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The objective of this article is to present a framework that couples cloud and high-performance comput-
ing for the parallel map projection of vector-based big spatial data. The past few years have witnessed a
tremendous growth of a variety of high-volume spatial data—i.e., big spatial data. Map projection is often
needed, for example, when we apply these big spatial data into large-scale spatial analysis and modeling
approaches that require a common coordinate system. However, due to the size of these data and algo-
rithmic complexity of map projections, the transformation of big spatial data between alternative projec-
tions represents a pressing computational challenge. Recent advancement in cloud computing and high-
performance computing offers a potential means of addressing this computational challenge. The parallel
map projection framework presented in this study is based on a layered architecture that couples capa-
bilities of cloud computing and high-performance computing accelerated by Graphics Processing Units.
We use large LiDAR data as an example of vector-based big spatial data to investigate the utility of the
parallel map projection framework. As experimental results reveal, the framework provides considerable
acceleration for re-projecting vector-based big spatial data. Coupling high-performance and cloud com-
puting, which complement to each other, is a suggested solution for the efficient processing and analysis
of big spatial data.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction because of hurdles from coping with the size and complexity of
Advance in computational science and cyberinfrastructure
(Atkins et al., 2003) over the past decade has produced digital
spatial data at a rapidly increasing rate, pushing us into the era
of big data (Manyika et al., 2011; Zikopoulos & Eaton, 2011). These
spatial data are generated through various ways, for example,
social media platforms, remote sensors, sensor networks, or com-
puter simulation (Goodchild, 2007; Hey, Tansley, & Tolle, 2009).
As more and more spatial data are produced, these data are evolv-
ing into big data because of their characteristics of large volume
(e.g. terabytes or even petabytes), high frequency of update, and
diverse types (Zikopoulos & Eaton, 2011). The capacity and capabil-
ity of advanced computing technologies allow us to collect and
store these big spatial data, which drives advance in data-intensive
science (as the fourth scientific paradigm; see Hey, Tansley, & Tolle,
2009) in general and geographic information science in particular.
However, the efficient manipulation of big spatial data through
processing, analysis, and visualization has been rarely investigated
these data. This manipulation is essentially important for us to
garner interesting spatial knowledge that cannot be feasible using
aggregated data or conventional desktop computing. Emerging
cloud and high-performance computing (Armbrust et al., 2010;
Atkins et al., 2003), to which domain scientists draw increasing
attention (Agrawal, Das, & El Abbadi, 2011; Shi, 2010; Wang &
Liu, 2009; Yang, Wu, Huang, Li, & Li, 2011), have the potential to
handle the manipulation of big spatial data. In this study, we aim
at investigating the potential of cloud and high-performance
computing in the efficient handling of big spatial data. We focus
on the map projection of GIS data, a fundamental and representa-
tive spatial data handling approach.

Map projection is an important theme in analytical cartography
and geographic information systems (see Burrough & McDonnell,
1998; Slocum, McMaster, Kessler, & Howard, 2009). Map projec-
tion is referred to as ‘‘a systematic transformation of ellipsoidal
coordinates of latitude and longitude to a plane coordinate repre-
sentation’’ (Usery, Finn, & Mugnier, 2009; p. 91). The presentation
of locational information on the Earth (ellipsoid) using 2D flat
maps induces the original need of map projection. The trans-
formation between ellipsoidal coordinate system (or geographic
raphics
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coordinate system) and planar coordinate system (or projected
coordinate system) is based on mathematic conversion of coordi-
nates using developable surfaces in forms of, for example, cylinder,
cone, and plane (see Slocum et al., 2009). Because of transforma-
tion between alternative coordinate systems, map projection pro-
duces inevitably distortion on such metric properties as area,
distance, shape, or scale (see Pearson, 1990; Slocum et al., 2009).
The combination of developable surfaces and distortion leads to
a set of map projections with different algorithmic complexity
(from straightforward to sophisticated). Map projection, typically
comprising forward (from ellipsoidal coordinate system to planar)
and inverse (from planar to ellipsoidal) transformations (Maling,
1991; Slocum et al., 2009; Usery et al., 2009), preserves some met-
ric properties (e.g., distance) while sacrificing the accuracy of other
properties (e.g., area). The choice of which map projection is used
depends on the objective of maps, accuracy that users expect to ob-
tain, cartographic scale, study area, and data types (Maling, 1991;
Usery et al., 2009).

