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Sequential Meta-Heuristic Approach for
Solving Large-Scale Ready-Mixed
Concrete–Dispatching Problems

Mojtaba Maghrebi, M.ASCE1; S. Travis Waller, M.ASCE2; and Claude Sammut3

Abstract: Finding a practical solution for the allocation of resources in ready-mixed concrete (RMC) is a challenging issue. In the literature,
heuristic methods have been mostly used for solving the RMC problem. The introduced methods are intended to find a solution in one stage
but the amount of infeasible allocations in their initial solutions is their main challenge, as these infeasible solutions need postprocessing
efforts. This paper introduces a sequential heuristic method that can solve RMC problems in two separate stages without any need for
postprocessing. It was found that the depot-allocation problem is more complicated than truck allocation and the combination of these two
subproblems threatens the efficiency of the solution. Another contribution of this paper is proposing a new formulation for minimizing the
number of trucks. A genetic algorithm (GA) has been selected for implementing the proposed idea and for evaluating the large-scale data-set
model. The data set covers an active RMC for a period of 1 month. The comprehensive tests show that sequential GA is more robust than
traditional GA when it converges 10 times faster with achieved solution at 30% less cost. DOI: 10.1061/(ASCE)CP.1943-5487.0000453.
© 2014 American Society of Civil Engineers.

Introduction

In a ready-mixed concrete (RMC), typically fresh concrete is auto-
matically mixed based on orders and is then loaded into trucks. A
large-scale RMC has several batch plants for mixing concrete and sev-
eral trucks with different sizes for supplying the fresh concrete to the
customers. In a RMC-dispatching room, decisions are made to supply
concrete to each customer from an available source and with a specific
truck. The main objective of dispatching is to find an effective way
of allocating resources at least cost. Theoretically, this resource-
allocation problem can be modeled mathematically. However, acquir-
ing the optimum solution in such a complex and large-scale problem
is computationally intractable and characterized as a classic nondeter-
ministic polynomial-time hard (NP hard) problem. This means that no
existing solution can solve these problems in polynomial time. To
overcome this problem, heuristic methods have been widely used in
the literature, which will be comprehensively discussed in the follow-
ing section. The quality of the introduced heuristic methods cannot be
assessed due to the lack of the optimum solution. However, by com-
paring the introduced heuristic methods, more effective techniques
can be found based on their performances. Unlike most of the similar
introduced techniques in the literature, it is expected that the proposed
sequential technique solves the RMC-dispatching problem accurately
and fast as well as without any need for postprocessing efforts.

Literature Review

Soft computing plays a key role in solving practical problems in a
wide variety of disciplines such as image processing (Huang and
Chau 2008), hydrology (Taormina et al. 2012; Wu et al. 2009), data
mining (Zhang and Chau 2009), environmental engineering (Muttil
and Chau 2006), and construction management (Chau 2004). In
resource management, finding a near-optimum solution for dis-
patching problems is a common issue with many disciplines in
engineering such as electric power (Pal et al. 2013), logistics (Yan
and Zheng 2013), economics (Bijami et al. 2013), computer science
(Wang et al. 2013), biomedicine (Chen et al. 2013), transportation
(Lin and Ku 2013), and construction management (Tao and Tam
2013). Dispatching is a broad area but in this paper, as aforemen-
tioned, the authors have focused solely on concrete delivery.

