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Abstract The emergence of cloud computing has made 

dynamic provisioning of elastic capacity to applications on-
demand. Cloud data centers contain thousands of physical 
servers hosting orders of magnitude more virtual machines 
that can be allocated on demand to users in a pay-as-you-go 
model. However, not all systems are able to scale up by just 
adding more virtual machines. Therefore, it is essential, even 
for scalable systems, to project workloads in advance rather 
than using a purely reactive approach. Given the scale of 
modern cloud infrastructures generating real time 
monitoring information, along with all the information 
generated by operating systems and applications, this data 
poses the issues of volume, velocity, and variety that are 
addressed by Big Data approaches. In this paper, we 
investigate how utilization of Big Data analytics helps in 
enhancing the operation of cloud computing environments. 
We discuss diverse applications of Big Data analytics in 
clouds, open issues for enhancing cloud operations via Big 
Data analytics, and architecture for anomaly detection and 
prevention in clouds along with future research directions. 

I. INTRODUCTION 
Information Technology (IT) systems are now critical 

components of almost every business, government, and 
societal applications.  IT does not just support the business, 
but IT itself is the business in many instances.  Today there 
are few business services on various IT systems for their 
delivery.  For example, banks rely on IT systems to process 
financial transactions, airlines rely on IT for their ticketing 
and timetabling, and even tollways rely on IT for their billing 
and safety systems.  For most companies, when the IT 
systems are down, the company cannot do business.  When 
the IT systems are not adequately designed, implemented or 
provisioned, the company can lose its business and customer 
satisfaction. 

For IT to do its job in delivering business services, it 
needs to meet the following requirements: 
 The IT systems need to be fortified against outages. 

Systems need to be provisioned with sufficient capacity 
to meet even the peak demand. If the capacity is 
insufficient business opportunities will be lost.  If the 
capacity is too great, operating overheads are increased. 

 The right services need to be provided to maximize 
business value. 

 Systems need to be configured for maximum efficiency 
and robustness. 
However, meeting these objectives in the modern 

enterprise environment is a challenging task.  First, IT 
systems are increasingly complex and interdependent.  To 
deliver a specific business service, there will be typically 
many different systems involved, each of which may be 
communicating and reliant on other third party systems.  The 
complexity and interdependence are the causes of many 
possible failures, making it difficult to implement robust 
services and to diagnose the root cause of failures.  Second, 
there is a high degree of uncertainty in workload demand.  
Demands are rarely uniform and predictable, but they tend to 
be highly irregular, bursty, and spiky in nature.  In particular, 
external events and anomalies can cause radical shifts in 
service demand.  As these events are very difficult to predict, 
the demand at a given point in the future will be unknown.  
System capacity is therefore likely to be over-provisioned or 
under-provisioned in the face of unexpected events.  

The rise of cloud computing made dynamic provisioning 
of elastic capacity on-demand possible for applications 
hosted on data centres. This is because cloud data centers 
contain thousands of physical servers hosting orders of 
magnitude more virtual machines that are allocated on 
demand to users in a pay-as-you-go model. 
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Cloud data centers provide this elasticity through the 
notion of Infrastructure on Demand (IoD). However, not all 
systems are able to be scaled up by just adding more virtual 
machines. For these systems to be effective, they should be 
designed to be able to exploit IoD. Furthermore, even for 
systems that are able to exploit IoD, there is typically a delay 
in bringing new capacity online.  Therefore, it is essential, 
even for scalable systems, to project workloads in advance 
rather than using a purely reactive approach.  

From the above discussion, it can be noticed that current 
systems can benefit from the capacity of prediction of future 
application demand, infer the effect of such demand in the 
infrastructure and, consequently, in the applications, and 
detect anomalies in the infrastructure and applications in real 
time. These are problems addressed by researchers and 
practitioners in the areas of machine learning and data 
mining. Nevertheless, given the nature of modern cloud 
infrastructures (thousands of physical servers and virtual 
machines) generating real time monitoring information, along 
with all the information generated by operating systems 
(logs, system calls, etc.), applications (response times, 
latency), and user behavior (click analytics), this data reaches 
volume, velocity, and variety that is not efficiently handled 
by traditional machine learning and data mining techniques. 