Map projection or coordinate system constitutes a necessary
component of GIS data. The GIS data are often organized in differ-
ent coordinate systems, but using these data for spatial analysis
and modeling requires a common coordinate system. As a
consequence, map re-projection is needed to transform GIS data
between alternative coordinate systems. In this study, map
re-projection is generally included in the category of map projec-
tion. The map re-projection of GIS data is composed of two steps:
inverse transformation to ellipsoidal coordinate system and then
forward transformation to the planar coordinate system to be
projected. The inverse and forward transformation can be carried
out using an analytical approach or polynomial approximation
(Maling, 1991; Usery et al., 2009). Maling (1991) provided an
example that details map re-projection via inverse and forward
transformation. Because of the algorithmic complexity of mathe-
matic transformation and the volume of GIS data, map projection
often presents a notable computational challenge. As an example,
for the forward transformation of the Mollweide projection (see
Snyder, 1987), a numerical approach required by the projection
of coordinates may result in multiple iterations. Researchers have
been aware of, and exploiting, the power of high-performance
computing for computationally demanding map projection (e.g.,
Behzad et al., 2012; Finn et al., 2012; Zhao, Cheng, Dong, Fang, &
Li, 2011). Zhao et al. (2011) implemented a GPU-based parallel
map projection algorithm. Their studies were based on a single
GPU and tested using small-size datasets. Finn et al. (2012) pre-
sented a parallel map projection solution, pRaserBlaster, which
leverages message-passing parallelism and high-performance
CPU-based clusters (e.g., supercomputers) for speeding up the
re-projection of large raster datasets. These parallel map projection
studies demonstrate the tremendous capabilities of high-perfor-
mance computing in efficient map projection.

The objective of this study is to develop a parallel spatial com-
puting framework for the map projection of vector-based big spa-
tial data. This parallel map projection framework couples cloud
computing and high-performance computing accelerated by
Graphics Processing Units (GPUs; see Kirk & Hwu, 2010; Owens
et al., 2007). This framework is well tailored to best reaping bene-
fits from each component to efficiently handle vector-based big
spatial data. Vector-based spatial data that we use for parallel
map projection are bare earth LiDAR (Light Detection And Ranging;
see Wehr & Lohr, 1999) data for North Carolina, USA. The entire
dataset requires hundreds of gigabytes for storage. A simple map
projection on this dataset will lead to a tera-scale computing
requirement, corresponding to several hours of sequential comput-
ing time. Thus, how to use state-of-the-art computing capabilities
to (re)project these big spatial data within an acceptable and
affordable time limit is our concentration in this study.
Please cite this article in press as: Tang, W., & Feng, W. Parallel map projection
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The remainder of this article is organized in the following man-
ner. In Section 2, we present the background of this work by focus-
ing on cloud computing and GPU-enabled high-performance
computing. In Section 3, we discuss the parallel spatial computing
framework for the map projection of big spatial data. In Section 4,
we design experiments to evaluate this framework. Section 5 con-
cludes this article with summary and future research directions.
2. Background

2.1. Cloud computing

Cloud computing represents a new computing paradigm that
provides on-demand and cost-effective computing support as a
form of utility (Armbrust et al., 2010; Buyya, Yeo, Venugopal,
Broberg, & Brandic, 2009). Generally, cloud computing is defined
as ‘‘a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction’’
(Mell & Grance, 2011, p. 2). Cloud computing is built on the basis
of distributed computing and characterized by on-demand self-
service, broad network access, resource pooling, rapid elasticity,
and measured services (Armbrust et al., 2010; Mell & Grance,
2011). Functionality of cloud computing is encapsulated into
services that coordinate together to provide on-demand scalable
computing capability. Regarding how these services are delivered,
cloud services are typically classed into three levels: Infrastructure
as a Service (IaaS; e.g., Amazon EC2), Platform as a Service
(PaaS; e.g., Google App Engine or Windows Azure), Software as a
Service (SaaS; e.g., Google Maps). Depending on the way that
clouds are deployed and accessed, four types of clouds (private,
community, public, and hybrid cloud infrastructure) can be
constructed to meet the computing requirements of different users
(Armbrust et al., 2010; Buyya et al., 2009; Mell & Grance, 2011). In
particular, virtualization plays an essential role in the provisioning
of on-demand and networked computing instances (e.g., virtual
machines) over physical computing infrastructures. Typically,
capabilities of such computing resources as compute, data storage,
and networks are virtualized to collaboratively support the flexible
and efficient manipulation (expansion or shrinkage) of virtual
machines (i.e., elasticity). As technologies of cloud computing
become mature, open-source platforms and tools, represented by
OpenStack (OpenStack, 2013), OpenNebula (OpenNebula, 2013),
and Eucalyptus (Eucalyptus, 2013), have been available for
constructing and deploying cloud computing environments. This
further spurs the study and application of cloud computing for
scientific discovery.

The emergence and advancement of cloud computing have
greatly intrigued geographic information scientists and researchers
with relevant background into the investigation of its potential in
enhancing GIS-related spatial problem-solving (Huang et al.,
2013; Yang, Goodchild et al., 2011). Wang, Wang, and Zhou
(2009) developed a PaaS-based framework for the efficient retrie-
val and indexing of spatial data on the platform of Google App
Engine. Yang, Wu et al. (2011) stressed that spatial analysis and
modeling can greatly benefit from alternative levels of services in
spatial cloud computing in terms of resolving data, computing,
concurrency, and spatiotemporal intensities. Yang, Wu et al.
(2011) highlighted the importance of applying spatiotemporal
principles as guidance for efficiently harnessing cloud computing
power. Huang et al. (2013) conducted a comparison of three
open-source cloud platforms on geospatial applications regarding
their features and performance. Huang et al. emphasized that at
of vector-based big spatial data: Coupling cloud computing with graphics
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the present stage parallel computing capabilities provided by
virtualized cloud infrastructure may not compete with high-
performance clusters for computationally intensive spatial
problems because of overhead from virtualization. The findings
by Huang et al. (2013) are in agreement with the reported perfor-
mance analysis of public cloud (e.g., see Jackson et al., 2010). In
other words, high-performance clusters built directly on physical
computing infrastructure remain as a suggested solution when
we are dealing with computationally intensive spatial analysis
and modeling. Furthermore, the coupling of cloud computing and
high-performance clusters creates potential for resolving the
performance issue facing cloud computing.
2.2. GPU-enabled high-performance computing