There is not a considerable amount of published literature on
RMC. Nevertheless, in the last few years, the amount of research
in this area has grown considerably. Most of the research has been
devoted to mathematical modeling and heuristic approaches. The
RMC can be modeled as a special vehicle-routing problem (VRP;
Naso et al. 2007; Schmid, unpublished data, 2007; Chen et al.
2009). The main differences between VRP and RMC that must be
taken into the account are (1) a truck can only supply concrete to
one customer on each trip, whereas in VRP a truck normally can
supply more than one customer, and (2) concrete cannot be hauled
for a long time because fresh concrete is a perishable material.
Based on these differences, a set of new constraints must be added
to the original VRP formulation. In the “Methodology” section,
when the structure of the method is described, all required con-
straints will be discussed and applied in the proposed algorithm.
Several attempts have been made to model the RMC dispatching
effectively (Asbach et al. 2009; Feng et al. 2004; Naso et al. 2007;
Yan et al. 2008; Schmid et al. 2010; Durbin and Hoffman 2008;
Maghrebi et al. 2014c, d). It has been proved that a RMC-
optimization problem is a NP-hard problem (Asbach et al. 2009;
Maghrebi et al. 2013a, 2014a; Yan et al. 2008). Therefore, to deal
with this problem, heuristic methods have been widely used in the
literature. The implementation of genetic algorithm (GA) has been
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highlighted more than other heuristic methods. Garcia et al. (2002)
modeled the RMC for a single depot and solved it by optimization
and GA. However, their approach is not practical because some
realistic constraints were relaxed and considered only small instan-
ces. Feng et al. (2004) also modeled a single-depot RMC and
assumed some parameters such as loading/unloading times as fixed
parameters. The instances that have been considered by them are
much smaller than the instances that are used in this paper. Naso
et al. (2007) modeled a more realistic RMC problem by considering
multidepots and penalizing the waiting times (loading/unloading)
in the objective function. They also introduced a GA that is very
similar to the methods presented earlier by Garcia et al. (2002) and
Feng et al. (2004). However, the instances that Naso and colleagues
have tested are larger than previous research. Lu (2002) and Lu
et al. (2003) developed a software package called HKCONSIM
to deal with real RMC problems. It is mainly concerned with
the discrete-event simulation (DES) tool, but in its recent versions
it was coupled with heuristic solvers such as GA (Cao et al. 2004;
Lu and Lam 2005; Ming and Hoi-Ching 2009), particle swarm
optimization (PSO; Lu et al. 2006; Wu et al. 2005), and real global
positioning system data of trucks (Lu et al. 2007), thus making it a
more powerful tool. Feng and Wu (2006) and Cheng and Yan
(2009) had a similar approach by integrating DES with a fast messy
GA. Silva et al. (2005) compared GAwith ant-colony optimization
(ACO) and suggested a GA–ACO method for solving RMC prob-
lems. Pan et al. (2010) proposed an improved discrete PSO (DPSO)
for solving RMC-dispatching problems and recently Srichandum
and Rujirayanyong (2010) compared bee-colony optimization
(BCO) and tabu search (TS) with GA in this context. Despite
developments in this area, the solution structure among most intro-
duced methods is pretty much the same, especially in the GA-based
method in which the chromosome structure consists of two merged
parts: the first part defines the sources of deliveries, and the second
part expresses the priorities of customers. The solution structure in
these techniques is quite simple and easy to understand. However, a
cumbersome computing process must be completed in each itera-
tion to check the constraints or after achieving a premature solution.
In this paper, the authors introduce a robust constructive heuristic
method, which is supposed to be faster and more accurate than
similar methods.

In the literature, rather than GA some other approaches also
have been studied that will be discussed briefly in the text that
follows. Yan et al. (2008) introduced a numerical method for solv-
ing the RMC-optimization problem by cutting the solution space
and incorporating the branch and bound technique and the linear
programming method. Lin et al. (2010) modeled the RMC as a
job-shop problem. Yan et al. (2012) used decomposition and relax-
ation techniques coupled with a mathematical solver to solve the
problem, whereas Payr and Schmid (2009) applied variable neigh-
borhood search to deal with RMC-optimization problems. Asbach
et al. (2009) made the mathematical modeling much simpler by
dividing the depots and customers into subdepots and subcusto-
mers. They also used large-scale instances for testing their intro-
duced large neighborhood search and decomposition methods.
Recently, Maghrebi et al. (2014b) presented a method for solving
RMC-dispatching problem by Benders’ decomposition.