By leveraging Big Data techniques and technologies 
(large-scale data mining, time-series analysis, and pattern 
mining), data such as event and log data can be captured at 
finer granularity with longer histories and analyzed in 
multiple projections. In this paper, we propose how the 
application of Big Data Analytics can enhance the operation 
of cloud computing infrastructures. We present various 
applications of Big Data analytics in clouds, open issues for 
enhancing cloud operations via Big Data analytics, an 
architecture able to tackle the problem of anomaly detection 
and prediction in clouds, and future research directions. 

The rest of this paper is organized as follows. Section II 
presents the motivation for this work. Sections III, IV, and IV 
discuss, respectively, the problems of anomaly detection and 
prevention, workload and performance prediction, and 
clustering, all in the context of improving operations of cloud 
computing services. Section VI presents architecture for 
anomaly detection and prevention in clouds, which is 
evaluated in Section VII. Section VIII presents future 
research directions in the topic and Section VIX concludes 
the paper. 

II. MOTIVATION 
Cloud computing enables users to acquire computational 

resources as services in a pay-per-use model, and this is 
generally called Infrastructure on Demand (IoD). The exact 
IoD that is commercialized as a service varies in one of three 

service models: Infrastructure as a Service (IaaS), Platform as 
a Service (PaaS), and Software as Service (SaaS). Each of 
these models provides a different view for users of what type 
of resource is available and how it can be accessed. 

In the IaaS model, users acquire virtual machines that run 
in the hardware of cloud data centers. Virtual Machines 
(VMs) can contain any operating system and software 
required by users, and typically users are able to customize 
the VMs to their own needs. Typically, IaaS providers charge 
users by the time that VMs run, and the exact cost per unit of 
time depends on the hardware resources (memory, CPU 
cores, CPU speed) allocated to the VM, which users can 
select among different amounts offered by providers. 
Therefore, the views users have of the system are restricted to 
Operating System and above levels. 

In the PaaS model, users are provided with an 
environment where applications can be deployed. At this 
level, users are able to collect metrics about application-level 
resource usage and performance. At the SaaS level, users 
access an application, being usually charged on a 
subscription basis. Metrics available at this level (if any) 
regard application-specific data. 

The view that cloud providers have, often, are those one 
level below the view that users have: IaaS cloud providers 
have metrics available of the platform level (e.g., resource 
usage of physical hosts), PaaS providers have infrastructure-
level information (e.g., container-level resource usage) and 
SaaS providers have platform-level information (e.g., 
response time of requests to the application). 

This different views and objectives of analysis of data 
affect the techniques that can be applied, their scope, and 
their results, as we discuss in the next sections. 

III. ANOMALY DETECTION AND PREVENTION 
Service Level Agreements (SLAs) are one important 

aspect of the engagement between cloud service providers 
and cloud users. Because there is a strong competition among 
providers in all service models, the damage to the reputation 
of a provider resulted from violating SLA terms can be 
substantial: It not only leads to penalties applied to providers, 
but also the risk of having the news of bad user experience 
spread through social media, resulting in loss of potential 
customers (and even existing ones). 

Therefore cloud service providers need to strive to meet 
SLAs. However, given the complexity and scale of cloud 
infrastructures, it is challenging for providers to guarantee 
that all systems and software are working according to the 
desired specification at all times. Thus, it is important that 
providers have mechanisms in place to detect abnormal 
activity in their infrastructure, platform, and software. 
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resources and metrics that deviate from the expected value. 
This can be caused by failures in hardware and software 
components, but also by an excess of users of the 
applications at higher levels. 

A challenging aspect of anomaly detection in clouds 
concerns the fact that effective methods need to be 
unsupervised [1]. This is because the variety of hardware, 
services, and applications, along with variation in application 
demand generate much more data that can be labelled by 
experts.  