GPUs, with a foundation on the many-core computing paradigm
(Nguyen, 2007; Owens et al., 2007), provide unprecedented mas-
sively parallel computing capabilities that are shifting mainstream
computing paradigm. Benefiting from numerous cores that are
tightly coupled, GPUs allow us to reap computing performance that
is often several orders of magnitude of CPUs (Kirk & Hwu, 2010).
Therefore, commodity programmable GPUs have been extensively
used as co-processors to accelerate general-purpose scientific
discovery (Kirk & Hwu, 2010; Owens et al., 2007), far beyond their
original purpose on efficient graphics operations. Because of the
stream processing mechanism built in GPUs, data parallelism is
well suited to harnessing the high-throughput computing power
of GPUs (Nickolls, Buck, Garland, & Skadron, 2008). To solve a
scientific problem using GPUs is to partition data associated with
the problem and map the computation of data partitions to the
many-core parallel computing architecture on GPUs. The computa-
tion of data partitions ported on GPUs is executed concurrently.
Platforms and standards, including CUDA (Compute Unified Device
Architecture; see CUDA, 2013) and OpenCL (see OpenCL, 2013)
have been implemented on the basis of thread parallelism to
enable the programming of GPUs for high-performance accelera-
tion. These platforms and standards are now supported by alterna-
tive programming languages (e.g., C/C++, Python, and Fortran).

GPUs have demonstrated their high-performance computing
capabilities for analyzing and visualizing big data. However, the
computation required by the efficient handling of big data often ex-
ceeds the capacity of a single GPU device. In other words, the use of
multiple GPUs that are interconnected (i.e., GPU clusters that cou-
ple both CPU processors and GPU co-processors) is urgently needed
to handle efficiently big data using GPUs. Further, the virtualization
of GPUs as a form of high-performance computing utility on cloud
infrastructures has been an active research theme (Expósito,
Taboada, Ramos, Touriño, & Doallo, 2013; Ravi, Becchi, Agrawal, &
Chakradhar, 2011; Shi, Chen, Sun, & Li, 2012). Although GPU virtu-
alization on clouds remains in the initial stage of development,
cloud vendors (e.g., Amazon EC2, NIMBIX, Peer 1 Hosting; see
http://www.nvidia.com/object/gpu-cloud-computing-services.
html) are now providing virtualized GPU resources for public use.
Because of the availability, affordability, and scalability of GPU
programming environments, scientists are striving to apply GPUs
for the acceleration of their domain models and data analytics
(Nguyen, 2007; Wang & Shen, 2011). In the field of geographic
information science, GPU-enabled massively parallel algorithms
for GIS-based spatial analysis and modeling have been reported
(Ortega & Rueda, 2010; Xia, Kuang, & Li, 2011; Zhang, You, & Gruen-
wald, 2010). These parallel spatial analysis and modeling efforts
encompass spatial indexing (Zhang et al., 2010), viewshed analysis
(Zhao, Padmanabhan, & Wang, 2013), cartogram construction
(Tang, 2013), and drainage network analysis (Ortega & Rueda,
2010).
Please cite this article in press as: Tang, W., & Feng, W. Parallel map projection
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3. Methods

In this section, we present the design of the parallel computing
framework for the accelerated map projection of vector-based big
spatial data. We choose to use bare earth LiDAR data of North
Carolina, USA as an example of vector-based big spatial data (see
Fig. 1). This dataset covers the entire North Carolina, resulting in
13,596 sub-datasets (in file format). The LiDAR dataset is collected
and released by the North Carolina Floodplain Mapping Program
(see http://floodmaps.nc.gov). The original projection of the data-
set is the Lambert Conic Conformal projection. About 230 GBs of
storage space are needed to maintain the original LiDAR dataset.
As an example, it takes about several hours of CPU-based
sequential time (2.83 h for projection only; 11.46 h with the con-
sideration of input/output operations; an advanced CPU is used)
for re-projecting the entire dataset from Lambert Conic Conformal
projection to Mollweide projection. Thus, a parallel framework that
allows for efficient map projection is necessary and urgent if we
are to transform these vector-based big spatial data. Thus, in this
section, we first describe the entire architecture of the framework.
Then, we discuss each component of the framework.
3.1. Framework design

