{155}$	$\emptyset \quad 1$	$J_{21}{ }^{\text {w }}$	\{1,2,6,9,10,11\}	$J^{\prime \prime}$	$\{7,8\}$	J_{21}^{5}	\emptyset	$J_{21}^{\text {W }}$	\{3,4,5,12\}
${ }_{\text {J }}{ }^{+5}$	\{1,2,3,8,10,11\}	J_{23}^{+w}	\{5,7,12\}	J_{23}	\{6\}	J_{23}^{51}	\{4,9\}	$J_{23}{ }^{-w}$	\emptyset ¢
${ }_{4}^{5}$	\{1,2,3,6,7,10,11\}	$J_{24}{ }^{+w}$	\{5\}	$J_{\text {24 }}$	\{8\}	$J_{24}^{\text {S }}$	\{4,12\}	$J_{24}^{\text {w }}$	\{9\}
${ }_{\text {J }}{ }^{\text {J }}$	\{6, 8,10,11\}	J_{25}^{+w}	\{1,3,7\}	J_{25}	\emptyset	J_{25}	(12)	${ }_{25}{ }^{2+w}$	\{2,4,5,9,12\}
${ }_{31}^{+5}$	\{4, 9\}	J_{31}^{+w}	\{6\}	J_{31}	\emptyset	$J_{31}^{\text {s }}$	\{1,2,3 8,5,12\}	$J_{31}{ }^{-w}$	\{7,10,11\}
${ }_{32}^{+5}$	$\{4,9\}$	J_{32}^{+w}	\emptyset	J_{32}	\{6\}	$J_{32}{ }^{\text {s }}$	\{1,2,3, 8,10,11\}	$J_{32}{ }^{-w}$	\{5,7,12\}
J_{34}^{+s}	\{6,7]	J_{34}^{+w}	\{3,4, 9,10,11\}	J_{34}	\{2,5\}	$J_{34}{ }^{-s}$	\{8,12\}	$J_{34}{ }^{-w}$	\{1\}
${ }_{35}^{+5}$	\{6,9,10\}	J_{35}^{+w}	\{4,7,11\}	J_{35}	\emptyset	$J_{35}{ }^{\text {s }}$	\{1,2,5,7 10\}	$J_{35}^{* w}$	(3)
J_{41}^{+5}	\{4,9\}	J_{41}^{+w}	\{12)	${ }^{\overline{\overline{4} 1}}$	\{8\}	J_{41}^{5-5}	\{2,3,5710\}	$J_{41}^{\text {w }}$	\{1,6,11\}
J_{42}^{+5}	\{4,12\}	J_{42}^{+w}	\{9\}	$J_{\text {言 }}$	\{8\}	J_{42}^{-5}	\{1,2,3, 6,7, 10,11\}	J_{42}^{-w}	\{5\}
J_{43}^{+s}	$\{8,12\}$	J_{43}^{+w}	\{1\}	J_{43}	\{2,5\}	$J_{43}{ }^{-5}$	$\{6,7\}$	$J_{43}{ }^{-w}$	\{3,4,9, 10,11\}
J_{45}^{45}	\{8\}	J_{45}^{+w}	\{4,6,9,10,11,12\}	$J_{\overline{45}}$,	J_{45}^{5}	\{2,3,5\}	$J_{45}^{\text {w }}$	\{1,7\}
J_{51}^{+5}	\emptyset	J_{51}^{+w}	\{2,4,9\}	J_{51}^{5}	\{1\}	$J_{51}^{\text {S }}$	\{3,6,8, 10,11\}	$J_{51}^{\text {w }}$	\{5,7,12\}
${ }_{52}^{+5}$	(1,	$J_{52}{ }^{+w}$	\{2,4,5,9, 12\}	J_{52}	(1)	$J_{52}{ }^{-5}$	\{6,8, 10,11\}	$J_{52}{ }^{-w}$	\{1,3,7\}
J_{53}^{+5}	\{1,2,5,12\}	J_{53}^{+w}	\{3,8\}	J_{53}	\emptyset	$J_{53}^{\text {J }}$	\{6, 9,10\}	$J_{53}{ }^{-w}$	$\{4,7,11\}$
J_{54}^{+5}	\{2,3,5\}	J_{54}^{+w}	\{1,7\}	J_{54}	\emptyset	J_{54}^{5}	\{8)	J_{54}^{-w}	\{4,6,9, 10,11,12\}

Note: \emptyset indicates an empty set.

(4) Determine concordance, discordance and indifference sets

Similar to Example 6, concordance, discordance and indifference sets are obtained by Eqs. (18)-(22) and listed in Table 11.

