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Abstract
This paper deals with an extension of the classical Resource Constrained Project
Scheduling Problem (RCPSP). We present a new type of resource constraints in
which staff members are involved. On the one hand, we focus on staff members,
each of them having several skills, i.e, is able to perform more than one kind of
activity. On the other hand, an activity has specific skill requirements that must be
satisfied. To solve this problem, we propose two lower bounds. The first one uses a
linear programming scheme proposed for the RCPSP and the second one is based on
energetic reasoning.

1. Presentation of the Multi-Skill Project Scheduling Problem

The Multi-Skill Project Scheduling Problem (MSPSP) mixes both the classical RCPSP, and
the Multi-Purpose Machine model [3], [4]. From the RCPSP, we use the project description, and
we add new resource constraints inspired by the Multi-Purpose Machine model. For instance let us
consider that resources are staff members having more than one skill, and that each activity needs
a "given amount" of skills to be performed. Thus scheduling an activity at time t, requires
matching its skill requirements with the skills of the staff members that are available at t. Our goal
is to minimize the overall project duration, i.e, min(Cmax).

Figure 1 presents a 4-activities and 4-members example with a feasible solution. Table 1.a
gives the processing times of actives along with their skill requirements. Table 1.b, describes staff
members in terms of skills. Figure 1.a, presents the precedence constraints between activities.
Figure 1.b, shows a feasible solution.

Figure 1 : Example of Multi-Skill Project Scheduling Problem (MSPSP)

In the example above,  one can see that activity A3 cannot start at time 2, because it requires 2
programmers, while the available staff members at this time cannot meet this skill requirement (P1

is not a programmer).

A1

A2

A3

A4

A1 A2 A3 A4

Processing time 2 5 3 3
Programmer - 1 2 1
DB Designer 1 - - 1
Webmaster 1 1 - -

Figure 1.a : Precedence Constraints

P1 P2 P3 P4

Programmer - Yes Yes Yes
DB Designer Yes - - -
Webmaster Yes Yes - Yes

Figure 1.b : A feasible solution
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This model is an extension of the classical RCPSP: if we assume that all members only have
one skill, we get classical resource constraints. This model can also be seen as a specific case of
the Multi-Mode RCPSP [8]. The main reason to justify this new model is the huge number of
modes (more than two hundred feasible modes for a medium size project) that would be necessary
if we chose to model the same feasible resource assignments with the Multiple-Mode model. For
instance, consider activity A2 of the example presented in Table 1. This activity requires a
Programmer (who can be P2, P3, P4) and a Webmaster (who can be P1, P2, P4). If we use a Multi-
Mode model in which persons are considered as resources, there are six valid modes for A3 : {(P1,
P2), (P2, P4), (P3, P1), (P3, P2), (P3, P4), (P1, P4)}. For all of them the processing time for the activity
is the same, only resource assignments change from a mode to another. Therefore, a decision
maker that has to build a schedule would not be able to list all valid modes for the project. In our
model, the listing of modes is "implicit" thanks to the notion of skill.

Let us present MSPSP notations:
• I = {A1,..., An}: the set of activities to be processed without preemption.
• pi : the processing time of Ai.
• G= (V,E,d) : the precedence graph in which there is a node (i) associated to each activity

Ai. A starting dummy activity (s) and an ending dummy activity (p) are added. (i,j)∈E if
there is a precedence constraints between Ai and Aj, in  that case di,j which is the
valuation of (i,j) ∈E, is equal to pi.

• {S1,..., SK} : the set of skills.
• {P1,..., PM} : the set of staff members.
• Sm,k = 1 if  person Pm has the skill Sk and 0, otherwise. ∀m∈[1..M] Σk Sm,k ≥ 1  indicates

that a person has at least one skill.
• bi,k : the number of persons with the skill Sk, needed to perform activity Ai,
• ri : the release date of Ai is the longest path in G from the starting dummy activity (s) to

the node (i).
• qi : the tail of Ai is the longest path in G from the node (i) to the ending dummy activity

(p), minus the processing time of Ai.

After this presentation of the Multi-Skill Project Scheduling Problem, we present two lower
bounds for this problem.

2. Two lower bounds for MSPSP

In this section we present two lower bounds for MSPSP. Let’s not forget that computing lower
bounds for the RCPSP is a challenging problem. Lower bounds are useful, first to prove the
efficiency of heuristics, and eventually to be used in branch-and-bound methods. The two lower
bounds that we propose are destructive [5] in the sense that they are used to determine if a given
number LB is a valid lower bound for the project duration. Once LB is fixed, a deadline di, is
associated to each activity (di = LB – qi).