Methodology

A decision about a delivery in RMC dispatching (with hard time
window) covers the following three main clauses: (1) source,
(2) destination, and (3) truck. If a soft time window is accepted,
then the fourth clause would be time. As mentioned earlier,

heuristic methods in the literature achieve the solution by defining
the source and prioritizing customers. For example, in GA-, ACO-,
DPSO-, BCO-, or TS-based methods, the solution array consists
of two equal merged parts where the length of each part is equal
to the number of customers and a cell in each part belongs to a
customer. This means that each customer has two cells in solution
array that respectively express the source and priority of each cus-
tomer. When the solution is achieved, the feasibility of the solution
is checked and the infeasible solutions are allocated by out sources
or idle resources. Although there are different versions of this ap-
proach in the literature, most steps of the introduced methods are
pretty much the same. Truck allocation is one of the challenging
issues in these methods, even if truck allocation is embedded in the
solution such as that in Lu et al. (2006). If the heuristic approach is
unable to find a feasible solution, there is not any control for the
number of outsourced trucks. This issue is considered in the pro-
posed model but is worth discussion in a separate publication.

Based on a comprehensive review of the related literature, the
authors realize that there is a potential for proposing a more robust
meta-heuristic method to deal with complex RMC problems. The
authors believe that despite good developments in this area, a faster
and more accurate method can still be introduced.

To maintain consistency throughout the formulation and the
algorithm, all required parameters are defined in the “Notation
List” section. The body of formulation that is used for modeling
the optimization problem is very similar to the method introduced
by Asbach et al. (2009). However, a new formulation is introduced
for evaluating the solutions as well as for minimizing the number
of trucks

Minimize
X

u

X

v

X

k

zuvkxuvk −
X

c

βcð1 − yÞc ð1Þ

Subject to the following:
X

u∈us

X

v

xuvk ¼ 1 ∀ k ∈ K ð2Þ

X

u

X

v∈vf
xuvk ¼ 1 ∀ k ∈ K ð3Þ

X

u

xuvk −
X

j

xvjk ¼ 0 ∀ k ∈ K; v ∈ C ∪ D ð4Þ

X

u∈D

X

k

xuvk ≤ 1 ∀ v ∈ C ð5Þ

X

v∈C

X

k

xuvk ≤ 1 ∀ u ∈ D ð6Þ

X

u∈D

X

k

qðkÞxuvk ≥ qðcÞyc ∀ c; v ∈ C ð7Þ

−Mð1 − xuvkÞ þ su þ tuvk ≤ wv − wu ∀ ðu; v; kÞ ∈ E ð8Þ

Mð1 − xuvkÞ þ γ þ su ≥ wv − wu ∀ ðu; v; kÞ ∈ E ð9Þ

The objective function [Eq. (1)] forces optimization to find fea-
sible solutions for all customers and penalizes if a feasible solution
for customer (c) cannot be found by applying zero to yc. Therefore,
due to the large value of βcðcÞ, optimization attempts to avoid un-
supplied customers. Eq. (2) ensures that a truck at the start of the
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day leaves once from its base and similarly Eq. (3) necessitates re-
turn of a truck to the depot/its home at the end of the day. In reality,
a truck arrives at either a depot or a customer then leaves that node
after loading/unloading. This concept is called conservation of flow
and Eq. (4) ensures this issue if u ∈ C, then (v ∈ D and j ∈ C);
however, if u ∈ D, then (v ∈ C and j ∈ D ∪ vf). In this formu-
lation, a depot is divided into a set of subdepots based on the num-
ber of possible loadings. Similarly, a customer is divided into a set
of subcustomers according to the number of required deliveries.
To simplify the text, from here on a depot means a subdepot, which
can load a truck only at a specific time and similarly a customer
means a subcustomer who requires a delivery only at a specific
time. Therefore, Eqs. (5) and (6), respectively, certify sending a
truck only to a customer and a depot only supplies a customer.
Eq. (7) checks demand satisfaction for customers. Eqs. (8) and (9)
are designed to control timing issues. Eq. (8) ensures that concrete
will be supplied to customers within the specified time, and sim-
ilarly Eq. (9) ensures that the travel time for each customer will not
exceed the permitted time for delivery (ϒ) because fresh concrete is
a perishable material and it is not possible to haul it more than (ϒ),
which varies according to the type of concrete.