Regarding anomaly detection for IaaS, earlier efforts in 
this direction [2][3] are suitable for small scale private 
clouds, but are not scalable enough to support state-of-the-art 
large-scale data centers that have many orders of magnitude 
more resources to be managed. This is because these early 
approaches assume communication models, such as all-to-all 
that are not scalable, or use methods such as k-Nearest 
Neighbors (k-NN), which have high asymptotic complexity 
and thus cannot generate output in the speed required for 
proper SLA compliance. 

Other approaches for the problem are based on time-
series analysis of the data [1]. These approaches operate with 
the assumption that patterns that are time-dependent emerge 
in the utilization of cloud services. Therefore, the time 
dimension cannot be ignored in the anomaly detection 
process. These approaches are achieving a degree of success 
in identifying anomalies in a single variable (usually, CPU). 
However, it is desirable that multiple attributes (i.e., memory, 
storage, network along with CPU) are considered at the same 
time to reduce the number of false-positives. 

A related problem to anomaly detection is anomaly 
prevention, which requires underlying support systems to 
detect and respond to the anomaly in the earliest possible 
time. This is challenging due to the sheer volume of 
monitoring data generated by large-scale data centers require 
near real-time solutions. PREPARE [4] achieves that for 
private IaaS. However, the suitability of the approach for 
large-scale public clouds is yet to be investigated. 

At a higher layer, PerfCompass [5] has been developed 
with the goal of detecting performance anomalies in 
applications. It tracks frequency and runtime of system calls 
to detect abnormal behavior of applications and to estimate 
the source of the fault as being internal or external to the VM 
hosting the offending service. 

In common with all approaches, there is the need to be 
able to define what an anomaly is and, in case of 
unsupervised learning, finding mechanisms that increase the 
accuracy of the method and provide a timely output. 

Open Problem #1: Dealing with unseen anomalies.  
Most approaches for anomaly detection and prevention in the 
cloud build the anomaly detection models based on the 
probability distribution of previous state information. 
Research is required on a reactive method that can 
dynamically decide when models need to be updated or built.  
Reactive approaches particularly contribute to the anomaly 
detection in real time, especially for the cold start period. For 
example, Self-Organizing Maps can be used in early stages, 
as it is capable of capturing complex system behavior while 
being computationally less expensive than comparable 
approaches such as k-nearest neighbor. In addition, sentiment 
analysis on Web and social networks data can be used to 
correlate the system anomalies with the behavior of web 

differentiate anomalies caused by hardware issues from 
anomalies caused by used behavior. 

IV. WORKLOAD AND PERFORMANCE PREDICTION 
Techniques for prediction can be used in the context of 

cloud computing to help providers to optimize the utilization 
of resources. The rationale behind the idea is that, by 
correctly estimating the future demand for resources (by 
correctly predicting the expected workload of an application 
or service), the right amount of resources that delivery the 
expected SLA with minimum wastage in resource utilization 
can be achieved. 

These techniques, follow proactive approach, contrast 
with reactive approaches used in the management of cloud 
resources. Reactive approaches apply actions to decide the 
right amount of resources after issues with performance are 
detected. These techniques usually apply anomaly detection 
techniques discussed in the previous section. 

Neves et al. [6] developed Pythia, a system that predicts 
the communication needs of a MapReduce application, and 
then reconfigures the network, to optimize bandwidth 
allocation to the application. 

Islam et al. [7] applies neural network and linear 
regression to predict the moment where more resources will 
be necessary, what leads to the need of new virtual machines 
will be required. Thus, the boot process of VMs can be 
initiated before the need for resources, reducing the risk of 
SLA violations. 

Davis et al. [8] investigated the use of linear regression to 
predict resource utilization in clouds. Authors found that a 
weighted multivariate linear regression presented (MVLR) 
low average errors for short-term prediction with trends in 
the time series. Seasonality could be handled with an 
ensemble of scaled Fourier transform, MVLR, and weighted 
regression. 
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Even in the case that system can correctly estimate how 
the load of applications and services will expand or shrink, 
there is still the need to apply corrective actions. This in turn 
requires systems to be able to estimate how changes in the 
underlying infrastructure (e.g., number of machines dedicated 
to an application and amount of CPU, memory, and network 
of such machines) will affect the performance of the elements 
in the upper layers. 