The cloud-based parallel map projection framework is based on
a layered architecture as shown in Fig. 2. Three layers of function-
ality are specifically designed to enable the efficient map
projection of vector-based big spatial data. These three layers are
high-performance computing, cloud-based virtual machine, and
web-based GIS portal. The first layer is the collection of GPU-
enabled high-performance computing infrastructure. The layer of
virtual machines is built on cloud infrastructure to support the
manipulation of data, map projection algorithms, and spatial
parallel strategies. The third layer of web-based GIS provides user
interfaces that allow for specifying parameters for parallel map
projection (e.g., input data, and spatial parallel strategies). The
design of the layered architecture integrates capabilities of Internet
GIS (Fu & Sun, 2011; Peng & Tsou, 2003), cloud computing, and
GPU-enabled high-performance computing. The coupling of the
three layers provides solid support for leveraging cloud computing
and high-performance computing capabilities for the efficient
parallel map projection of big spatial data. Fig. 3 illustrates the
workflows designed in this framework with respect to interactions
between these layers and the specific functionality of each layer. In
the rest of this section, we first discuss how to utilize GPU-based
high-performance computing for efficient map projection. Then
we present the layer of cloud-based virtual machine. Third, we
illustrate the use of Web GIS portal for user input and geovisualiza-
tion of relevant data.
3.2. GPU-accelerated high-performance computing

To efficiently transform big spatial data to alternative map
projections, high-performance computing accelerated by GPUs is
an imperative option. As GPU technologies advance, high-
performance computing clusters are increasingly equipped with
GPU accelerators. GPU clusters, including those on cloud infra-
structure (e.g., Amazon EC2), create potential for the efficient
map projection of big spatial data. The layer of high-performance
computing in this framework is targeted on the leverage of GPU
clusters for parallel map projection of vector-based big spatial
data. GPU clusters in this study include not only physical clusters
but also virtualized clusters on cloud infrastructure. Data to be
projected need to be transferred from virtual machines and then
deployed on the GPU cluster selected for map projection. These
of vector-based big spatial data: Coupling cloud computing with graphics
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Fig. 1. Map of bare-earth LiDAR data of North Carolina, USA (top and bottom-left figures show the spatial distribution of each sub-dataset; the first point in each sub-dataset
was used as the location of the corresponding sub-dataset; bottom-right figure shows the spatial pattern of LiDAR points in selected sub-datasets).

Fig. 2. Cloud-based parallel map projection framework of big spatial data.
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data can be transferred once and then updated according to the
need of map projection. Once data deployment is completed,
models of map projection are updated (for example, when new
algorithms are available from the layer of virtual machines) and
deployed. If the deployment of data and models is done, tasks
retrieved from the layer of virtual machines are encapsulated into
computing jobs and ported into the GPU cluster for parallel map
projection.

Because this framework allows for the use of multiple GPUs, a load
balancing strategy is developed to ensure the workload assigned to
Please cite this article in press as: Tang, W., & Feng, W. Parallel map projection
processing units. Computers, Environment and Urban Systems (2014), http://dx.
GPU devices is close to each other. As a result, multiple GPU resources
can be utilized in an efficient manner. For example, the bare-earth
LiDAR data used in this study, the number of points can be used as
an indicator to guide the load balancing operation. Once jobs are
submitted, the information of job status (e.g., queuing, running, error,
or completed) is sampled frequently (e.g., every 10 s). This informa-
tion is sent to the virtual machine in charge of task monitoring and
can be further presented to users interacting with Web GIS portal.
Those jobs that are not completed due to, for example, a hardware
issue can be re-submitted (fault-tolerance).
of vector-based big spatial data: Coupling cloud computing with graphics
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Fig. 3. Illustration of workflows for inter- and intra-layer interactions for cloud-based parallel map projection.

Fig. 4. Workflow of the GPU-enabled parallel map projection based on CUDA.
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Based on the GPU programing platform of CUDA, we develop
GPU-enabled parallel map projection algorithms. For a specific
map projection, the use of GPUs for accelerating the transforma-
tion of coordinates is illustrated in the following steps (also see
Fig. 4). First, spatial data are read into the CPU host memory and
organized into a collection of coordinates. Second, these data are
transferred to the global memory of the GPU to be used. Because
the capacity of the GPU global memory may be limited, in this
study we ensure that memory space required by each dataset as-
signed to a GPU device does not exceed the memory capacity of
the GPU device. Of course, if we want to use a single GPU device
to compute a very large dataset that exceeds the global memory
capacity, this dataset can be organized into multiple smaller
Please cite this article in press as: Tang, W., & Feng, W. Parallel map projection
processing units. Computers, Environment and Urban Systems (2014), http://dx.
datasets. These small datasets are then transferred to, and com-
puted on, the GPU device.

Once data are reconstructed in the global memory of the
GPU device, the kernel function of map projection is triggered.
The kernel function comprises the following two steps: inverse
and forward transformation. The kernel function recruits a grid
of CUDA threads to parallelize the inverse and forward transfor-
mation of spatial data. For the LiDAR dataset used in this study,
each thread is responsible for re-projecting a sub-set of points.
Once all threads complete their map projection tasks, map pro-
jection results are transferred back to the CPU memory. As we
can see, the use of GPUs for parallel map projection requires
cooperation between CPUs and GPUs. This CPU–GPU cooperation
of vector-based big spatial data: Coupling cloud computing with graphics
doi.org/10.1016/j.compenvurbsys.2014.01.001
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makes GPU programming referred to as heterogeneous parallel
computing.
3.3. Cloud-based virtual machines

Cloud-based virtual machines are the core layer of the entire
framework. This layer is to employ a collection of virtual machines
(i.e., IaaS here) that can be virtualized from private or public clouds
to manipulate data and algorithms for the parallel map projection.
Generally, this layer comprises four modules: map projection, data
management, visualization, and task management. The module of
map projection is to maintain and update the algorithms of map
projection. Each specific map projection includes algorithms for
forward and inverse transformations. The data management mod-
ule supports the storage and transferring of inputs, outputs, and
their metadata.