Among the introduced heuristic methods in the literature (such
as Naso et al. 2007; Yan et al. 2008; Yan and Lai 2007), any in-
feasibilities in achieved solutions are mostly adjusted by outsources
or idle resources. This might be a quick method but the number of
unscheduled jobs based on the initial solution is a major challenge
for these techniques. The authors realize that the structures of those
solutions (before decoding and required adjustments) cause this
problem. As discussed in the prior section, the structure of the
solution in the introduced heuristic methods consists of two parts.
The first part finds the best depot for each customer, and the second
part provides a hint for fleet allocation by prioritizing customers.
The infeasibility occurs when there is no match between the ac-
quired priorities and available resources. In these circumstances,

supplying concrete from idle/loaned resources is mainly used to
reduce the infeasibilities of the initial solution.

This paper proposes a new approach for constructing the solu-
tion structure while heuristic approaches are implemented. This
approach is more robust and accurate. The authors discovered that
finding a solution for depots needs much more iteration than find-
ing a solution only for truck allocation. Moreover, in heuristic
methods, by increasing the number of variables, the complexity of
the search is increased exponentially. This means that the chance of
converging to a near-optimum solution drops by increasing the sol-
ution space. This issue is evaluated in the following section.

This paper suggests that to separate the RMC problem into two
detached problems that although are solved separately, they are
looking for finding a common solution. This technique consists of
two one-dimensional arrays with a length of i, where i is equal to
the number of customers. The first array is designed for finding a
solution for the supplier depot of each customer, and the second
array provides a solution for allocating a truck to each customer.

As with the discussed optimization method, instead of combin-
ing a few depots and a number of projects into the model, sets of
subdepots and subcustomers are defined respectively based on the
number of available loading times and number of required deliv-
eries. In addition, although this paper focuses only on GA among
the heuristic methods, the proposed approach can be applied to the
other similar heuristic approaches such as ACO, DPSO, BCO, or
TS. This can be done by changing only the evolutionary algorithm
with the proposed structure. All the mentioned techniques in the
RMC domain are dealing with discrete solution spaces. Therefore,
the proposed structure for RMC-dispatching problem can be solved
with different discrete evolutionary techniques. The authors do not
intend to add anything new to GA (Holland 1975); however, this
paper does seek to investigate decreasing the complexity of the
dispatching problem by splitting the main problem and solving it
incrementally. The steps of the GA method are depicted in Fig. 1.