In common among all the approaches, there is the 
assumption that the states of infrastructure-level resources 
(e.g., CPU, memory, disk, and network) are good predictors 
of the state of the applications in the upper layers. This raises 
the first open problem we identify in this area. 

Open Problem #2: Correlation between infrastructure 
performance and application performance. Although 
intuitively one might expect a strong correlation between 
resource utilization at the infrastructure level and 
performance of applications, this assumption is based on too 
many simplifications. Firstly, it fails to consider the true 
nature of applications: complex cloud applications can 
experience stages of intense CPU activities and intense 
communication activity. This can be hard to be captured by 
single variable approaches. Also, the excess of load can be 
caused by some perturbation in the application itself (e.g., 
flash crowd) that cannot be solved solely by infrastructure-
level actions, but may require more complex actions at the 
platform level (e.g., scaling out and load balancing). 
Correlation of data of multiple levels to provide a holistic 
view of the system with the goal of improving performance 
of applications and meeting SLAs is an open question that 
needs to be investigated in more details. 

V. CLUSTERING 
Clustering is an unsupervised learning technique that 

enables grouping of objects by similarity: objects sitting in 
the same cluster are more similar among themselves than 
objects in different clusters [9]. 

Clustering has been applied in the context of cloud 
computing to enable optimization of execution of tasks (i.e., 
requests for the execution of applications, usually batch 
applications). In particular, clustering of tasks and jobs (i.e., 
group of tasks that are handled as a single unit) obtained from 
traces generated by Google have been used for identification 
of similarities regarding resources requirement and execution 
time [10][11][12]. This helps in the selection of machines 
where tasks should be executed and to estimate the execution 
time, an activity that is required to enable optimal scheduling 
of tasks in the available resources. 

Clustering has also been used to help in the problem of 
placement of large amounts of data required by scientific 

applications hosted in the cloud [13]. The aim of the work is 
reducing the amount of data movement required by the 
application, which also helps in reducing execution time of 
applications. Indirectly, it also helps in reducing network 
usage of data centers, what also contributes to improve 
overall performance of applications hosted in the data center. 

In a similar way, clustering has been also shown to be 
successful in helping in the problem of live migration of 
virtual machines [14]. Live migration consists in transferring 
a running virtual machine from one physical server to another 
while it is running (i.e., without perceivable interruption on 
the services provided by the applications running on the VM) 
[15]. In this particular approach, the goal was inter-cloud live 
migration, which means that the source and destination 
servers where located in different data centers. Clustering has 
been used to determine which machines should be 
simultaneously migrated. 

Open Problem #3: Other applications of clustering for 
resource management in cloud data centers. So far, 
clustering has been much less explored than prediction and 
regression. Given the scale of cloud infrastructures, 
clustering may be a valuable tool in reducing the complexity 
of management, by helping actions to be taken on a cluster-
basis rather than on more fine-grained basis. Therefore, if 
meaningful ways of classifying resources can be found, that 
are more coarse-grained than per user or per resource type 
(things that are known a priori and therefore do not require 
application of clustering), it is likely more efficient resource 
management might be achieved. 

VI. AN ARCHITECTURE FOR ANOMALY DETECTION AND 
REACTION IN IAAS CLOUDS 

Decisions towards selecting the appropriate cloud 
provider, the type of resource for a given application, number 
of cloud resources, and the moment when such resources 
should be requested have to be made by the user. Together, 

dynamic cloud 
p There is a lack of research/advances made in 
provisioning driven by prediction, detection, and reaction to 
anomalies. This is due to the system administrator's inability 
to scale the system if an abnormal peak of demand occurred 
before the development of cloud computing [16][17]. As 
cloud computing enables the infrastructure to be dynamically 
scaled, a new opportunity for achieving high Quality of 
Service (QoS) emerged. At the same time, as utilization of 
cloud resources incurs financial cost, scaling of resources 
should be the minimum possible that satisfies the business 
needs that is highly dynamic and unpredictable.  
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The high level architecture of the framework is shown in 
Figure 1. The dashed lines limit the interface of the 
architecture, which is composed of Anomaly Prediction, 
Anomaly Detection, Workload Prediction, Deployment 
Planner, Provisioning and Resource Allocation, and 
Contextual Information. Besides these core elements of the 
architecture, the following are sources of information and 
external systems that support such architecture: 