The third module, visualization, provides a set of geospatial web
services (i.e., at the level of SaaS) that allows for the access and
geovisualization of GIS data, parallel strategies, or the status of
computing jobs on the layer of high-performance computing.
These geographically referenced information can be delivered
through geospatial web services, represented by web map services
(WMS; see WMS, 2013) or web feature services (WFS; see WFS,
2013).

The fourth module, task management, implements fundamental
capabilities for the utilization of GPU-enabled high-performance
computing. The task management module is in charge of the par-
titioning of computation associated with map projection into col-
lections of tasks, submission and monitoring of these tasks that
are deployed and computed on remote high-performance comput-
ing resources. Each task consists of the computer program of the
chosen map projection and data to be projected. Big spatial data
(e.g., the NC LiDAR data used in this study) may be originally orga-
nized into a large number of sub-datasets. These sub-datasets may
need to be aggregated into larger datasets in terms of estimation
on the capacity of computing resources and computational inten-
sity of map projection algorithms. In this study, we use static task
scheduling (see Wilkinson & Allen, 2004) to assign tasks to com-
puting nodes—i.e., tasks are assigned to computing nodes before
these tasks are executed. Two approaches in terms of considering
load balancing or not are designed for the static task scheduling.
Fig. 5. Web GIS interface for the configuration o
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Without the consideration of load balancing, each computing node
is assigned with an equal number of tasks. While load-balancing is
applied, it is ensured that the total workload (e.g., the number of
points in this study) associated with the tasks assigned to each
node is equivalent. But this load-balancing operation may lead to
a different number of tasks assigned to each computing node.

The association between the modules in this layer and virtual
machines is flexible. For example, modules in this layer can be de-
ployed and handled by a single virtual machine or each module is
linked to a virtual machine. Because of the scalability of cloud com-
puting infrastructure, users can recruit an appropriate number of
virtual machines to support the functionality of these modules.
Furthermore, this layer is able to provision virtual machines with
relevant development environments or platforms (i.e., PaaS) so
that users can modify and update the functionality of these mod-
ules. For example, users can contribute new map projection algo-
rithms to the module of map projection.
3.4. Web GIS portal

The layer of Web GIS portal provides interfaces that allow users
to directly interact with the other two layers of the framework
(cloud-based virtual machines and high-performance computing).
Fig. 5 is the snapshot for configuring parallel map projection of
big spatial data. Users can specify map projection and data that
they want to apply. Furthermore, two data partitioning strategies
are provided for the LiDAR dataset used in this study: partitioning
by the number of files or of points. Based on the number of GPU de-
vices that are available on computing clusters of interest, users can
determine the number of computing tasks that are needed. A Web
GIS interface is needed to assemble geospatial web services (public
or customized) or GIS data to guide the configuration of parallel
map projection (see Fig. 5).

Once the configuration of parallel map projection is completed,
users will be presented with the interface of task monitoring (see
Fig. 6). This interface allows for querying and visualizing the status
of tasks that are executed on the remote GPU cluster(s). Task status
(including queuing, running, error, and completed) is organized in
KML format and can be updated accordingly. To geovisualize the
status of jobs, the first point in the data assigned to each job is ex-
tracted and used as the spatial location to which the job
f parallel map projection of big spatial data.

of vector-based big spatial data: Coupling cloud computing with graphics
doi.org/10.1016/j.compenvurbsys.2014.01.001
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Fig. 6. Web GIS interface for the monitoring of job status for parallel map projection.
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corresponds to. Users have the flexibility to visualize task status
and download GIS data of interest.
3.5. Implementation and computing resources

Cloud-based virtual machines play a pivot role in coordinating
interactions with the front-end Web GIS portal and back-end
high-performance computing clusters. We construct a private
cloud infrastructure to support the on-demand request of virtual
machines. An open-source cloud computing platform, OpenStack
(OpenStack, 2013), is used to build this private cloud at the IaaS le-
vel. OpenStack is composed of three basic modules: Nova (com-
pute), Swift (data storage), and Glance (image), to empower the
on-demand delivery of virtual machine instances. These modules
together provide cloud-required capabilities of compute, network,
and storage. OpenStack provides a collection of services that coor-
dinate together to install these modules either on a single server or
across multiple machines. In this study, we install and configure
the OpenStack platform using a single server. The OpenStack pri-
vate cloud that we build allows us to request a set of virtual ma-
chine instances for cloud-enabled geocomputation (physical
configurations of host and computing machines are the same:
2.93 GHz of clock rate and 4 GB of memory). The functionality in
the second layer of the parallel map projection framework is
implemented within Ubuntu Linux environment, encapsulated
into an image for OpenStack that allows for re-deployment and
extension.