(5) Compute concordance matrix and discordance matrix

In virtue of Eq. (23), the concordance matrix is identified as

$$
\boldsymbol{C}=\left(\begin{array}{ccccc}
- & 0.3958 & 0.8422 & 0.8523 & 0.8901 \\
0.6042 & - & 0.8921 & 0.8090 & 0.8420 \\
0.1578 & 0.1079 & - & 0.5965 & 0.5790 \\
0.1477 & 0.1910 & 0.4035 & - & 0.6347 \\
0.1099 & 0.1580 & 0.4210 & 0.3653 & -
\end{array}\right) .
$$

Using Eqs. (5), (25) and (26), the discordance matrix is obtained as

$$
\boldsymbol{D}=\left(\begin{array}{ccccc}
- & 1.0000 & 0.2317 & 0.2187 & 0.0581 \\
0.6087 & - & 0.1853 & 0.1887 & 0.0829 \\
1.0000 & 1.0000 & - & 1.0000 & 0.6035 \\
1.0000 & 1.0000 & 0.5319 & - & 0.5520 \\
1.0000 & 1.0000 & 1.0000 & 1.0000 & -
\end{array}\right)
$$

(6) Compute net concordance and discordance indices

By Eqs. (27) and (28), net concordance and discordance vectors are respectively derived as

$$
N C=(2.9229,3.6907,0.5632,0.5250,0.3579), \quad N D=(0.4180,0.2664,1.8491,1.2810,3.0853)
$$

(7) Compute comprehensive dominant values of suppliers

Comprehensive dominant values of suppliers are determined via Eq. (29), i.e.,

$$
C D_{1}=0.8749, \quad C D_{2}=0.9327, \quad C D_{3}=0.2335, \quad C D_{4}=0.2907, \quad C D_{5}=0.1039
$$

Since $C D_{2}>C D_{1}>C D_{4}>C D_{3}>C D_{5}$, the ranking is $A_{2} \succ A_{1} \succ A_{4} \succ A_{3} \succ A_{5}$. Hence, Shanghai Edscha Machinery Co., Ltd (namely A_{2}) is the best supplier, followed by Wuxi Huaguang $\left(A_{1}\right)$ and then by Sanling (A_{4}), Henan Kiekert (A_{3}) and Anhui Qingsong (A_{5}) are ranked at the bottom.

4.5. Discussion on validation of the obtained results

It is often that different decision making methods may yield different ranking when they are fed with exactly the same assessment data. Wang and Triantaphyllou [38] established three testing criteria which are usually used to evaluate the relative performance of various MCDM methods:

Test criterion 1: An effective MCDM method should not change the indication of the best alternative on replacing a nonoptimal alternative by another worse alternative without changing the relative importance of each decision criteria.
Test criterion 2: An effective MCDM method should following transitive property.
Test criterion 3: When a MCDM problem is decomposed into smaller problems and the same MADM method is applied on smaller problems to rank alternatives, combined ranking of alternatives should be identical to the original ranking of un-decomposed problem.

The validity of the results obtained by the method of this paper is tested using these criteria.

4.5.1. Validity test of the results obtained by the proposed method using criterion 1

In order to test the validity of the results obtained by the proposed method under test criterion 1 , alternative A_{4}, a non-optimal alternative, is replaced by the following worse alternative:

$$
A_{4}^{\prime}=([P, M],[V P, P],[E P, E P],[M, G],[M P, M],[M G, M G],[M P, M],[M G, G],[M G, M G],[M, M G],[E P, P],[M G, G])
$$

Since the relative importance of the criteria remains unchanged in this modified MCDM problem, employing the same steps of the proposed method, corresponding results are obtained as

$$
C D_{1}=0.9015, \quad C D_{2}=0.9505, \quad C D_{3}=0.3369, \quad C D_{4}=0.0508, \quad C D_{5}=0.2168
$$

According to the descending order of comprehensive values, alternatives are ranked as $A_{2} \succ A_{1} \succ A_{3} \succ A_{5} \succ A_{4}^{\prime}$. Thus, the indication of the best alternative for the modified MCDM problem is still A_{2} which is same as that for the original MCDM problem, Therefore, it is confirmed that the proposed method does not change the indication of the best alternative when a non-optimal alternative is replaced by another worse alternative. Hence, the proposed MCDM method is valid under test criterion 1. For other non-optimal alternatives, such as A_{1}, A_{3} and A_{5}, the same conclusion holds.

4.5.2. Validity test of the results obtained by the proposed method under criteria 2 and 3

In order to test validity of the obtained results by the proposed method using criteria 2 and 3, original MCDM problem is decomposed into two sets of smaller MCDM problems $\left\{A_{1}, A_{2}, A_{3}\right\}$ and $\left\{A_{1}, A_{3}, A_{4}, A_{5}\right\}$, respectively. Following the steps of the proposed method, corresponding rankings are respectively generated as $A_{2} \succ A_{1} \succ A_{3}$ and $A_{1} \succ A_{4} \succ A_{3} \succ A_{5}$ for these two sub-problems.