 Contextual information: data used by our proposed 
system architecture to make decisions are supplied 
from different sources, such as: logs from the 
infrastructure operations (which may indicate 
unexpected behavior in the system); information 
about release of new products (that may cause an 
extra load of consumers interested in learning or 
buying such products); business metrics related to 
expected performance parameters of the system; and 
data from social networks (that may indicate the 
sentiment of customers to a new product and may 
affect the input workload of the system).  

 Baseline workloads: the baseline workloads are built 
with the patterns observed from historical data, and 

enable the determinations of fluctuations in the 
system input along the time. Such workloads provide 
insights on how the demand changes according to 
the period of the day, day of the week, season, 
months, etc. 

 Current Workload: this is the observed workload in 
the system in a given moment and it is acquired via 
monitoring tools. This information is constantly 
logged as historical data for future use. The 
framework uses this log to emulate real time loads to 
our proposed framework in order to enable the 
detection of ongoing anomalies.  

 IT Infrastructure: the target IT infrastructure for our 
proposed framework consists of a hybrid cloud, 
composed of both public cloud providers and in-
house infrastructure owned by the cloud service 
provider as well as legacy systems (either hardware 
or software) that are not cloud-ready. 

A. Anomaly Prediction 
The anomaly prediction module is responsible for 

estimating a possible anomaly in the workload to be received 
by the cloud service provider in a future moment and the 

IT Infrastructure

Contextual
Information

- Business metrics
- Product launches

Anomaly Prediction

Anomaly Detection Deployment Planner

Current Workload Provisioning and
Resource Allocation

Baseline Workloads

Workload 
Prediction

Legacy Systems

Historical 
Data

Private 
Cloud

Public 
Cloud

 
Fig. 1. Architecture for anomaly detection and reaction in clouds. 
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confidence level in the occurrence of such event. It has two 
main sources of information: the baseline workloads, which 
supply an estimation of a typical workload for a particular 
time, day, and period of the year; and contextual information. 
This log data is used to build an analytical model using 
Markov models. The Markov model can be parametrically 
changed to create anomalous behaviors to study the 
robustness of our proposed system. 

Different sources of data may have different degrees of 
structure, and they can be available in different formats. 
Modelling them as Markov models overcome compatibility 
issues such as data formats and dimensionality. Therefore, 
the following actions are essential for enabling a correct and 
timely operation of the Anomaly Prediction module: 

 Selection of appropriate sources of data for 
prediction; 

 Filtering of data, so only data from relevant sources 
are considered for the prediction and modelling; 

 Extraction of data of interest from the filtered data, 
including Big Data analysis and data mining; 

 Actual prediction of the expected workload; 
 Actual prediction of failures in the system; 
 Determination of prediction confidence levels. 

Another important aspect to be considered during the 
anomaly prediction is that the result of the prediction must be 
timely, so that there is enough time for the rest of the 
components of the system to react.  

B. Anomaly Detection 
Because predictions are not always accurate, and 

unpredictable circumstances may affect the workload beyond 
a level that can be predicted, a second line of defense against 
loss of performance caused by anomalous workloads or 
failures in the system needs to be considered. 

In our framework, this second line of defense is carried 
out by the Anomaly Detection module. Operation of this 
module is based on the workload observed in a given time 
and baseline workloads. When these two measurements 
diverge by a specific margin, an alarm is triggered by this 
module to the Workload Prediction module. 

This is achieved with anomaly detection algorithms that 
analyze the described data to make a decision about the 
severity of the anomaly and the likelihood of its transiency. 
This is important because, if the anomaly is expected to incur 
for a short period of time, it is possible that it ceases before 
the environment finishes its scaling process to handle it. 
Furthermore, if the anomaly is not severe, it is possible that 
the available resources are able to handle it without the need 
of more resources. In this case, no alarm should be triggered 
and the system should keep its current state. 