High-performance computing resources used in this study are a
GPU cluster that comprises 32 nodes each consisting of 12 CPUs
(2.67 GHz of clock rate), 3 GPU devices and 12 GBs computer mem-
ory. The cluster has about 26 terabytes of storage and uses infini-
band network connections. GPU devices are Nvidia Fermi GPU
cards each having 448 cores (14 streaming multiprocessors by 32
CUDA cores), 3 GBs of global memory, and 1.15 GHz of clock rate.
The maximum number of CUDA threads per block is 1,024, and
the maximum number of block of a grid is 65,535. The code of
the map projection algorithms is adapted from GEOTRANS
(GEOTRANS, 2013), and CUDA version 4.2 is used for GPU-enabled
Please cite this article in press as: Tang, W., & Feng, W. Parallel map projection
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parallel programming. We use TORQUE (TORQUE, 2013) to manage
computing resources on the GPU cluster for parallel map
projection. The Web GIS portal is developed using a server-side
scripting language, PHP (see PHP, 2013), and Google Maps Java-
script API (version 3; see GoogleMap, 2013).
4. Experiments

In this section, we focus on evaluating the parallel map projec-
tion framework for transforming vector-based big spatial data. We
design two experiments: the first experiment is to evaluate the
acceleration performance of the GPU-enabled parallel map projec-
tion algorithm; in the second experiment, we target on comparing
the performance of the framework using multi-GPUs in response to
load balancing. In both experiments, we re-project datasets from
Lambert Conic Conformal projection to Mollweide projection.

We take advantage of two types of metrics, computing time and
acceleration factor (see Preis, Virnau, Paul, & Schneider, 2009), to
help assess the computing performance of the parallel map projec-
tion framework. In this study we ignore I/O time during which GIS
data are pre- and post-processed. In other words, we only consider
computing time spent on map projection so as to obtain a clear
understanding of how the parallel algorithm accelerates the map
projection. Acceleration factor is obtained by the following
equation:

AF ¼ Tcpu=Tgpu ð1Þ

where AF is acceleration factor. Tcpu denotes CPU-based sequential
computing time, and Tgpu represents the computing time of the
GPU-enabled parallel map projection algorithm. Acceleration factor
reflects the ratio of CPU-based sequential computing time over
computing time spent on a GPU device. A large acceleration factor
represents that a high speed up is obtained from GPU acceleration.
There are two types of computing time regarding whether taking
into account the data transferring time between GPUs and CPUs.
Correspondingly, we have two acceleration factors: with and with-
out the consideration of time for data transferring between CPUs
and GPUs.
of vector-based big spatial data: Coupling cloud computing with graphics
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Fig. 7. Comparison of the computing performance of GPU-enabled parallel map
projection in response to problem size (A: computing time; B: acceleration factors;
time unit: seconds).
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4.1. Experiment 1: GPU performance in response to problem size

The purpose of this experiment is to investigate how problem
size influences the computing performance of the GPU-enabled
parallel map projection. Because map projection of vector-based
GIS data per se operates at the point level, altering the number
of points in the data used in this study is a way to examine the
relationship between problem size and computing performance.
To generate data for this experiment, we randomly pick 10 sub-
datasets from the original data set. We aggregate these 10 datasets
together to generate base data (2,362,074 points) for different
treatments. We have fourteen treatments in which points are
randomly drawn from the base dataset. The number of points
varies from 2,362,074 to 37,793,184 at an interval of 2,362,074.
Each CUDA thread handles ten points and each block has 512
threads for the GPU-enabled parallel map projection algorithm.

Computing performance results of the GPU-enabled map pro-
jection algorithm for the fourteen treatments are shown in Table 1
and Fig. 7. From these results, it can be observed that the GPU-en-
abled parallel map projection reduces the computing time of trans-
formation (without data transfer time) to the level of milliseconds,
while the CPU-based sequential algorithm needs multiple seconds.
The acceleration factor without considering data transferring re-
mains relatively stable (around 139–141). Taking into account data
transfer time between host and device, the computing time of
transformation is from 0.5 to 1.68 s for the fourteen treatments.
This difference between these two types of GPU computing time
indicates that the data transfer time dominates the total comput-
ing time spent on GPUs due to the low bandwidth of transferring
data between CPUs and GPUs. This explains that the acceleration
factors with data transfer time get down to the range of 5.51–
39.57. Acceleration factors with data transfer time exhibit an
interesting variation pattern. As the number of points increases,
acceleration factors quickly jump from 5.51 to 32 for the first three
treatments, then remain relatively stable between the range of 22
and 39 for the rest of the treatments. The low acceleration factors
for the first and second treatments can be attributed to the high
proportion of data transferring time in the total GPU computing
time for map projection.

In general, our GPU-enabled parallel computing approach accel-
erates the transformation of map projection in a considerable man-
ner. From experimental results, we see that the larger the size of
input data (i.e., problem size), the higher speed up that we gain
in terms of pure computing time for map projection. Further, it
needs to be ensured that the size of input data for a GPU device
Table 1
Results of computing performance for experiment 1 (time unit: seconds; AF:
Acceleration Factor; datasets were resampled from the entire North Carolina LiDAR
dataset).