Combining the rankings of above sub-problems together, the final ranking is obtained as $A_{2} \succ A_{1} \succ A_{4} \succ A_{3} \succ A_{5}$ which is identical to the ranking of un-decomposed MCDM problem and exhibits transitive property. Hence, the obtained results are valid under test criteria 2 and 3.

5. Thorough comparative analyses with existing MCDM methods

To demonstrate the superiority of the proposed method, this section conducts thorough comparative analyses with existing MCDM methods, including interval-valued 2-tuple weighted average (IVTWA) operator aggregated method [44], interval 2-tuple linguistic VIKOR (ITL-VIKOR) method [42] and a fuzzy integrated method [9].

5.1. Ranking results obtained by existing methods and Spearman's rank-correlation test

To compare with methods $[9,42,44]$, we first use these methods to solve the above real case.
(1) According to the aggregation method [44] and ITL-VIKOR method [42], sub-criteria weights are assigned in advance. To make this comparison more validly, suppose sub-criteria weights are the numerical values corresponding to sub-criteria weights obtained by the proposed method, i.e.,

$$
\omega_{1}^{\prime}=(0.0698,0.0484,0.0396,0.0234,0.0899,0.0969,0.0770,0.0725,0.0611,0.1468,0.1738,0.1009)
$$

In virtue of method [44] and method [42], the ranking orders of alternatives are generated as $A_{2} \succ A_{1} \succ A_{4} \succ A_{3} \succ A_{5}$ and A_{2} $\sim A_{1} \succ A_{4} \succ A_{3} \succ A_{5}$, respectively.
(2) Method [9] is an integrated method combining FAHP and FTOPSIS, where FAHP is used to determine sub-criteria weights and FTOPSIS is applied to rank alternatives. Since method [11] assumed that criteria and sub-criteria are independent on each other, whereas the proposed method considers the interactions among some criteria, sub-criteria weights cannot be determined by FAHP. To make comparison validly, sub-criteria weights are still assigned as ω_{1}^{\prime}. Employing FTOPSIS, the ranking order of alternatives is obtained as $A_{2} \succ A_{3} \succ A_{1} \succ A_{4} \succ A_{5}$.

To measure the ranking differences between methods $[9,42,44]$ and the proposed method, Spearman's rank-correlation test, a technique allowing for ascertaining whether there is statistically significant rank-correlation between two sets of values, is applied to the decision. In this test, ranking values of alternatives are computed by their corresponding ranking orders. For example, given a ranking order $A_{2} \succ A_{1} \succ A_{4} \succ A_{3} \succ A_{5}$, ranking values of alternatives $A_{1}, A_{2}, A_{3}, A_{4}$ and A_{5} are 2,1 ,

Table 12
Rankings by four methods and their differences.

Suppliers	Ranking				Ranking differences		
	The proposed method (A)	Method [44](B)	Method [42](C)	Method [9](D)	A-B	A-C	A-D
A_{1}	2	2	1.5	3	0	0.5	1
A_{2}	1	1	1.5	1	0	0.5	0
A_{3}	4	4	4	2	0	0	2
A_{4}	3	3	3	4	0	0	1
A_{5}	5	5	5	5	0	0	0
Spearman's test result				r_{s}	1	0.925	0.7
				Z	2	1.85	1.4

Table 13
Comparison with existing MCDM methods.

	Method [44]	Method [42]			Method [9]	The proposed method
Hierarchical structure Determination of criteria weights	Single-level criteria Given in advance	Single-level criteria Given in advance			Two-level criteria Fuzzy AHP	Two-level criteria TL-ANP
Decision making approach	Aggregation operator	ITL-VIKOR $\left(S_{i}, \alpha_{i}\right)$	$\left(R_{i}, \alpha_{i}\right)$	$\left(O_{i}, \alpha_{i}\right)$	Fuzzy TOPSIS	IT-ELECTREE II
Vector of ranking values Ranking order	$\begin{aligned} & \text { (0.7618, } \\ & 0.8034, \\ & 0.5745, \\ & 0.6127, \\ & 0.5420) \\ & A_{2} \succ A_{1} \succ A_{4} \\ & \succ A_{3} \succ A_{5} \\ & \hline \end{aligned}$	$\begin{gathered} (\Delta(0.3374), \\ \Delta(0.2688), \\ \Delta(0.5968), \\ \Delta(0.5429), \\ \Delta(0.6531)) \\ A_{2} \succ A_{1} \succ A_{4} \\ \succ A_{3} \succ A_{5} \\ \hline \end{gathered}$	$\begin{gathered} (\Delta(0.0509), \\ \Delta(0.0631), \\ \Delta(0.1241), \\ \Delta(0.1241), \\ \Delta(0.1490)) \\ A_{2} \succ A_{3} \succ A_{1} \\ \succ A_{4} \succ A_{5} \end{gathered}$	$\begin{gathered} (\Delta(0.0892), \\ \Delta(0.0619), \\ \Delta(0.8002), \\ \Delta(0.7300), \\ \Delta(1.0000)) \\ A_{2} \succ A_{1} \succ A_{4} \succ \\ A_{3} \succ A_{5} \end{gathered}$	$\begin{gathered} (0.0040, \\ 0.0062, \\ 0.0042, \\ 0.0030 \\ 0.0023) \end{gathered}$	$\begin{gathered} (0.8749 \\ 0.9327 \\ 0.2335 \\ 0.2907 \\ 0.1039) \end{gathered}$