False

Generate 
initial 

population

Select 
Parents

Converged

Crossover Mutation
Evaluate  

Population

Find Best 
Solution

Prune 
Population

Return 
Solution

True

C
rossover

M
utation

Fig. 1. Typical GA process
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According to this figure, generating an initial population is the first
step. While this is expected to generate random solutions for an
initial population, the authors modified the random process to avoid
some computation tasks. This issue will be discussed in a following
section. The next step is selecting a parent, which this research uses
as a resampling method. This means that there is an equal chance
for selected and nonselected instances in the next samples. After
each selection, the selected chromosomes are put back into the pop-
ulation and have a chance of being selected again. The next step
is crossover, which is also called mating. This step aims to find a
better solution from more than one chromosome and the possibility
of finding a better solution comes by the combination of at least two
chromosomes. One-point crossover (Poli and Langdon 1998) is
used in this research, which randomly selects a crossover point
within two chromosomes and then interchanges their parts. The fol-
lowing task is mutation, which provides an opportunity for one or
more genes to change their values. This diversity can lead to a faster
convergence (Srinivas and Patnaik 1994). Crossover and mutation
lead to producing a new generation, which is evaluated in the next
stage. Based on an assessment that is conducted in this section, the
chromosomes are sorted and the best solution is selected. If the
achieved solution satisfies the threshold, the process is terminated;
otherwise, the generation is pruned by maintaining the top chromo-
somes and eliminating the weak chromosomes. The process is re-
peated by new generation until the threshold is satisfied. In this
paper, convergence between the best solutions among generations
is used as a threshold. Two issues are critical when it comes to the
expected solutions, namely, feasibility and reduced cost. The factor
of infeasibilities in the solution is taken into account by applying
a large penalty for each impractical allocation. This forces GA to
avoid infeasible solutions, which is also the first strategy. This leads
to a rapid pruning of very weak solutions from the population.
Then, when the impact of infeasible solutions has vanished, GA
iteratively must look for better solutions from the available gener-
ation. In such heuristic techniques, there is no proof of how much
the achieved results are optimum. Therefore, this research intends
to let GA run until there is no significant change in its performance
over a certain number of iterations.

Tactical Solution

For the first separated problem, which is finding a near-optimum
solution for depot allocation, Fig. 2 has been designed. This pro-
vides a list of i depots for i customers. According to this method,
it is not necessary to check the feasibility of the solution for Eqs. (4)
and (5). These constraints attempt to ensure that a depot is used
once and a depot is allocated to each customer. Although the algo-
rithm does not violate any of these techniques in the initial popu-
lation, these constraints must be checked after crossover and
mutation. After the crossover, there is 5% chance for mutation and
this can be applied to each generation among the newly generated
solutions. Eqs. (8) and (9) play a key role in these phases. Their job
is controlling the timing issues. The demand satisfaction [Eq. (4)] is
not directly checked in this phase; however, it is indirectly taken
into account by applying a penalty for infeasible allocations in
the fitness function. This will be considered in the next section
when fleet allocation is described. For evaluating the solutions,
a fitness function, which is shown in Eq. (10), has been designed.
This assesses two parameters, namely, cost and infeasibilities. For
cost, it calculates the sum of distances between allocated depots and
customers. The second clause of Eq. (10) calculates the number
of infeasible allocations; multiplying this value with a big constant
(M) forces the model to avoid unsupplied customers. The iteration

in this stage is stopped when the solution is converged at a rate
equal to or lower than 0.001 between the last (2 × i) generations
and also the number of infeasibilities in the last (2 × i) solutions is
equal to zero. The process in i × 500 iterations is terminated if both
mentioned criteria do not satisfy