Treatments CPU time With data transfer Without data transfer

GPU time AF GPU time AF

T1 3.13 0.5672 5.52 0.0225 139.29
T2 6.26 0.6266 9.99 0.0449 139.56
T3 9.39 0.4992 18.81 0.0673 139.56
T4 12.54 0.3864 32.45 0.0896 139.92
T5 15.66 0.4419 35.44 0.112 139.86
T6 18.89 0.8219 22.98 0.1344 140.50
T7 21.85 0.9538 22.91 0.1567 139.40
T8 24.95 0.6942 35.94 0.1791 139.27
T9 28.20 1.0896 25.88 0.2015 139.94
T10 31.33 0.7916 39.58 0.2238 140.01
T11 34.45 1.1366 30.31 0.2461 139.97
T12 37.56 1.1261 33.35 0.2686 139.85
T13 40.72 1.3037 31.24 0.291 139.95
T14 50.57 1.6841 30.03 0.358 141.24
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does not exceed the capacity of the GPU device with respect to,
for example, its memory. The transformation operation of coordi-
nates for map projection is independent with each other—in other
words, the transformation of a spatial entity (point in this study)
does not need information from other spatial entities. This leads
to a good linear relationship between acceleration factors without
considering data transfer and problem size. However, because of
the dominant influence of data transfer between CPUs and GPUs,
this relationship is modified considerably after data transfer is ta-
ken into account. It is necessary to port a large number of points
into GPUs if we want to fully take advantage of the many-core
architecture of GPUs for massively parallel computing. Further, this
suggests that small GIS-based spatial datasets may need to be pre-
processed and aggregated into datasets that are sufficiently large
to best exploit parallel computing power on GPUs.
4.2. Experiment 2: Load balancing effect

In the second experiment, we compare the effect of load balanc-
ing on the computing performance of the parallel map projection
framework. We use the entire NC LiDAR dataset consisting of
13,596 sub-datasets. From results in experiment 1, we see that
spatial data ported into GPUs should be sufficiently large. Thus,
in experiment 2, we first aggregate these 13,596 sub-datasets by
randomly picking a fixed number of original sub-datasets (14 in
this experiment). As a result, 990 sub-datasets are generated. We
design two treatment groups for the comparison of load balancing
effect. The first treatment group is a control group in which 990
sub-datasets are randomly allocated to the GPU devices to be used
and the number of sub-datasets for each GPU is equivalent. For the
second treatment group, we apply a load balancing strategy that
ensures the total number of points assigned to each GPU is close
to each other. Each treatment group includes five treatments that
use alternative number of GPUs for map projection. The numbers
of vector-based big spatial data: Coupling cloud computing with graphics
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Table 2
Results of computing time for parallel map projection using multiple GPUs (time unit: seconds; the entire North Carolina LiDAR dataset was used).

#GPUs Computing time (with transfer time) Computing time (without transfer time)

Load balancing Time difference Load balancing Time difference

Before After Before After

20 30.72 27.11 3.61 4.56 3.78 0.79
30 19.64 19.03 0.61 2.97 2.58 0.39
40 15.32 15.28 0.03 2.27 2.02 0.25
50 12.51 12.26 0.25 1.96 1.64 0.33
60 10.91 10.78 0.13 1.70 1.42 0.29

Table 3
Acceleration factors of the parallel map projection algorithm using multiple GPUs (acceleration factor was derived with respect to a single CPU).

#GPUs Acceleration factor (with transfer time) Acceleration factor (without transfer time)

Before load balancing After load balancing Before load balancing After load balancing

20 331.65 375.78 2232.96 2699.08
30 518.84 535.43 3435.28 3955.19
40 665.22 666.62 4481.78 5034.20
50 814.44 831.31 5177.09 6209.15
60 933.64 944.89 5983.73 7199.43

Fig. 8. Effect of CPU–GPU data transferring in parallel map projection accelerated
by multi-GPUs (A: scatterplot between CPU computing time and GPU time
including data transferring for 60 individual jobs; B: scatterplot between CPU
computing time and GPU time excluding data transferring for 60 individual jobs;
numbers of GPUs and CPUs: 60).
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of GPUs for the five treatments in each treatment group are 20, 30,
40, 50, and 60. For CUDA configuration, each block consists of 512
threads, and ten points are assigned to a single thread for map
projection.

The sequential time using a single CPU for transforming the en-
tire LiDAR dataset is 10,189.28 s (about 2.83 h). Table 2 and 3 re-
port the results of computing time and acceleration factors for
the GPU-enabled map projection algorithm before and after apply-
ing load balancing. As we can see, it only takes several seconds to
re-project the entire LiDAR dataset when we use multiple GPUs to
accelerate map projection. This is the case when we consider data
transferring between CPUs and GPUs. For the situation of consider-
ing data transfer time, computing time for re-projection drops
from about 31 s down to 11 s when the number of GPUs used in-
creases from 20 to 60. Correspondingly, acceleration factors exhibit
an increasing pattern: from about 300 (331.7 without load balanc-
ing and 375 with load balancing) to 900 (933.64 without load bal-
ancing and 944.9 with load balancing). These results show that
acceleration from the use of multiple GPUs is considerable. Further,
with respect to the effect of load balancing, it can be observed that
computing time after applying load balancing is generally lower
than that without load balancing. As the number of GPUs increases,
reduction in computing time after applying load balancing tends to
decline. As reflected from acceleration factors, the use of load bal-
ancing leads to increase in acceleration factors (both for consider-
ing data transferring or not).