4,3 and 5 , respectively. Then, to measure the ranking differences between two ranking orders, two test statistics r_{s} and Z are needed to be calculated by the following expressions [22]:

$$
\begin{align*}
& r_{s}=1-\frac{6}{n\left(n^{2}-1\right)} \sum_{i=1}^{n}\left(d_{i}\right)^{2} \tag{30}\\
& Z=r_{s} \sqrt{n-1} \tag{31}
\end{align*}
$$

where d_{i} is the difference between two ranking values of alternative A_{i} in two ranking orders, n is the number of alternatives. According to [22], one has $-1 \leq r_{s} \leq 1$. Furthermore, the closer the value of r_{s} is to 1 or -1 , the stronger the correlation between two ranking orders. If $Z \geq 1.645$, then it can be concluded that there is evidence of a positive relation between two ranking orders. Otherwise, it is considered that two ranking orders are dissimilar. Employing Eqs. (30) and (31), differences between ranking orders of alternatives obtained by methods $[9,42,44]$ and those generated by the proposed method are given in Table 12.

It is observed from Table 12 that the two sets of rankings obtained by method [44] and the proposed method have the highest rank-correlation of 1 and the largest test value of $Z=2$. Therefore, it is concluded that these two sets of rankings have completely positive correlation. The test value between the rankings obtained by method [42] and those obtained by the proposed method is 1.85 , which exceeds the critical 1.645 . Thus, we affirm that the rankings obtained by method [42] are strongly positively correlated with those obtained by the proposed method. However, as for the rankings obtained by method [9] and those obtained by the proposed method, the test value is 1.4 , which is lower than 1.645 . Therefore, these two sets of rankings are considered to be dissimilar. In summary, the rankings obtained by the proposed method are statistically positively correlated with those obtained by methods [42,44], which demonstrates the validity of the proposed method.

5.2. Further comparative analysis

To show advantages of the proposed method, this section further compares the proposed method with existing methods $[11,42,44]$ from hierarchical structure, determination of criteria weights and decision making approaches. The detailed comparison results are described in Table 13. In addition, to intuitively compare the ranking results of alternatives obtained by different methods, we depict these results in Fig. 3.
(1) Compared with methods [42,44], the proposed method is able to solve more complex MCDM problems because the former only can handle MCDM problems with single level criteria, while the latter can handle MCDM problems with

Fig. 3. Ranking orders of alternatives obtained by different methods.
two-level criteria. Thus, the latter has wider scope of applications than the former. Although method [9] also can tackle the MCDM problems with two-level criteria, it transformed linguistic variables into TFNs, which may cause loss or distortion of information. The proposed method deals with MCDM problems by interval 2-tuple linguistic variables which can effectively overcome this shortcoming.
(2) The proposed method determines criteria and sub-criteria weights objectively by TL-ANP, which can avoid the subjective randomness. However, methods [42,44] gave criteria weights in advance and did not consider the determination of criteria weights. Although method [9] employed fuzzy AHP to derive criteria weights, there are two limitations: 1) it is supposed that criteria are independent on each other; 2) it did not discuss how to repair the consistency of preference relations when preference relations are unacceptable consistent. On the other hand, the proposed method not only considers interactions among criteria, but also constructs consistent preference relations.
(3) As for the decision making approach, the proposed method utilizes IT-ELECTRE II to rank alternatives. Compared with decision making approaches used in other methods [9,42,44], the conditions of IT-ELECTRE II (i.e., alternatives are compared on each criterion and the comparison scores on criteria cannot compensate for each other) are stricter. Therefore, the results obtained by IT-ELECTRE II are more cautious and more reliable.