X

i

DisðDAi; iÞ þ
X

i

ð1 − DVIiÞM ð10Þ

Operational Solution

In this stage, the authors try to find a doable truck allocation for
achieved depot allocation from the preceding stage. The algorithm
that is used in this stage is very similar to Fig. 2, with the exception
that a truck can be allocated to more than one customer. Therefore,
if k is the number of available trucks, then each gene can accept a
random value between 0 and k. As with the previous stage, this
structure requires fewer controlling efforts. For the remaining con-
straints that are not associated in the solution, Eqs. (2)–(4) do not
need to be checked because the proposed solution for truck allo-
cation covers them. According to the available database, each truck
must go back to its base at end of the day, so already Eq. (3) does
not need to be considered. The trucks’ starting points [Eq. (2)] also
need not be considered because starting points are depots and
a depot is only allocated to a customer and subsequently a truck
is allocated to a customer. Similarly, this applies for Eq. (4), which
controls the conservation flow. This is the most crucial part in
this method. Therefore, rather than Eq. (8), which is very straight-
forward, a combination of Eqs. (4) and (8) must be considered
simultaneously. Possibly, the solution is that a set of customers is
allocated to each truck. Then the feasibility of this allocation must
be checked through all the customers and the allocated depots for
each truck. For example, Truck number 1 is allocated to C1,C5, and
C10 and, respectively, D10, D33, and D50 are assigned depots for
supplying concrete to C1, C5, and C10. In this stage, rather than
checking the timing constraints between (D10 − C1), (D33 − C5),
and (D50 − C10), the arcs between (C1 −D33) and (C5 −D50) also
must be controlled when the trucks are unloaded at a customer and
travel to a depot for loading. The fitness function of this stage is
designed as Eq. (11) for evaluating all populations. Rather than
feasibility and cost, it controls the number of used trucks as well.
The first clause calculates the distances that trucks travel between
depots and customers. The second clause incorporates the traveled
paths between customers after unloading and succeeding depots.
The third clause takes the infeasibilities into account, whereas the
fourth clause considers the number of used trucks. Both of the two
last parts of this equation exert penalties with the difference that M
is much larger than N, and N is much larger than the sum of the
traveled distances. The originally acquired solution must be fea-
sible and able to be used with the least cost. Therefore, GA tries
to find a practical solution and then attempts to cut the costs. In this
paper, the indirect costs of a truck are considered for defining the
value ofN. This forces GA to find a solution with fewer trucks. The
threshold for this part is exactly same as the threshold used for
(algorithm number 1)
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Fig. 2. Algorithm of depot allocation
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Results and Discussion

In this section, the proposed method is tested with a real database.
The achieved results are then compared against a random solution
and a GA method (Maghrebi et al. 2013b), which acquires a sol-
ution in a one-piece chromosome. Among the introduced GAmeth-
ods in this context, the method that was introduced by Maghrebi
et al. (2013b) requires less computing effort and less concern about
infeasibility because it avoids some obvious impractical allocations
in initial generations. As discussed before, other introduced GA
techniques in this area produce a premature solution and then try
to fix the infeasibilities by defined iterative algorithms.

The authors have tried to compare the proposed method with
the state-of-the-art in this area and random solution. The random
solution over a large number of iterations shows the level of com-
plexity of the problem and reveals the chances of randomly acquir-
ing a feasible solution. The structure of random solution is exactly
same as the proposed method with the difference that there is not
any crossover/mutation/pruning process and only after a random
generation best solution is selected and compared with the best

achieved random solution. The number of generations for depot
allocation is 20,000 and for truck allocation is 1,000, which are
much bigger than the maximum number conducted in the proposed
method.

The selected data set belongs to a branch of a RMC in Adelaide
(Australia). They have four active batch plants and around 50
trucks in this area. The data set covers a month and 27 working
days, which means the authors have picked 27 instances. The mini-
mum and maximum numbers of deliveries in a day are 19 and 198,
respectively. In more than 70% of instances, it is necessary to send
more than 100 trucks. In addition, the demand on only 4 days is
fewer than 50 trucks. A preprocessing process has been done to
clean the available data set and make sure that there is no missed
value or duplication in the selected instances.

The Leonardi cluster in the Faculty of Engineering at the Uni-
versity of New South Wales is used to facilitate the computing pro-
cess and provide more accurate comparison especially for elapsed
time. Each run uses eight processors (64 bit AMD 6174, 2.20 GHz)
of a node supported with 4-GB RAM in total. MATLAB (Linux
version) was used for coding all methodologies and the same

Fig. 3. Comparison of the sequential GA (solid line) and traditional GA (dashed line) in terms of cost in the best solution over generations. The X axis
is number of generations and the Y axis is cost
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threshold is defined for both sequential GA and traditional GA. The
available instances are sorted according to their number of deliv-
eries and then receive an ID number between 1 and 27. The
results are compared according to the following metrics: cost,
number of used trucks, number of required iterations, number of
outsourcing in solution, and elapsed time. For calculating the cost,
Eq. (12) is used and penalty functions are not associated with the
cost because incorporated parameters in the penalty function are
considered separately as detached metrics. The proposed GA is
called sequential GA and in a following section will be compared
against the conventional GA called traditional GA

X

k

X

i

DiskðDAi; iÞ þ
X

k

XPk−1

1

Disk½SkðPkÞ;DASkðPkþ1Þ � ð12Þ

The achieved results for all approaches are embedded in Table 1.
To achieve an unbiased comparison and considering the random-
ness factor, only the overall trend will be considered rather than a
pairwise comparison between instances.