To further study the effect of CPU–GPU data transferring, we
run the treatment of 60 jobs (before applying load balancing) using
60 CPUs (i.e., we conduct parallel map projection on multiple
CPUs). Fig. 8 illustrates the scatterplots of computing time of each
job on GPUs and CPUs. CPU computing time for the 60 individual
jobs varies from about 110 to 240 s. GPU computing time for each
of these jobs ranges from 0.8–1.7 s (without data transferring time)
and 5–11 s when data transferring time is considered. GPU time
without considering data transferring exhibits a fairly good linear
relationship with CPU time. When data transferring time is taken
into account, GPU computing time is perturbed but it is positively
related to CPU computing time.

Results in experiment 2 indicate that the use of multiple GPUs
has a compounded influence on the acceleration of map projection
of spatial data. Using a single GPU allows us to gain about 20–40
times of acceleration (as shown in experiment 1). Once multiple
Please cite this article in press as: Tang, W., & Feng, W. Parallel map projection
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GPU devices are employed, the acceleration factors can reach a
hundred level (from an approximate range of 300–900). Because
map projection tasks are independent with each other, there is
no communication overhead among GPUs. This explains such sub-
stantial acceleration for map projection using multi-GPUs. More-
over, because data transferring between CPUs and GPUs
dominates the entire map projection procedure using GPUs, it is
imperative to seek a way that reduces data transferring (either at
of vector-based big spatial data: Coupling cloud computing with graphics
doi.org/10.1016/j.compenvurbsys.2014.01.001
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hardware or software levels). This may lead to further enhance-
ment in GPU acceleration of map projection. More importantly,
the design and use of appropriate load balancing strategies are nec-
essary to best exploit the massively parallel computing power from
multiple GPUs.
5. Conclusion

In this article, we develop a parallel map projection framework
for the transformation of vector-based big spatial data among
alternative map projections. The parallel map projection
framework is based on the integration of capabilities of three lay-
ers: GPU-enabled high-performance computing, cloud computing,
and Web GIS. This integrative framework provides substantial sup-
port for best leveraging each component that complements to each
other with respect to the map projection of big spatial data. The
layer of cloud computing provisions a collection of virtual ma-
chines that serves a key role in terms of interacting with front-
end users and back-end high-performance computing clusters.
GPU clusters provide many-core massively parallel computing
power that holds great promise for handling efficiently big spatial
data. Experimental results reported in this study demonstrate sub-
stantial acceleration obtained through GPU-enabled parallel map
projection. Moreover, it is imperative to apply pre-processing
(e.g., aggregation) on big spatial data of interest and design parallel
strategies tailored to the spatial data to leverage the massively par-
allel computing power on many-core GPUs. Parallel strategies, rep-
resented by domain decomposition and load balancing, are of
particular importance for achieving the best exploitation of high-
performance computing resources on the processing and analysis
of GIS-relevant data (see Wang, 2010; Xia, Liu, Ye, Wu, & Zhu,
2012; Xia et al., 2011; Yang, Wu et al., 2011).

The emergence of cloud computing extended from service-ori-
ented computing (Foster, 2005; Foster, Zhao, Raicu, & Lu, 2008) ex-
poses us with scalable and on-demand computing resources. The
cloud-enabled capabilities of the parallel computing framework
can be deployed and further extended on alternative cloud com-
puting infrastructures according to the need of managing the size
and complexity of big spatial data. However, cloud computing is
on the basis of the virtualization of compute, network, and storage
capabilities. The current virtualization technologies lead to the fact
that the computing performance of clouds may not outperform
computing clusters that are directly built on physical computing
hardware (see Huang et al., 2013; Jackson et al., 2010). This leads
to the integration of cloud computing and high-performance com-
puting for the efficient map projection of big spatial data in this
study.

The transformation of vector-based data among alternative map
projections is a fundamental spatial data handling step when we
conduct spatial analysis and modeling using different GIS data.
This transformation operation often leads to a computational bot-
tleneck in face of big spatial data. The parallel map projection
framework based on the coupling of cloud and high-performance
computing provides a potential solution that relieves the computa-
tional bottleneck. Furthermore, this framework offers insights into
the efficient GIS-based handling of big spatial data (vector or ras-
ter) using state-of-the-art cloud computing. Before the perfor-
mance issue induced by virtualization is solved, the integration
of both cloud computing and high-performance computing clus-
ters remains as a suggested solution for the manipulation of big
spatial data.

Future studies will focus on the following directions. First, more
spatial domain decomposition strategies will be developed to fur-
ther improve the acceleration performance of the GPU-enabled
parallel map projection algorithms. Second, the use of this
Please cite this article in press as: Tang, W., & Feng, W. Parallel map projection
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framework for the map projection of raster-based big spatial data
is a promising direction. Many raster-based spatial data are
becoming big data as spatiotemporal resolution is finer and the ex-
tent that they cover becomes larger (e.g., continental or global).
Third, GIS-based spatial analysis approaches built on these big spa-
tial data will be parallelized and incorporated into this framework
to facilitate big spatial data analytics.
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