6. Conclusions

In today's fierce competitive market, it is necessary for enterprises to select a suitable supplier to win a space in their business. Therefore, supplier selection is a critical issue for enterprises. This paper investigated a type of supplier selection problems with two-level criteria and proposed a hybrid method by combining ANP with ELECRE II in interval 2-tuple linguistic environment. Primary contributions are summarized as follows:
(1) Interactions among criteria or within criteria are considered while determining weights of criteria and sub-criteria, which is more consistent with real-world decision situations.
(2) A TL-ANP approach is proposed to determine weights of criteria and sub-criteria. There are two prominent characteristics of this approach: 1) 2-tuple linguistic variables are used in comparison matrices, which not only can help DMs supply their information more flexible and easier, but can avoid the loss and distortion of evaluation information; 2) The proposed technique for constructing comparison matrix of a TLPR can guarantee the consistency of TLPR. Moreover, DMs are only required to supply the elements in the first row of comparison matrix. Thus, the workload of DMs and the cost of enterprise may be remarkably reduced.
(3) An IT-ELECTRE II approach is developed to rank alternatives. In this approach, ratings of alternatives on sub-criteria are in the form of interval 2-tuples, which can suitably model the quantitative and qualitative criteria involved in supplier selection. Furthermore, IT-ELECTRE II is able to neatly compare alternative suppliers and has a strong distinguishing power.

Future study will extend the proposed hybrid method to group decision-making problems and other decision environments, such as hesitant fuzzy set and linguistic hesitant fuzzy set.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 61263018, 71661010 and 11461030), Young scientists Training object of Jiangxi province (No. 20151442040081), the Natural Science Foundation of Jiangxi Province of China (No. 20161BAB201028), "Thirteen five" Programming Project of Jiangxi province Social Science (2016) (No. 16GL19), Guangxi Natural Science Foundation (No. 2016GXNSFBA380077), Guangxi Philosophy and Social Science Programming Project (No.15FGL011) and Guangxi University Research Project (No. KY2016YB196).

Appendix A

Proof of Property 1. Denote $\Delta^{-1}\left(s_{i}, \alpha_{1}\right)=\beta_{1}^{-}, \Delta^{-1}\left(t_{i}, \alpha_{2}\right)=\beta_{1}^{+}, \Delta^{-1}\left(s_{j}, \gamma_{1}\right)=\beta_{2}^{-}, \Delta^{-1}\left(t_{j}, \gamma_{2}\right)=\beta_{2}^{+}$.
(i) Since $-\left(\left|\beta_{1}^{+}-\beta_{2}^{+}\right|+\left|\beta_{1}^{-}-\beta_{2}^{-}\right|\right) \leq\left(\beta_{1}^{+}-\beta_{2}^{+}\right)+\left(\beta_{1}^{-}-\beta_{2}^{-}\right) \leq\left|\beta_{1}^{+}-\beta_{2}^{+}\right|+\left|\beta_{1}^{-}-\beta_{2}^{-}\right|$, it obtains that $-1 \leq$ $\frac{\left(\beta_{1}^{+}-\beta_{2}^{+}\right)+\left(\beta_{1}^{-}-\beta_{2}^{-}\right)}{\left|\beta_{1}^{+}-\beta_{2}^{+}\right|+\left|\beta_{1}^{-}-\beta_{2}^{-}\right|} \leq 1$. In the following, the proof is completed in two cases.

Case 1. $\left(\beta_{1}^{+}-\beta_{2}^{+}\right)+\left(\beta_{1}^{-}-\beta_{2}^{-}\right) \geq 0$. Thus, it yields that

$$
0 \leq \frac{\left(\beta_{1}^{+}-\beta_{2}^{+}\right)+\left(\beta_{1}^{-}-\beta_{2}^{-}\right)}{\left|\beta_{1}^{+}-\beta_{2}^{+}\right|+\left|\beta_{1}^{-}-\beta_{2}^{-}\right|+l_{y_{1} y_{2}}} \leq \frac{\left(\beta_{1}^{+}-\beta_{2}^{+}\right)+\left(\beta_{1}^{-}-\beta_{2}^{-}\right)}{\left|\beta_{1}^{+}-\beta_{2}^{+}\right|+\left|\beta_{1}^{-}-\beta_{2}^{-}\right|} \leq 1 .
$$