The main purpose of this paper is to find a solution for RMC
dispatching in two stages through a tailored GA approach. As ex-
pected, this leads to a significant drop in the number of generations
for the GA search. The average number of generations (NG) in
sequential GA is approximately one third of the traditional GA,
which subsequently speeds up the computation process by more
than 10 times. As predicted, in sequential GA, the number of gen-
erations for truck allocation is much less than the number of
required generations for depot allocations, which shows the com-
plexity of each separate subproblem as well. This discrepancy is the
main challenge for ordinary GA methods including traditional GA.
Because the chance of getting a near-optimum solution for depot
allocation in sequential GA is higher than traditional GA, both
depot and trucks solutions need to be looked at simultaneously.
In traditional GA, the population may include solutions that are
good only for depot allocation or only for truck allocation; how-
ever, it is very difficult to define a fitness function that is able to
maintain both types of mentioned solutions in the population and
also increase the chance of an exchange between them.

Despite an improvement in the speed of the computing pro-
cess when sequential GA is used, the quality of the solutions is

Fig. 4. Comparison of the sequential GA (solid line) and traditional GA (dashed line) in terms of number of infeasibilities in the best solution over
generations. The X axis is number of generations and Y axis is number of infeasibilities
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increased as well. For assessing the quality of solutions, three met-
rics are used; the first is the number of outsourcings in the solution.
Two scenarios might happen if the selected approach cannot find
a feasible solution such as those marked in Table 1 by NUAD and
NLTR, which respectively refer to number of unassigned deliveries
and number of loaned trucks. The infeasibility in the solution might
occur when a feasible depot allocation for all deliveries cannot be
found and unassigned customers must be supplied from outsourced
depots. The NUAD considers this concern. The second possibility
is of infeasibility in the solution due to an unavailability of trucks
that NLTR maintains, which causes apprehension. This parameter
shows howmany trucks are loaned for each instance. The NLTR for
both sequential GA and traditional GA in the entire instance is zero.
In addition, NUAD in most of the instances for both techniques is
zero with the exception of instance 26. Although there cannot be a
solid judgment based on only one instance, this instance has the
highest number of generations in both techniques, which shows the
complexity of this instance. This also supports the issue discussed
earlier that the chance of finding a feasible solution in sequential
GA is higher than traditional GAwhen sequential GA is converged
to a more practical allocation with lesser generation. Nevertheless,
NUAD and NLTR indicate that the performance of both sequential
GA and traditional GA in terms of acquiring feasible solutions is
acceptable.

The number of used trucks (NTR) is the next metric, which is
applied for assessing the quality of solutions. Although sequential
GA achieves a slightly better result and is able to supply concrete
with fewer trucks, it is not a significant difference, likely because
traditional GA is capable of providing a good enough solution for
truck allocation while simultaneously looking for a proper depot
allocation.

The last used metric is cost, which covers all traveled dis-
tances by trucks. For RMC owners, this parameter is very important
because it is a main component of their operational costs. In terms
of traveled distance only, sequential GA supplies the orders at
around 30% less cost in comparison with traditional GA. In sum-
mary, the achieved results show that sequential GA can solve
RMC-dispatching problems 10 times faster than traditional GA
with a 30% reduction in cost for the field data set analyzed in this
research.