C. Workload Prediction 
The earlier modules (Anomaly Detection and Anomaly 

Prediction modules) focus in determining patterns that may 
lead to an increased (or decreased) interest of users to 
applications hosted by the cloud service provider, an 
estimation of such interest, and the risk of failures in the 
system leading to anomalous behavior of the systems. It does 
not directly translate to a quantifiable measurement of 
performance of the system because of the unexpected 
workloads. 

The Workload Prediction module carries out the 
translation of observed or unexpected variance in estimations 
to the business impact of possible disruptions.  To achieve 
this, this module quantifies the expected workload in terms of 
requests per second along a future time window and 
combines this information with business impacts. Therefore, 
the output generated by this module (and the algorithms to be 
developed as part of its conception) is concrete business 
metrics that have value to managers of IT infrastructures.  

D. Deployment Planning 
The Deployment Planning component of our framework 

is responsible for advising actionable steps related to 
deployment of resources in a cloud infrastructure to react to 
failures or anomalies in the system. Automation engine in the 
Provisioning and Resource Allocation module of the system 
executes these steps. 

The tasks performed by this module are challenging as 
the goal of such plan is to mitigate the effect of variations in 
the system that disturb its correct operation. Correcting such 
anomalies means re-establishing a QoS level to users of the 
affected platform. However, enabling QoS requirements 
driven execution of cloud workloads during the provisioning 
of resources is a challenging task. This is because there is a 
period of waiting time between the moment resources are 
requested and the provision of resources by the cloud 
providers and the time they are actually available for 
workload execution. This waiting time varies according to 
specific providers, number of requested resources, and load 
on the cloud. 

As our framework cannot control waiting times, this time 
has to be compensated by other means. Possible approaches 
are increasing the number of provisioned resources to speed 
up the workload delayed because of delays in the 
provisioning process or to predict earlier the resource demand 
albeit with low accuracy and probability. However, the first 
solution may not resolve the problem for most web 
applications because users affected by the delays are likely to 
abandon the access to the service, which results in loss of 
opportunity for revenue generation in the affected system. 
Another challenge for the deployment planning process 
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concerns selection of the appropriate type of resource to be 
allocated. Our second approach overcomes the problem but 
may be slightly more expensive due to potential 
overprovisioning of resources. As our proposed algorithms 
are based on learning techniques, these methods are likely to 
improve their quality over the time by observing the 
performance of the system. 

Different cloud providers have different offers in terms 
of combination of CPU power, number of cores, amount of 
RAM memory, and storage of their virtual machines. 
Providers also offer multiple data centers in different 
geographic locations. This affects the expected latency for 
communication and data transfer between users and resource 
and consequentially observed response times. Therefore, the 
Deployment Planning module needs to describe resource in a 
vendor-agnostic way, so the Provisioning and Resource 
Allocation module can translate the description to a concrete 
vendor offer once a vendor is selected. 

E. Provisioning and Resource Allocation 
This module is responsible for the enactment of the 

provisioning planning generated by the framework. It 
interacts with different public cloud providers and resource 
management system of the public cloud in order to enable the 
realization of the planning decision performed by the 
Deployment Planner module. Furthermore, different 
combinations of features have different costs. In order to 
meet user budget constraints, the planning algorithm has to 
take into account the combination of resources that meet 
performance requirement of the estimated workload at the 
minimum cost. More specifically, this component has the 
following functions: 

 Translation of resource requirements from a vendor-
agnostic description to specific offers from existing 
cloud providers; 

 Selection of the most suitable source(s) of resources 
based on price, latency, resource availability time, 
and SLA; 

 If possible, perform automatic negotiation for better 
offers from providers with compromising SLA. 