Consequently, $0 \leq \frac{1}{2}\left(1+\frac{\left(\beta_{1}^{+}-\beta_{2}^{+}\right)+\left(\beta_{1}^{-}-\beta_{2}^{-}\right)}{\left|\beta_{1}^{+}-\beta_{2}^{+}\right|+\left|\beta_{1}^{-}-\beta_{2}^{-}\right|+l_{y_{1}} \tilde{y}_{2}}\right)=\frac{1}{2}\left(1+\frac{\left(\Delta^{-1}\left(t_{i}, \alpha_{2}\right)-\Delta^{-1}\left(t_{j}, \gamma_{2}\right)\right)+\left(\Delta^{-1}\left(s_{i}, \alpha_{1}\right)-\Delta^{-1}\left(s_{j}, \gamma_{1}\right)\right)}{\left|\Delta^{-1}\left(t_{i}, \alpha_{2}\right)-\Delta^{-1}\left(t_{j}, \gamma_{2}\right)\right|+\left|\Delta^{-1}\left(s_{i}, \alpha_{1}\right)-\Delta^{-1}\left(s_{j}, \gamma_{1}\right)\right|+\tilde{y}_{1} \tilde{y}_{2}}\right) \leq 1$.
Namely, $0 \leq \phi\left(\tilde{y}_{1} \geq \tilde{y}_{2}\right) \leq 1$.
Case 2. $\left(\beta_{1}^{+}-\beta_{2}^{+}\right)+\left(\beta_{1}^{-}-\beta_{2}^{-}\right)<0$. The proof process is similar to Case 1.
(ii) To prove this conclusion, it is only needed to perform the operation $\phi\left(\tilde{y}_{1} \geq \tilde{y}_{2}\right)+\phi\left(\tilde{y}_{2} \geq \tilde{y}_{1}\right)$ based on the expression of $\phi\left(\tilde{y}_{1} \geq \tilde{y}_{2}\right)$. Here, the proof process is omitted.
(iii) If $\left(s_{i}^{1}, \alpha_{1}^{1}\right) \succ\left(s_{j}^{2}, \alpha_{2}^{2}\right)$, then $l_{\tilde{y}_{1} \tilde{y}_{2}}=0$ and $\beta_{2}^{-}<\beta_{2}^{+}<\beta_{1}^{-}<\beta_{1}^{+}$. Thereby, $\left(\beta_{1}^{+}-\beta_{2}^{+}\right)+\left(\beta_{1}^{-}-\beta_{2}^{-}\right)=\left|\beta_{1}^{+}-\beta_{2}^{+}\right|+\left|\beta_{1}^{-}-\beta_{2}^{-}\right|$.
Similar to the proof process of Case 1 , the conclusion $\phi\left(\tilde{y}_{1} \geq \tilde{y}_{2}\right)=1$ can be easily derived.
(iv) It is easily obtained from conclusion (ii).

The proof of Property 1 is completed.

Appendix B

Proof of Theorem 1. From $p_{i j}=\Delta\left(\Delta^{-1}\left(p_{1 j}\right)-\Delta^{-1}\left(p_{1 i}\right)+\Delta^{-1}\left(s_{g / 2}, 0\right)\right)(i, j=1,2, \cdots, n)$, we have

$$
p_{i k}=\Delta\left(\Delta^{-1}\left(p_{1 k}\right)-\Delta^{-1}\left(p_{1 i}\right)+\Delta^{-1}\left(s_{g / 2}, 0\right)\right), \quad p_{k j}=\Delta\left(\Delta^{-1}\left(p_{1 j}\right)-\Delta^{-1}\left(p_{1 k}\right)+\Delta^{-1}\left(s_{g / 2}, 0\right)\right) .
$$

Thereby,

$$
\begin{equation*}
\Delta^{-1}\left(p_{i k}\right)+\Delta^{-1}\left(p_{k j}\right)=\left(\Delta^{-1}\left(p_{1 k}\right)-\Delta^{-1}\left(p_{1 i}\right)+\Delta^{-1}\left(s_{g / 2}, 0\right)\right)+\left(\Delta^{-1}\left(p_{1 j}\right)-\Delta^{-1}\left(p_{1 k}\right)+\Delta^{-1}\left(s_{g / 2}, 0\right)\right) \tag{B.1}
\end{equation*}
$$

Simplifying Eq. (B.1), one has

$$
\begin{equation*}
\Delta^{-1}\left(p_{i k}\right)+\Delta^{-1}\left(p_{k j}\right)=\Delta^{-1}\left(p_{1 j}\right)-\Delta^{-1}\left(p_{1 i}\right)+\Delta^{-1}\left(s_{g / 2}, 0\right)+\Delta^{-1}\left(s_{g / 2}, 0\right) \tag{B.2}
\end{equation*}
$$

Subtracting $\Delta^{-1}\left(s_{g / 2}, 0\right)$ on both sides of Eq. (B.2), it follows that

$$
\begin{equation*}
\Delta^{-1}\left(p_{i k}\right)+\Delta^{-1}\left(p_{k j}\right)-\Delta^{-1}\left(s_{g / 2}, 0\right)=\Delta^{-1}\left(p_{1 j}\right)-\Delta^{-1}\left(p_{1 i}\right)+\Delta^{-1}\left(s_{g / 2}, 0\right) \tag{B.3}
\end{equation*}
$$

Consequently, $\Delta\left(\Delta^{-1}\left(p_{i k}\right)+\Delta^{-1}\left(p_{k j}\right)-\Delta^{-1}\left(s_{g / 2}, 0\right)\right)=\Delta\left(\Delta^{-1}\left(p_{1 j}\right)-\Delta^{-1}\left(p_{1 i}\right)+\Delta^{-1}\left(s_{g / 2}, 0\right)\right)=p_{i j}$. Namely, $p_{i j}=\Delta\left(\Delta^{-1}\left(p_{i k}\right)+\Delta^{-1}\left(p_{k j}\right)-\Delta^{-1}\left(s_{g / 2}, 0\right)\right)$. From Definition 9, matrix $\boldsymbol{P}=\left(p_{i j}\right)_{n \times n}$ is additively consistent. This completes the proof.