2.1 Extension of a general linear programming scheme from RCPSP to MSPSP

The linear lower bound that we present is an adaptation of a linear programming scheme
proposed by Carlier and Néron [2] for the RCPSP, which is based on a time-horizon
decomposition into successive intervals. The first step is the computation of time-intervals. We
assume that release dates (ri) and deadlines (di) have been computed according to the precedence
constraints and a given integer LB. Let T = Ui∈I {ri, di} = {t1, t2,...,tL+1}. We assume that T is sorted
in a non-decreasing order and that all time points are different. Let:

• ∀l∈[1..L], el = [tl, tl+1). L denotes the number of consecutive time intervals that must be
taken into account. el is the l-th interval and tl is the starting point of time-interval el.



• ∀l∈[1..L], ∀i∈[1..n], xi,l is the absolute part of Ai performed during el. xi,l are variables
for our linear program,

• ∀l∈[1..L], ∀m∈[1...M], ∀k∈[1..K], l
k,mδ , the time Pm spent during [tl, tl+1] performing

skill Sk. l
k,mδ are variables for our linear program.

The first constraint (1) implies that the parts of activities are positive:
∀i∈I , ∀l∈[1..L], xi,l ≥ 0 (1)

(2) ensure that the activities are completely performed:
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(3)-(5) are used to model that an activity must be performed within its time-window.
Moreover, for each interval, the part of the activity performed during this interval must not be
larger than the size of the interval itself. Notice that (4) and (5) are linear constraints since ri, di and
tl are known beforehand (they are data in our linear programming formulation)

∀l∈[1..L], ∀i∈I,  xi,l ≤ tl+1 - tl (3)

∀i∈I, ∀l∈[1..L], if  di ≤ tl then xi,l = 0 (4)

∀i∈I, ∀l∈[1..L], if  ri ≥ tl+1 then xi,l = 0 (5)

The three following equations are used to model the resource constraints. Skill requirements of
activities must be met for each interval (6). A time interval being given, a staff member cannot
work longer than the size of this time-interval (7). A staff member can perform a given skill only if
he has it. (8)
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Proposition 1 : If the linear programming formulation given by (1)-(8) has no solution then
LB+1 is a valid lower bound of the project duration.

Remember that deadlines are computed according to LB and the precedence graph. Then if
there is no solution, there is at least one non-valid deadline, thus there is no solution with a
makespan equal to LB.

2.2 A lower bound based on energetic reasoning

The energetic approach which has been formalized and evaluated both from a theoretical and
an experimental point of view by Baptiste, Le Pape and Nuijten [1], aims at developing
satisfiability tests and time-bound adjustments for Cumulative Scheduling Problem, to ensure that
either a given schedule is not feasible or to derive some necessary conditions that any feasible
schedule must satisfy. This approach has been successfully applied to other problems such as the
Multi-Processor Flow-Shop [7].

Given a time interval [t1, t2], satisfiability tests are based on the computation of the part of the
activities that must be performed between time points t1 and t2. W(i, t1, t2), the part of activity Ai

that must be completed in time interval [t1, t2] is called its work over the time-interval [t1, t2]. Once
these mandatory parts are computed, determining if there exists a feasible person assignment to
parts of activities over a given interval such that all skill requirements are met is equivalent to



solving a maximum flow problem on the graph G(t1, t2) presented in Figure 2. Notice that the
network structure does not vary from one interval to the other, only capacities on the arcs depend
on the work of the activities over the considered time interval.

Figure 2 : G(t1, t2) the graph for a given time interval [t1, t2]

Proposition 2 : If there exists a time interval [t1, t2] such that the maximum flow computed on
the graph G(t1, t2) is not equal to Σk∈1..K Σi∈I W(i, t1, t2), then LB+1 is a valid lower bound.

Lets’ remember that deadlines are computed according to LB and the precedence graph. Then
if the maximum flow is not equal to Σk∈1..K Σi∈I W(i, t1, t2), there is at least one non-valid deadline,
thus there is no solution with a makespan equal to LB.

4. Conclusion

In this paper we proposed two lower bounds for a new kind of resource constrained project
scheduling problem. Multi-Skill Project Scheduling Problem can be seen as a specific case of
Multi-Mode RCPSP in which the listing of valid modes is not possible within a reasonable time.
Notice that these two lower bounds can easily be extended to take into account generalized
precedence constraints and non-availability of persons. Experimental results on generated
benchmarks will be presented to show the efficiency of our approach. Further works on this
problem will focus on heuristics, based on an adaptation of the Serial Schedule Generation Scheme
[6], and Tabu Search for the Multi-Skill Project Scheduling problem.
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