 
Open Problem #4: Leveraging existing Big Data ecosystem 
to implement advanced analytics solutions supporting Big 
Data-enhanced cloud computing. There is huge ecosystem of 
(sometimes competing) Open Source technologies that are 
widely adopted for all layers of Big Data analytics. This 
include Hadoop/YARM (MapReduce and other parallel 
programming models), Storm (stream processing), Spark 
(analytics), Pig and Hive (high level query languages), 
Mahout (high level analytics tasks), and Cassandra, 
CouchDB, BlinkDB, HDFS (file systems and NOSQL 

databases). The question is how to leverage these tools to 
enable complex analytics that enables SLAs to be met with 
minimum resource consumption. 

VII. PERFORMANCE EVALUATION 
In this section, we present an evaluation of the 

conceptual framework described in the previous section. In 
particular, we focus in the Workload Prediction module, 
which is the core of the proposed framework.  

This evaluation experiment leverages the methodology 
we utilized in our earlier work [18]. However, it focusses on 
different objectives, and utilizes a different dataset from the 
same source. 

The workload utilized has been obtained from the page 
view statistics from all Wikimedia projects 1  on 1st of 
September, 2014. The information is organized by the 
language of the accessed document (web page, figure, text 
file, etc.). We use the data about http access to Chinese 
language documents. To gain insight of the traffic for each 
project for the whole day we analyzed traces which consist of 
24 compressed files each containing 160 million lines 
(around 8 GB in size). We utilized Map-Reduce on a cluster 
of 4 nodes to calculate the number of requests more 
effectively and faster. 

The traces provide hourly access information and they 
were converted to access per second using a log-normal 
distribution, and then consolidated in 5-seconds intervals for 
processing purposes. We utilize the first 17 hours for training 
purposes and the next 8 hours for testing. Because of the 
time-series nature of the workload, we utilize the ARIMA 
method [19] for fitting and prediction. This method 
decomposes the time-series into three components. The first 
is an Autoregressive component of order p that models a 
point as a linear combination of p previous observations. This 
component can be Integrated d times to eliminate stationarity 
(as ARIMA processes need to be non-stationary). The third 
component is a Moving Average of order q component that 
models a point as a linear combination of the q previous 
observation errors. 

The fitting process is carried out with different (p, q, d) 
parameters. The module needs to use the values that 
minimize some error measurement (for example, Mean 
Square Error) s accuracy and 
these value are likely to be different for different workloads 
(which, in the context of this experiment, are the different 
languages of documents accessed by users). Errors are 
presented in Table I, whereas Figure 2(a) show the effect of 
different parameters in the fitting process for all the training 

                                                           
1 Available at http://dumps.wikimedia.org/other/pagecounts-raw/ 
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period. To enable a better visualization, Figure 2(b) presents 
a 1-hour snapshot of the same data. 

Next, we evaluate the effect of the difference in accuracy 
among the models in the quality of the provisioning and 
consequently in the Quality of Service to end user. We 
utilized the CloudSim simulator [20] to model a data center 
with 500 computers, each with 8 cores, 16 GB of RAM and 1 

TB of storage. In the simulation, workload has been 
submitted according to the traces and the provisioning has 
been carried out according to the prediction of each mode. 
Provisioning is carried out with virtual machines that use 1/8 

of the available resources of the host, so each VM has 
exclusive access to one core. A routine for adjusting the 
provisioning is invoked every 5 minutes for a period of 5 
minutes ahead, so there is enough time for new VMs to be 
started if necessary. Each request is assumed to take 100ms 
and the target QoS for response time is 500ms. 

The provisioning is carried out based on the estimated 

load by the different ARIMA models, following the 
procedure introduced in our previous work [21]. The output 
metric are the number of VM hours require to process the 
workload (normalized by the number of hours required to 

 
(a) 

 
(b) 

 
Fig. 2. Accuracy of different ARIMA models. (a): all the training period. (b): 1 hour snapshot. 
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meet the QoS via static provisioning). Furthermore, because 
prediction techniques are subject to inaccuracies, we also 
report the normalized number of requests rejected due to 

prediction errors. 
Results are shown in Table I, which shows that a better 

fitting results in a better resource utilization: although the 
model with smallest MSE does not result in the minimum 
resource usage, it results in the minimum rejection rate, what 
means that the number of resources provisioned was the one 
that, among the alternatives, provided the best QoS: two 
models led to smaller number of resources provisioned, at a 
cost of higher rejection (because the available machines were 
not enough to handle all the requests) whereas one model 
resulted in higher VM utilization and slightly higher rejection 
rate, meaning that extra VMs were not provisioned in 
appropriate times. 