Appendix C

(See Tables 7 and 8).

References

[1] G. Büyüközkan, G. Çifçi, A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers, Expert Syst. Appl. 39 (2012) 3000-3011.
[2] Z. Chen, W. Yang, An MAGDM based on constrained FAHP and FTOPSIS and its application to supplier selection, Math. Comput. Modell. 54 (2011) 2802-2815.
[3] T.Y. Chen, An ELECTRE-based outranking method for multiple criteria group decision making using interval type-2 fuzzy sets, Inf. Sci. 263 (2014) 1-21.
[4] N. Chen, Z.S. Xu, Hesitant fuzzy ELECTRE II approach: a new way to handle multi-criteria decision making problems, Inf. Sci. 292 (2015) 175-197.
[5] C.T. Chen, W.S. Tai, Measuring the intellectual capital performance based on 2-tuple fuzzy linguistic information, in: Proceedings of the 10th Annual Meeting of Asia Pacific Region of Deicision Sciences Institute, Taiwan, 2005.
[6] G.W. Dickson, An analysis of vender selection systems \& decisions, J. Purchasing 2 (1966) 5-17.
[7] Y.C. Dong, Y.Z. Wu, H.J. Zhang, G.Q. Zhang, Multi-granular unbalanced linguistic distribution assessments with interval symbolic proportions, Knowl.-Based Syst. 82 (2015) 139-151.
[8] F.J. Estrella, M. Espinilla, F. Herrera, L. Martínez, FLINTSTONES: a fuzzy linguistic decision tools enhancement suite based on the 2-tuple linguistic model and extensions, Inf. Sci. 280 (2014) 152-170.
[9] B. Efe, An integrated fuzzy multi criteria group decision making approach for ERP system selection, Appl. Soft Comput. 38 (2016) 106-117.
[10] Z.W. Gong, J. Forrest, Y.J. Yang, The optimal group consensus models for 2-tuple linguistic preference relations, Knowl.-Based Syst. 37 (2013) $427-437$.
[11] S.M. Hashemian, M. Behzadian, R. Samizadeh, J. Ignatius, A fuzzy hybrid group decision support system approach for the supplier evaluation process, Int. J. Adv. Manuf. Technol. 73 (2014) 1105-1117.
[12] F. Herrera, L. Martínez, A 2-tuple fuzzy linguistic representation model for computing with words, IEEE Trans. Fuzzy Syst. 8 (2000) 746-752.
[13] M. Kadziński, K. Ciomek, Integrated framework for preference modeling and robustness analysis for outranking-based multiple criteria sorting with ELECTRE and PROMETHEE, Inf. Sci. 352-353 (2016) 167-187.
[14] E.E. Karsak, M. Dursun, An integrated supplier selection methodology incorporating QFD and DEA with imprecise data, Expert Syst. Appl. 41 (2014) 6995-7004.
[15] E.E. Karsak, M. Dursun, An integrated fuzzy MCDM approach for supplier evaluation and selection, Comput. Ind. Eng. 82 (2015) 82-93.
[16] J. Lee, H. Cho, Y.S. Kim, Assessing business impacts of agility criterion and order allocation strategy in multi-criteria supplier selection, Expert Syst. Appl. 42 (2015) 1136-1148.
[17] C.T. Lin, C.B. Chen, Y.C. Ting, An ERP model for supplier selection in electronics industry, Expert Syst. Appl. 38 (2011) 1760-1765.
[18] F. Mata, L.G. Pérez, S.M. Zhou, F. Chiclana, Type-1 OWA methodology to consensus reaching processes in multi-granular linguistic contexts, Knowl.-Based Syst. 58 (2014) 11-22.
[19] G.A. Montazer, H.Q. Saremi, M. Ramezani, Design a new mixed expert decision aiding system using fuzzy ELECTRE III method for vendor selection, Expert Syst. Appl. 36 (2009) 10837-10847.
[20] R.L. Nydick, R.P. Hill, Using the Analytic Hierarchy Process to structure the supplier selection procedure, Int. J. Purchasing Mater. Manage. 28 (1992) 31-36.
[21] H.T. Nguyen, S.Z.M. Dawal, Y. Nukman, H. Aoyama, A hybrid approach for fuzzy multi-attribute decision making in machine tool selection with consideration of the interactions of attributes, Expert Syst. Appl. 41 (2014) 3078-3090.
[22] C. Parkan, M.-L. Wu, Decision making and performance measurement models with applications to robot selection, Comput. Ind. Eng. 36 (1999) 503-523.