This research now intends to study the behavior of GA tech-
niques in more detail by focusing on improvements in solutions
over generations. Fig. 3 illustrates the cost of best achieved solu-
tions over generations for all 27 instances. The number above each
figure represents the ID of the instance. The solid and dashed lines,
respectively, reflect the behavior of sequential GA and traditional
GA. Numbers are not depicted in axis due to the density of the
figure; however, the information provided in Table 1 can be asso-
ciated for better understanding Figs. 3 and 4. Although Eq. (10) is
used for evaluating the chromosomes, the depicted lines show only
the cost of the best solution in each generation without considering
the penalties. The new issue that is indicated by this figure is that in
most instances, sequential GA converges faster than traditional GA.
However, in some instances, such as instances 2, 5, 6, 7, 8, 23, and
24, sequential GA produced more generation but led to relatively
better solutions in terms of cost. In addition, in large-scale problems
where the number of required deliveries is greater than 100 (instan-
ces 10–27), sequential GA tends to converge much faster than tradi-
tional GA, which shows the ability of this technique in complex
problems. Similarly, Fig. 4 shows the strength of sequential GA
in the reduction of infeasibilities in solutions over generations,
although in some instances traditional GA converges quickly but
stocked when only a few infeasibilities remain in the solution.

However, in most instances, especially large-scale ones, sequential
GA found a feasible solution with far fewer generations.

Sensitivity analysis to study the interaction between depots and
trucks allocation and testing the presented sequential approach with
other evolutionary techniques such as PSO, ACO, and TS can be
considered as future works.

Conclusion

This paper introduces a sequential heuristic method for solving
large-scale RMC problems. In RMC, when a time window is not
allowed, two factors must be considered for each delivery, namely,
source of delivery and a proper truck. In the literature, the solution
structure among most of the introduced heuristic methods is rela-
tively similar. This is especially the case in GA-based methods
where the chromosome structure consists of two merged parts:
the first part defines the sources of deliveries, and the second part
expresses the priorities of customers. However, in this paper, a se-
quential heuristic method is proposed, which finds the solution in
two separate stages. A tailored GA search procedure is selected for
implementing the proposed approach, and a field data set is used for
evaluating the proposed method. The data cover a large RMC dis-
patcher for a period of 1 month. The results show that sequential
GA is more robust than traditional GAwhen it converges 10 times
faster with achieved solution with a 30% reduction in cost for the
data set used. The fixed time of delivery is the limitation of this and
similar approaches, but a time window can be considered as future
work. The challenge for RMC-dispatching problems with soft time
windows is that the timing variables are nonintegers unlike depot-
and truck-allocation variables. It is suggested that a hybrid heuristic
method might be a proper approach for tackling this expanded
problem.
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Notation

The following symbols are used in this paper:
C = set of customers;
D = set of depots;

DAc = allocated depot to customer c;
Disðu; vÞ = distance between u and v;
Diskðu; vÞ = distance between u and v when truck k is allocated

otherwise 0;
DVIi = 1 if the allocated depot for customer v is infeasible

otherwise 0;
K = set of vehicles;
M = big constant;
N = constant;
Pk = number of assigned customers to truck k;

qðcÞ = demand of customer c;
qðkÞ = maximum capacity of vehicle k;
Sk = set of assigned customer(s) to truck k;

sðuÞ = service time at the depot u;
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TCk = 0 if at least one customer was assigned to truck k
otherwise 1;

TVIv = 1 if the allocated truck for customer v is infeasible
otherwise 0;

tðu; v; kÞ = travel time between u and v with vehicle k;
Us = set of starting points;
Vf = set of ending points;
Wo = time at location o;
xuvk = 1 if route between u and v with vehicle k is selected,

0 otherwise;
yc = 1 if total demand of customer c is supplied, 0

otherwise;
zðu; v; kÞ = cost of travel between u and v with vehicle k;

βcðcÞ = penalty of unsatisfying the customer c; and
ϒ = maximum time that concrete can be hauled.
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