VIII. FUTURE DIRECTIONS 
The complete realization of the potential of proposed 

architectural framework and goals require further 
investigation in the area of anomaly detection and prevention. 
The key challenges are outlined below. 

 Dealing with CPU spikes: efficiently dealing with 
CPU spikes requires the availability (or 
development) of the resource consumption model of 
the application that can efficiently detect CPU load 
anomalies in a timely manner. Workload anomaly 
detection methods that use Markov chain models, 
although having several advantages, are not capable 
of dealing with CPU hogs as they are time 
consuming. One can investigate a regression-based 
transaction model to detect anomalies in a timely 
manner. Alternatively, one can look into Deep 
Learning approaches that have shown good potential 
in detecting anomalies in cloud environments. 
However, they have to be further improved to handle 
unseen anomalies such as One-Class SVMs. 

 Root cause analysis: in real-world scenarios, 
changes in one application tier often can affect other 

tiers. Therefore, mining dependencies between 
anomalies of different application tiers is another 
promising research direction. Once obtained, they 
can be modeled and stored with the help of 
knowledge representation languages in the system. 
The knowledgebase can be later used to identify the 
root cause of anomalies or detect anomalies faster. 

 System metric anomaly detection versus workload 
anomaly detection (black, gray, or white box): it 
would be interesting to compare the performance of 
systems with approaches that perform anomaly 
detections on workloads (request arrival time) or 
systems that consider resource consumption 
anomalies. Workload anomaly detection tends to 
provide an effective method when applied in web 
applications. The reason is that it enables prediction 
of how the load transfer from one node to another 
and therefore how an anomaly in load and resource 
consumption in one tier can lead to anomaly in the 
next tier. 

 Multi-resource anomaly detection: considering 
multiple resources in anomaly detection has several 
advantages, as it is important to find out which 
resource contributes more to anomalies that are 
detected in application QoS. Considering only one 
resource at a time causes an unnecessary delay that 
can be prevented by checking distances among ranks 
of metrics and triggering scaling of CPU and 
memory simultaneously.  

IX. CONCLUSIONS 
The sheer volume of structured and unstructured data 

generated by machines and humans give raise to the Big Data 
era. Businesses in many sectors such as finance, marketing, 
retailing, insurance, and real estate are just starting to 
leverage these data for commercial advantage. Similarly, 
governments and organizations are starting to build smart 
cities and e-health solutions that leverage Big Data to 
improve quality of life of the population. It is natural that the 
ICT industry which supplies the underlying capability to 
enable Big Data would also leverage it for its own benefit. 

In this paper, we presented the challenges and 
opportunities of enhancing the operations of cloud data 
centers via Big Data analytics. Cloud data centers usually 
contains thousands to tens of thousands of physical 
(computing and networking hardware) and virtual (virtual 
machines and virtualized network functions) elements that 
are used by a variable number of users subject to SLAs. To 
enable services to comply with SLAs with minimum resource 
usage, techniques such as anomaly detection and prediction, 

TABLE I  
PERFORMANCE OF DIFFERENT ARIMA MODELS. 
Model MSE Norm. VM 

hours 
Norm. 

rejection 
ARIMA (1,1,1) 82.89775 0.7178 0.94 
ARIMA (1,2,1) 55.75667 0.6518 0.92 
ARIMA (2,1,2) 82.93857 0.6158 0.96 
ARIMA (2,2,2) 82.80875 0.58953 1.00 
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regression and prediction of workloads and performance, and 
clustering can be used. Each of these techniques has been 
discussed, and an architectural framework for anomaly 
detection and prevention has been proposed. 

Finally, a list of open issues and future research 
directions are identified. They show that there are still many 
open questions that need to be addressed to enable cloud 
infrastructures to get the most of Big Data analytics. 
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