[23] J.J. Peng, J.Q. Wang, J. Wang, L.J. Yang, X.H. Chen, An extension of ELECTRE to multi-criteria decision-making problems with multi-hesitant fuzzy sets, Inf. Sci. 307 (2015) 113-126.
[24] W. Pedrycz, Granular Computing: Analysis and Design of Intelligent Systems, CRC Press, 2013.
[25] W. Pedrycz, S.M. Chen, Granular Computing and Decision-Making: Interactive and Iterative Approaches, Springer, Heidelberg, Germany, 2015.
[26] J.D. Qin, X.W. Liu, Multi-attribute group decision making using combined ranking value under interval type-2 fuzzy environment, Inf. Sci. 297 (2015) 293-315.
[27] J. Rezaei, P.B.M. Fahim, L. Tavasszy, Supplier selection in the airline retail industry using a funnel methodology: conjunctive screening method and fuzzy AHP, Expert Syst. Appl. 41 (2014) 8165-8179.
[28] J. Roshandel, S.S.M. Nargesi, L.H. Shirkouhi, Evaluating and selecting the supplier in detergent production industry using hierarchical fuzzy TOPSIS, Appl. Math. Modell. 37 (2013) 10170-10181.
[29] T.L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, New York, 1980.
[30] T.L. Saaty, Decision Making with Dependence and Feedback: The Analytic Network Process, RWS Publications, Pittsburgh, 1996.
[31] T. Tanino, Fuzzy preference orderings in group decision making, Fuzzy Sets Syst. 12 (1984) 117-131.
[32] M.L. Tseng, H.C. Jui, W.L. Lawrence, Selection of optimal supplier in supply chain management strategy with analytic network process and choquet integral, Comput. Ind. Eng. 57 (2009) 330-340.
[33] S. Vinodh, R.A. Ramiya, S.G. Gautham, Application of fuzzy analytic network process for supplier selection in a manufacturing organization, Expert Syst. Appl. 38 (2011) 272-280.
[34] S.P. Wan, G.L. Xu, F. Wang, J.Y. Dong, A new method for Atanassov's interval-valued intuitionistic fuzzy MAGDM with incomplete attribute weight information, Inf. Sci. 316 (2015) 329-347.
[35] S.P. Wan, D.F. Li, Fuzzy mathematical programming approach to heterogeneous multiattribute decision-making with interval-valued intuitionistic fuzzy truth degrees, Inf. Sci. 325 (2015) 484-503.
[36] S.P. Wan, F. Wang, J.Y. Dong, A preference degree for intuitionistic fuzzy values and application to multi-attribute group decision making, Inf. Sci. 370-371 (2016) 127-146.
[37] W.P. Wang, A fuzzy linguistic computing approach to supplier evaluation, Appl. Math. Modell. 34 (2010) 3130-3141.
[38] X.T. Wang, E. Triantaphyllou, Ranking irregularities when evaluating alternatives by using some ELECTRE methods, Omega 36 (2008) 45-63.
[39] M.C. Wu, T.Y. Chen, The ELECTRE multicriteria analysis approach based on Atanassov's intuitionistic fuzzy sets, Expert Syst. Appl. 38 (2011) 12318-12327.
[40] Z.S. Xu, Induced uncertain linguistic OWA operators applied to group decision making, Inf. Fusion 7 (2006) 231-238.
[41] J.L. Yang, G.H. Tzeng, An integrated MCDM technique combined with DEMATEL for a novel cluster-weighted with ANP method, Expert Syst. Appl. 38 (2011) 1417-1424.
[42] X.Y. You, J.X. You, H.C. Liu, L. Zhen, Group multi-criteria supplier selection using an extended VIKOR method with interval 2-tuple linguistic information, Expert Syst. Appl. 42 (2015) 1906-1916.
[43] A. Zandi, E. Roghanian, Extension of Fuzzy ELECTRE based on VIKOR method, Comput. Ind. Eng. 66 (2013) 258-263.
[44] H.M. Zhang, The multicriteria group decision making method based on aggregation operators with interval-valued 2-tuple linguistic information, Math. Comput. Modell. 56 (2012) 27-35.

[^0]: * Corresponding author.

 E-mail addresses: shupingwan@163.com (S.-p. Wan), jiali0706@126.com (G.-l. Xu), jiuyingdong@126.com (J.-y. Dong).

